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In this chapter we will consider several other topics concerning the derivative of a 
function. First we will look at the Mean Value Theorem and several ides that often get 
confused with the Mean Value Theorem. Then we will discuss Related Rate Problems, 
L’Hôpital’s Rule, and optimization problems. 

The Mean Value Theorem

Previously, we looked at the average rate of change of a function over an interval. 
For a continuous function, f x^ h, on the interval ,a b6 @ this is simply the slope of the 
segment between the endpoints:

b a
f b f a
-
-^ ^h h

If the function is differentiable on the interval the Mean Value Theorem tells us 
that there will be someplace in the open interval where the derivative is equal to the 
average rate of change. 

The Mean Value Theorem: If f is continuous on the closed interval ,a b6 @ and 
differentiable on the open interval ,a b^ h then there exist a number c in the open interval 

,a b^ h such that:

( ) ( ) ( )f c b a
f b f a

=
-
-l
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I have mixed feelings about proof in high school math and high school calculus. 
I am not one for proving everything. For one thing, it cannot be done and, if it could 
be done, proof would become the whole focus of high school math. Proofs are not the 
focus of first-year calculus or AP Calculus. The place for proving “everything” is a 
real analysis course in college. 

However, students should know about proof and there are places where you can 
demonstrate some of the power of proof and show how proof works in calculus. The 
MVT is one of those places. If you do not want to prove the MVT, there are two ways 
that you can use to convince your class of the MVT without proofs. 

To prove the MVT we will start with two preliminary, but none the less important 
theorems. 

Fermat’s Theorem on Extreme Values
Perhaps not as well-known as another of Fermat’s Theorems, this theorem is 

much more practical. The theorem establishes that if a function is continuous on a 
closed interval and has a maximum (or minimum) value on that interval at x c= , then 
the derivative at x c=  is either zero or does not exist. 

There are two cases. In each case we will look at the limit of the difference 
quotient that defines the derivative at x c= , namely, h

f c h f c+ -^ ^h h and look at what 

happens as h approaches 0 from the left and from the right. These two limits are the 
same and equal to the derivative if, and only if, the derivative at c exists. 

Assuming that f c^ h is a maximum, then f c f c h$ +^ ^h h regardless of whether h 
is positive or negative. Therefore, the numerator of the difference quotient is always 
zero or negative. Then if h 01 , the quotient is non-negtive; likewise, if h 02 , the 
quotient is non-positive. 

Case I: The two limits are not equal. In this case the derivative does not exist. This 
could occur with a piecewise function, where two pieces with different derivatives 
meet at x c= . 

Case II: The limits are equal. In this case the limit from the left h 01^ h must be 
greater than or equal to zero (since the function is increasing there) and the limit from 
the right h 02^ h must be less than or equal to zero. Then, the only way the limits can 
be equal is if both limits are zero; therefore the derivative is zero. 

The proof for a minimum is essentially the same. 

Recall that any place where the derivative of a continuous function is zero or 
undefined is called a critical point and the number c is called a critical number. I think 
this proof is interesting because while there are lots of symbols flying around the key 
is interpreting what kind of number (positive, zero or negative) the symbols represent. 
Another thing I like is having to “read” the symbols and see that f c f c h$ +^ ^h h
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Rolle’s Theorem
Rolle’s Theorem says that if a function is continuous on a closed interval ,a b6 @, 

differentiable on the open interval ,a b^ h and if f a f b=^ ^h h, then there exists a number 
c in the open interval ,a b^ h such that f c 0=l^ h . (“There exists a number” means that 
there is at least one such number; there may be more than one.) 

The proof has two cases:

Case I: The function is constant (all of the values of the function are the same as 
f a^ h and f b^ h). The derivative of a constant is zero so any (every, all) value in the 
open interval qualifies as c. 

Case II: If the function is not constant then it must have a (local) maximum or 
minimum in the open interval ,a b^ h by the Extreme Value Theorem). So by Fermat’s 
Theorem the derivative at that point must be zero. 

So, Fermat’s Theorem makes Rolle’s Theorem a piece of cake. 

