
Java Programming for AP® Computer Science A Random Sample Pages

JAVA PROGRAMMING
FOR THE

AP COMPUTER SCIENCE A EXAMINATION

FIRST EDITION

by

Leon Schram

John Paul II High School
Plano, Texas

SAMPLE PAGES

Note: The style of this book is to present a sequence of
topics in a manner that places focus on any specific topic
inside a grey table. The program examples, the program
outputs and the topic-specific explanations are all located
inside the table container, such as is used here.

General topics and important summaries are placed
outside these topic tables.

Java Programming for AP Computer Science A Random Sample Pages

Java Programming for AP® Computer Science A
Table of Contents

UNIT 1 Primitive Types

1.1
1.2
1.3
1.4
1.5
1.6*
1.7*
1.8*

Why Programming in Java?.
Variables and Data Types
Expressions and Assignment Statements.
Compound Assignment Statements.
Casting and Ranges of Variables.
How Computer Store Information
Programming Language Translators
LValues and RValues

2
13
20
29
33
39
44
48

UNIT 2a Using Objects

2.0*
2.1
2.2
2.3
2.4a*
2.4b

Introduction to Object Oriented Programming
Objects: Instances of Classes.
Creating and Storing of Classes (Instantiation).
Calling a Void Method
Introduction to Java Graphics
Calling a Void Method with Parameters

52
54
58
65
71
84

UNIT 2b Using Objects Continued

2.0*
2.5
2.6
2.7
2.8
2.9

Introduction to Using Objects Continued..
Calling a Non-Void Method.
String Objects: Concatenation, Literals and More.
String Methods
Wrapper Classes: Integer and Double.
Using the Math Class.

92
93
98

106
115
120

UNIT 3 Boolean Expressions and if Statements

3.0*
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Program Input and Abstraction
Boolean Expressions
if Statements and Control Flow
if..else Statements
else..if Statement.
Compound Boolean Expressions
Equivalent Boolean Expressions.
Comparing Objects

132
140
145
153
156
163
177
188

Java Programming for AP® Computer Science A Random Sample Pages

UNIT4 Iteration

4.0*
4.1a
4.1b
4.2
4.3
4.4
4.5
4.6*

Introduction to Iteration.
while Loops
Standard Algorithms
for Loops
Developing Algorithms Using Strings
Nested Iteration
Informal Code Analysis
Iteration and Graphics

198
200
205
218
225
229
233
238

UNIT 5a Writing Classes

5a.0*
5a.1
5a.2
5a.3
5a.4
5a.5

Introduction to Object Oriented Programming
Anatomy of a Class
Constructors
Documentation with Comments
Accessor Methods
Mutator Methods

246
250
258
265
278
286

UNIT 5b Writing Classes Continued

5b.6
5b.7
5b.8
5b.9
5b.10

Writing Methods
Static Variables and Methods
Scope and Access.
this Keyword
Ethical and Social Implications of Computing Systems . . .

296
308
319
331
338

UNIT 6 Array

6.0*
6.1
6.2
6.3
6.4
6.5*

Introduction to Data Structures
Array Creation and Access.
Traversing Arrays
Enhanced for Loop for Arrays
Developing Algorithms Using Arrays.
Introducing Sorting Algorithms

342
348
356
359
364
384

Java Programming for AP Computer Science A Random Sample Pages

UNIT 7 ArrayList

7.0*
7.1
7.2
7.3
7.4
7.5
7.6a
7.6b
7.7
7.8*

Why Are There Two Different Arrays?
Introduction to ArrayList
ArrayList Methods
Traversing ArrayLists
Developing Algorithms Using ArrayLists
Searching
Sorting .
Informal Analysis of Sorting and Searching Algorithms. . .
Ethical Issues AroundData Collection
Behind the Generic Curtain

396
397
403
408
412
422
432
448
462
465
474

UNIT 8 2D Array

8.0*
8.1
8.2

Introduction to Static 2D Arrays.
2D Arays
Traversing 2D Arrays.