A lemma is a theorem whose result is used in the next theorem and makes it easier 
to prove. So Fermat’s Theorem is a lemma for Rolle’s Theorem. On the other hand 
a corollary is a theorem is a result (theorem) that follows easily from the previous 
theorem. So Rolle’s Theorem could also be called a corollary of Fermat’s Theorem. 

Rolle’s Theorem makes its appearance in the MVT and then more or less 
disappears from the stage. Nevertheless, I like this proof because it’s so simple. It 
comes immediately from Fermat’s Theorem. 

The Mean Value Theorem’s Proof
The Mean Value Theorem says that if a function, f , is continuous on a closed 

interval ,a b6 @ and differentiable on the open interval ,a b^ h then there is a number c in 
the open interval ,a b^ h such that f c b a

f b f a
=

-
-l^ ^ ^h h h. 

The proof, which once you know where to start, is straight forward and rests on 
Rolle’s Theorem. 

(FR) 2007 AB 3b
(MC) 2008 AB 89
(FR) 2011 AB 4d
(FR) 2013 AB 3b
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f x^ h

h x f x y x= -^ ^ ^h h h

,a f a^^ hh

,b f b^^ hh

y x f a b a
f b f a x a= +
-
-

-^ ^ ^ ^ ^h h h h h

In the figure we see the graph of f and the graph of the (secant) line, y x^ h, between 
the endpoints of f. We define a new function h x f x y x= -^ ^ ^h h h, this is the vertical 
distance from f x^ h to y x^ h. The equation of the line is in the figure and so

h x f x f a b a
f b f a x a= - +
-
-

-^ ^ ^ ^ ^ ^dh h h h h hn

The function h meets all the conditions of Rolle’s Theorem. In particular, 
h a h b 0= =^ ^h h  since at the endpoint the two graph intersect and the distance 
between them is zero. You can also verify this by substituting first x a=  and then 
x b=  into h. Therefore, by Rolle’s Theorem there is a number x c=  between a and b 
such that h c 0=l^ h . So we’ll find the derivative and substitute in x c= . 

h x

f c

f x b a
f b f a

f c b a
f b f a

b a
f b f a

0

0=

=

=

- -
-
-

-
-
-

-
-

l

l

l

l

^

^

^ ^ ^

^ ^ ^

^ ^

h

h

h h h

h h h

h h

This last equation is what we were trying to prove, the MVT. 

The arc from the definition of derivative, through Fermat’s Theorem and Rolle’s 
Theorem to the MVT is, I think, a good way to demonstrate how theorems and their 
proofs work together. Since I would not like my students not to have any familiarity 
with proof and definition I think this is a good place to show them just a little of what 
it’s all about. 

On the other hand we have ended up with a strange equation, which apparently 
has something to do with mean value, whatever that is. 

What I don’t like about this proof is that you have to know to set up the function 
h at the beginning. It is “legal” to do that, but how do you know to do it? On the other 
hand doing things like that is something that has to be done sometimes and students 
need to know this too. Here is an easier approach, not a proof, to convince your 
students that the MVT is true. 

(FR) 1999 AB 3b
(FR) 2007 (form B)

AB 6a
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The MVT Graphically
Graphically, the MVT says that there is at least one point in the interval where the 

tangent line is parallel to the line between the end points of the interval.

,C c f c^^ hh

y f x= ^ h

,A a f a^^ hh

,B b f b^^ hh

With that in mind, it is very easy to see why the MVT is true. Picture the line 
between point A and B moving upwards parallel to its original position Eventually, it 
must become tangent to the function, and at that point f c b a

f b f a
=

-
-l^ ^ ^h h h.

Yet another way to show the MVT is this. Near the left end of the first graph 
above the slope of the tangent to the graph (the derivative) is greater than the slope of 
the secant line; near the right end the slope of the tangent is less than the slope of the 
secant. So somewhere in between, by the Intermediate Value Theorem, the slope of 
the tangent must equal the slope of the secant. (For the purists out there, this is from 
Darboux’s theorem, and actually requires a slightly stronger hypothesis, namely that 
the one-sided derivatives at a and b exist.)