476
478
484

UNIT9 Inheritance

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Creating Superclasses and Subclasses
Writing Constructors for Subclasses
Overriding Methods
super Keyword
Creating References Using Inheritance Hierarchies. . . .
Polymorphism
Object Superclass

494
499
507
513
520
535
548

UNIT 10 Recursion

10.0
10.1a
10.1b*
10.1c*
10.2a
10.2b
10.3*

Introduction to Recursion
Recursion
Comparing Pre-Recursion and Post-Recursion.
Multiple Recursive Calls in One Program Statement . . .
Recursive Searching
Recursive Sorting
Classic Programs Made for Recursion.

566
568
574
576
584
589
605
612

Java Programming for AP® Computer Science A Random Sample Pages

Java is a case-sensitive programming language.

Java is not an intelligent language. It is not a language that can determine what is meant when a
minor spelling error is made. This goes even to the degree that identical words are not viewed to
be the same when all characters are the same, except for case. When that happens, the language
is said to be case-sensitive.

Print05.java

Program Print05 will not compile. Human beings with intelligence can easily determine the
intent of the program. Many programming languages are designed to be case-sensitive. Java is
one such language. The System class starts with an upper-case S. The lower-case s of line 9 is
not accepted. Likewise the upper-case P in Print is not allowed. The output does not show
program output, but a compile error message.

4 public class Print05
5 {
6 public static void main(String[] args)
7 {
8 System.out.print("THIS IS OK.");
9 system.out.Print("THIS IS NOT OK.");

10 }
11 }

----jGRASP exec: javac -g Print05.java

Print05.java:9: error: package system does not exist
system.out.Print("THIS IS NOT OK.");

^
1 error

----jGRASP wedge2: exit code for process is 1.
----jGRASP: operation complete.

Java Programming for AP Computer Science A Random Sample Pages

At first glance it may appear that classes and objects are synonyms. What is a class? A class
contains attributes and behaviors. What is an object? An object contains attributes and behaviors.
There is a difference that will make sense soon. Computers have always imitated life.
Spreadsheets did not suddenly appear as some nifty computer application. Around 1500 the
Venetian merchants adopted a double-entry bookkeeping system. Scrolls from that period
showed rows and columns that resembled a printed version of today's electronic spreadsheet.
Incidentally, VisiCalc - the first spreadsheet software - was the first "killer" app or program for
electronic computers.

In other words, objects are all around us. Do not go far. Check yourself out. You are an object
with attributes and behaviors. You can also think of an object with nouns and verbs. You have
eyes (attributes). Eyes see (behavior). You have a brain (noun) and the brain thinks (verb). Look
at another object, such as a car. A car has a brake (noun) and the brake stops the car (verb).

Everything that was just mentioned applies to both classes and objects. So what is the difference?
Think of class as a category and think of an object as one example or one instance of the
category. A cat is a category and fluffy is one instance of a cat.

Classes Objects

A class has attributes.
A class has behaviors.
A class is a data type.
A class is a category.
Cat is a class.
Student is a class.
Teachers is a class.

An objects has attributes.
A class has behaviors
An object is a variable.
An object is 1 instance or example of a class.
Whiskers is 1 instance of a cat.
Alexia is 1 instance of a student.
Mrs. Nelson is 1 instance of a teacher.

With primitive data types the creation of a program variable, and assigning its initial value, is
easy. For instance, the program statement int age = 16; declares age to be an int variable
with initial value of 16. It is another story when classes and objects get into the picture. The class
is the data type and the object is the variable. You are about to see some program examples that
use a Bank class. You will rapidly learn that working with objects & classes is very different
from working with primitive types.

Right now we are interested in doing what the title of the chapter states, which is Using
Objects. Objects cannot be used until they are first created and the creation of an object
requires the existence of a class. So let's take one example, a Bank class.

Java Programming for AP® Computer Science A Random Sample Pages

Bank.java

The Bank.java file contains the Bank class. It cannot execute by itself and it is used in this
section to demonstrate concepts with the next two programs. The creation and requirements of
classes will be handled in several future chapters.

5 public class Bank
6 {
7 private double balance;
8
9 public Bank(double bal)

10 {
11 balance = bal;
12 }
13 }

The Bank class does compile. Classes are normally placed in their own files and it helps to
know that a class is free of syntax errors. But that is all. Another testing program needs to
determine if the Bank class functions properly. You can try to execute the Bank class, but if
you do you will see the jGRASP message below stating that no main method is found.

----jGRASP exec: javac -g Bank.java

----jGRASP: operation complete.

Java Programming for AP Computer Science A Random Sample Pages

this

The word this is an interesting word. It has some special meanings that are surprisingly
flexible. Consider the following situation between a student and a teacher. “Mr. Smith, may I
borrow your laptop charger?” The teacher responds: “Yes, Kathy, but make sure to return the
charger to me in this room.” Where is “this” room. It is the room that the teacher occupies while
talking to a student. If the same situation occurs in the cafeteria, then the students must return the
charger to the teacher in the cafeteria.

How do we know where “this” is. It depends on the current context. If you are the student who
asked the question then “this” is the room where you and the teacher are talking. In computer
science, and in particular with Java, there is a special reference called this. It is an object and it
behaves pretty much like the this word in English. Every person is located somewhere and every
person can say: “Come to me tomorrow at noon at this location.” Such a sentence is possible
with millions of people.

The same applies to a Java program. The immediate or shallow value of an object is a reference
to a logical location where attributes are stored. Every object that is properly constructed has its
own specific reference value and every object can use the keyword this to indicate their own
specific reference value. So how does one know which this and which value is appropriate? It
is similar to human situations. You are standing in a room while talking. The room at that
moment is the location when somebody says: “come back to this room.” In a computer program
of thousands of lines, one line at a time is being executed and in the Object Oriented
environment of your Java program, you are in some container. You probably arrived at some
location, because of a method call with some object parameter. The this reference will be the
same value as the object reference that is currently being used. So far you have enough
information to be confused. There have been some examples of using this in previous
programs. Talking about scope involves using this. In the current section you will see a
sequence of programs to make more sense of the mysterious reference this.

The this Reference

this is a reference. It stores the exact same value that references a
memory location as an object. this can be many difference values,
which depend on the current object in context of the program sequence.

The first program example, This01, constructs two Widget objects. The program then proceeds
to print the values of the two objects. There is also a print statement inside the constructor
where the value of the this reference is printed.

Java Programming for AP® Computer Science A Random Sample Pages

This01.java

Line 8 calls the constructor. The first output is from the constructor, line 22. This is followed
by printing the value of this in line 23. Then the program sequence returns to line 10 and
displays the value of widget1. The toString method is not defined in the Widget class, it
will display the reference value. Note that this and widget1 are the same value. The same
process is repeated with the second object, widget2 and this is now the same as widget2.

4 public class This01
5 {
6 public static void main(String[] args)
7 {
8 Widget widget1 = new Widget();
9 System.out.println("Inside main method");

10 System.out.println(widget1);
11 Widget widget2 = new Widget();
12 System.out.println("Inside main method");
13 System.out.println(widget2);
14 }
15 }
16
17 class Widget
18 {
19 public Widget()
20 {
21 System.out.println("Inside Widget constructor");
22 System.out.println(this);
23 }
24 }

----jGRASP exec: java This01

Inside Widget constructor
Widget@15db9742
Inside main method
Widget@15db9742
Inside Widget constructor
Widget@6d06d69c
Inside main method
Widget@6d06d69c

Java Programming for AP Computer Science A Random Sample Pages

The selectionSort method with a static array

The selectionSort method shows the familiar three statements that swap values. Is it not the
intent of the improved Selection Sort to reduce swapping? Yes, but the intent is to reduce, not
eliminate. In a list of 10,000 numbers the Bubble Sort swap numbers as many as 9,999 times,
while the Selection Sort only swaps once. This is a considerable improvement.

Sorting02a.java

The selectionSort method shares the outer-loop concept of the bubbleSort. It repeats
comparison passes. The algorithmic logic of the sort routine is shown with the inner loop.

In line 18 the smallest value is stored, or technically, the index of the smallest value is stored.
Lines 19, 20 and 21 compare all the array elements with smallest and reassign smallest
any time a smaller value is found.