A good counterexample to show your students is the absolute value function. 
On the interval [– , ]2 5  there is no place where the slope is 3 7, which is easy to see 
because there is no place where the tangent line could be parallel to the line between 
the endpoints. Why? Because the hypothesis about differentiability is not true.

(FR) 2005 
AB 5/BC 5d
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Finally, note that there may be more than one place where the tangent line is 
parallel to the line between the endpoints, more than one value of c, as the next figure 
illustrates. 

While neither of these is quite enough for a proof, they are easier to see. Your 
textbook probably has a series of exercises where a function and an interval are 
given with the directions to “find the value of c guaranteed by the MVT (or Rolle’s 
Theorem).” This rote type questions has not appeared on the AP Calculus exams, at 
least not lately. The MVT and Rolle’s Theorem (which is really just a special case of 
the MVT) are tested quite often in other ways. Students should know the hypotheses 
and conclusion of both theorems and know what they mean graphically. This is what 
is tested. See the examples cited in the margin to understand how the MVT is tested. 

Avoiding Confusion 
Students often confuse the several concepts that have the word “average” or 

“mean” in their title. This may be partly because the formulas associated with each 
are also very similar, but I think the main reason may be that they are keying in on the 
word “average” rather than the full name. See “Other Averages” in chapter 15, page 
168.

Optimization

An optimization problem is one in which we are trying to find the best way 
to make or do something. That may mean the cheapest way, the way that uses less 
material, the way that gives us the most for a given amount of material, and so forth. 
Here is a typical problem similar to one on an AP exam many years ago:

	 A tank with a rectangular base and rectangular sides is to be open at the 
top. It is to be constructed so that its width is 4 meters and its volume is 
36 cubic meters. If building the box costs $12 per square meter for the 
base and $6 per square meter for the sides, what is the cost of the lease 
expensive tank?

(FR) 2004 AB 1 c, d
(FR) 2007 AB 3c

(FR) 1982 AB 6 
BC 3
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That’s the entire question. Notice that there are no parts a, b, and c. The students 
had to write the equation to be optimized, then differentiate, and find the minimum 
cost. The problem is that if a student cannot write the equation, they cannot earn any 
of the other points. Questions on today’s exams are written with parts that are almost 
always do not require anything from other parts. This is done so that students who miss 
one part of the question have a chance of earning points on the other parts. They are 
not out the whole 9 points because they cannot get started. For this reason optimization 
problems of this type have not appeared on the exam since 1982. 

Besides writing the model, the calculus concepts involved in solving an 
optimization problem are finding extreme values. This is tested with other kinds 
of questions. Occasionally there are fairly simple questions that could be called 
optimization questions on the multiple-choice. 

Optimization is a good application of the derivative to use with your class, 
perhaps for a day or two. Writing the equation to be optimized is the part that gives 
students the most trouble. Do not get bogged down doing that. The important thing to 
know how to find extreme values, given the equation. 

Related Rate Problems

Since calculus is the study of change it is hardly surprising that Related Rate 
problems are included in the course. In fact, Related Rate problems are one of the 
few “type” problems mentioned by name in the Course Description. Almost all of the 
textbooks have examples of Related Rates problems. 

Related Rate questions often include geometric considerations that usually end 
up being the more difficult part of the problem. I suggest you start with questions like 
those in Activity 2. These two questions do not involve geometry and let students start 
by looking for the relationships between the change in the variables. Then move onto 
geometry based questions. 

Another way to get started is by doing a problem like the one below two ways and 
contrasting the answers. 

	 Two cars travel on perpendicular roads towards the 
intersection of the roads. The first car starts 100 miles 
from the intersection and travels at a constant speed of 
55 mph. The second car starts at the same time, 250 
miles from the intersection and travels at a constant 
speed of 60 mph. How fast is the distance between them 
changing 1.5 hours later?

	 Method 1: Let t = the time the cars travel. Let x and y be 
their distance from the intersection, and z be the distance 
between the cars. Then x t100 55= -  and y t250 60= -  
and ( ) ( ) ( )z t t t100 55 250 602 2= - + - .