Only after the entire inner-loop is finished do you actually see the three swap statements of
lines 22, 23 and 24 jump into action. That is right, the swap routine is part of the outer loop,
not the inner loop.

14 public static void selectionSort (int[] list)
15 {
16 for (int p = 0; p < list.length; p++)
17 {
18 int smallest = p;
19 for (int q = p+1; q < list.length; q++)
20 if (list[q] < list[smallest])
21 smallest = q;
22 int temp = list[p];
23 list[p] = list[smallest];
24 list[smallest] = temp;
25 }
26 }

----jGRASP exec: java Sorting02a

23 89 55 17 99 45 11 60 67 34 81 28 31 15 72
11 15 17 23 28 31 34 45 55 60 67 72 81 89 99

Java Programming for AP® Computer Science A Random Sample Pages

The selectionSort method with a dynamic array

There is a very important goal intended for Chapter 7. It is not simply to introduce the
ArrayList class and demonstrate various algorithms. An important goal is to gain comfort with
coding using both the static array and the ArrayList class. Comfort means you can easily write
program code in either one of the arrays. For this reason, much has been shown in both static and
dynamic code.

Sorting02b.java

The selectionSort compares every list element, but the comparison is with a list
element and the current smallest list element. This program has also made a change by
placing the three swap program statements in its own swap method. Think question! Does our
selectionSort method benefit with faster execution time by using a swap method?

19 public static void selectionSort (ArrayList<Integer> list)
20 {
21 for (int p = 0; p < list.size(); p++)
22 {
23 int smallest = p;
24 for (int q = p+1; q < list.size(); q++)
25 if (list.get(q) < list.get(smallest))
26 smallest = q;
27 swap(list,p,smallest);
28 }
29 }
30
31 private static void swap (ArrayList<Integer> list, int x, int y)
32 {
33 int temp = list.get(x);
34 list.set(x,list.get(y));
35 list.set(y,temp);
36 }

----jGRASP exec: java Sorting02b

[23, 89, 55, 17, 99, 45, 11, 60, 67, 34, 81, 28, 31, 15, 72]
[11, 15, 17, 23, 28, 31, 34, 45, 55, 60, 67, 72, 81, 89, 99]

Java Programming for AP Computer Science A Random Sample Pages

Graphics is not part of the APCS A Framework. but visual graphics is well suited for showing
subclasses that override or redefine methods. It is also possible to do nothing different in the
subclass. Perhaps that seems strange, but remember reliability. The creation with a subclass may
be testing that everything works correctly, like its superclass, and then proceed to make changes.

Modify01.java

Program Modify01 does not modify anything and does not demonstrate any inheritance. It is
a program that draws a simple tree. It will become the superclass for the future inheritance
program examples.

8 public class Modify01 extends Applet
9 {

10 public void paint(Graphics g)
11 {
12 Tree tree = new Tree();
13 tree.drawTree(g);
14 }
15 }
16
17 class Tree
18 {
19 public void drawTree(Graphics g)
20 {
21 g.setColor(Color.black);
22 drawTrunk(g);
23 drawLeaves(g);
24 }
25
26 public void drawTrunk(Graphics g)
27 {
28 g.fillRect(200,300,100,300);
29 }
30
31 public void drawLeaves(Graphics g)
32 {
33 g.fillOval(100,50,300,300);
34 }
35 }

Java Programming for AP® Computer Science A Random Sample Pages

A subclass can change nothing at all.

Modify02.java

The SubTree class in lines 36..38 shows an empty class body. It will inherit all the
capabilities from the Tree class and change nothing. The tree displayed by the SubTree
object is identical in appearance to the superclass Tree.

7 public class Modify02 extends Applet
8 {
9 public void paint(Graphics g)

10 {
11 SubTree subTree = new SubTree();
12 subTree.drawTree(g);
13 }
14 }
15
16 class Tree
17 {
18 public void drawTree(Graphics g)
19 {
20 g.setColor(Color.black);
21 drawTrunk(g);
22 drawLeaves(g);
23 }
24
25 public void drawTrunk(Graphics g)
26 {
27 g.fillRect(200,300,100,300);
28 }
29
30 public void drawLeaves(Graphics g)
31 {
32 g.fillOval(100,50,300,300);
33 }
34 }
35
36 class SubTree extends Tree
37 {
38 }

Java Programming for AP Computer Science A Random Sample Pages

A subclass can redefine one or more methods.

Modify03.java

The SubTree class in program Modify03 redefines method drawLeaves. The leaves are
now green. In a printed version the leaves will appear to be a shade of gray.

8 public class Modify03 extends Applet
9 {

10 public void paint(Graphics g)
11 {
12 SubTree subTree = new SubTree();
13 subTree.drawTree(g);
14 }
15 }
16
17 class Tree
18 {
19 public void drawTree(Graphics g)
20 {
21 g.setColor(Color.black);
22 drawTrunk(g);
23 drawLeaves(g);
24 }
25
26 public void drawTrunk(Graphics g)
27 {
28 g.fillRect(200,300,100,300);
29 }
30
31 public void drawLeaves(Graphics g)
32 {
33 g.fillOval(100,50,300,300);
34 }
35 }
36
37 class SubTree extends Tree
38 {
39 public void drawLeaves(Graphics g)
40 {
41 g.setColor(Color.green);
42 g.fillOval(100,50,300,300);
43 }
44 }

Java Programming for AP® Computer Science A Random Sample Pages

The PineTree subclass overrides method drawLeaves.

Modify04.java

The name of the subclass is now PineTree. It is good to use self-documenting identifiers
whenever possible. This time method drawLeaves changes both the color and the shape of
the superclass Tree appearance.

12 PineTree pineTree = new PineTree();
13 pineTree.drawTree(g);
^^^
16
17 class Tree
18 {
19 public void drawTree(Graphics g)
20 {
21 g.setColor(Color.black);
22 drawTrunk(g);
23 drawLeaves(g);
24 }
25
26 public void drawTrunk(Graphics g)
27 {
28 g.fillRect(200,400,100,300);
29 }
30
31 public void drawLeaves(Graphics g)
32 {
33 g.fillOval(100,150,300,300);
34 }
35 }
37
38 class PineTree extends Tree
39 {
40 public void drawLeaves(Graphics g)
41 {
42 g.setColor(Color.green);
43 int x = 200;
44 int y = 400;
45 Polygon triangle = new Polygon();
46 triangle.addPoint(x+50,y-400);
47 triangle.addPoint(x+200,y);
48 triangle.addPoint(x-100,y);
49 g.fillPolygon(triangle);
50 }
51 }

Java Programming for AP Computer Science A Random Sample Pages

A subclass can newly-define one or more methods.

Modify05.java

Program Modify05 creates a new subclass XmasTree, which is a subclass of PineTree. It
inherits various methods from Tree and PineTree and then newly-defines drawOrnaments.
Please notice that at every level as few changes as possible are made, because of Inheritance.

12 XmasTree xmasTree = new XmasTree();
13 xmasTree.drawTree(g);
14 xmasTree.drawOrnaments(g);
^^
17
18 class Tree
19 {
20 public void drawTree(Graphics g)
21 // Same code as previous program
26
27 public void drawTrunk(Graphics g)
28 // Same code as previous program
31
32 public void drawLeaves(Graphics g)
33 // Same code as previous program
36 }
37
38 class PineTree extends Tree
39 // Same code as previous program
52
53 class XmasTree extends PineTree
54 {
55 public void drawOrnaments(Graphics g)
56 {
57 int x = 200;
58 int y = 500;
59 g.setColor(Color.red);
60 g.fillOval(x-50,y-60,30,30);
61 g.fillOval(x+40,y-60,30,30);
62 g.fillOval(x+130,y-60,30,30);
63 g.fillOval(x,y-140,30,30);
64 g.fillOval(x+90,y-140,30,30);
65 g.fillOval(x+50,y-200,30,30);
66 g.fillOval(x+20,y-260,30,30);
67 g.fillOval(x+50,y-200,30,30);
68 g.fillOval(x+40,y-320,30,30);
69 }
70 }