Activity 2

x

yz
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	 Differentiating gives:

( ) ( )
( ) ( ) ( ) ( )

dt
dz

t t
t t

2 100 55 250 60
2 100 55 55 2 250 60 60

2 2
=

- + -

- - + - -

	 Substituting .t 1 5=  will give us the answer.

.
( . ) ( ) ( ) ( )

dt
dz

2 17 5 160
2 17 5 55 2 160 60

2 2
=

+

- + -

	 Don’t simplify. Stop here and move on to

	 Method 2: z x y2 2 2= + , dt
dx 55=-  mph, and dt

dy 60=-  mph. Using 

implicit differentiation gives dt
dz

z
x y

2
2 2dt

dx
dt
dy

=
+ . Substituting .t 1 5= , 

.x 17 5=  miles, y 160=  miles, and .z 17 5 1602 2= +  miles. Then 

.
( . ) ( ) ( ) ( )

dt
dz

2 17 5 160
2 17 5 55 2 160 60

2 2
=

+

- + - .

Compare the answers from the two methods and discuss the factors of the 
derivative. The surprise is not that the answers are the same, but that the un-simplified 
expressions are the same. Each of the numbers (except the 2’s) represents one of 
the physical aspects of the problem. The second method seems more in the spirit of 
a Related Rate problem. That is, the idea of expressing the change in one variable 
in terms the other variables and the rates of change of the other variables (their 
derivatives) is what Related Rate problems are all about. 

A unit analysis is also in order here: The units of the numerator are /miles hour2 ;  
the units of the denominator are miles, and so the rate is miles/hour, as expected. 

The majority of the Related Rate problems involve geometry. The variables are 
related by the Pythagorean Theorem as in the example above, by similar triangles, or 
right-triangle trigonometry. The formula is often given in the stem of the question. 

Related Rate question do appear on the exam, but they are not a major item. 
Often they account for a single multiple-choice question or one or two parts of a free-
response question. 

L’Hôpital’s Rule

L’Hôpital’s Rule is a BC topic that will be included in AB starting with the 2017 
exams. It is an efficient way of finding limits of indeterminate forms and the “proof” 
is an amazing demonstration of the power of the local linearity concept. 

Limits that are tested on the AB Exams are often capable of being done by 
algebraic methods, other than L’Hôpital’s Rule (direct substitution, factoring, 
reducing, using trig identities, etc.). L’Hôpital’s Rule is often easier and more direct 
and students may use it whenever it is applicable. 

(MC) 2003 AB/BC 78 
(FR) AB 3a

(FR) 2009 (Form B) 
AB 1b

(FR) 2010 (Form B) 
AB 3/BC 3d

(MC) 2012 AB 88

(FR) 2010 BC 5b
(FR) 2013 BC 5a
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For example this limit may be found by reducing:

lim sin
tan lim cosx

x
x

1 1
x x

= =-
" "r r^

^
^h

h
h

or by L’Hôpital’s Rule

lim sin
tan lim cos

sec
x
x

x
x

1
1 1

x x

2 2

= =
-
-

=-
" "r r^

^
^
^ ^

h
h

h
h h

Keep in mind that to use L’Hôpital’s Rule, the limit must be one of the 
indeterminate forms discussed later in this chapter; this must be established before 
applying L’Hôpital’s Rule. 

On the BC exam L’Hôpital’s Rule may be the only practical way to find the limit. 
It may also be used in connection with evaluating improper integrals and infinite 
series. For example: 

3

( )

( )

lim

lim

lim

lim

x e dx x e dx

x e

e
b e

e
e

e

e

3 3

2

2

1

0

x

b

xb

b

x b

b b

b b

1 1

1

1

1

1

1

- = -

= -

= - - -

= +

= +

=

"

"

"

"

3

3

3

3

- -

-

-

-

-

-

; ^

c ^

h

m h

y

The antiderivative was found using the technique of Integration by Parts (chapter 
13). The limit in the third line is an indeterminate form of the type 33 . L’Hôpital’s Rule 
was used to express this limit as one whose value could be found (fourth line). 

Note that when evaluating improper integrals on the free-response section the 
limit forms must be shown as in the example above. Skipping right to the second line 
could lose points. 

L’Hôpital’s Rule and Local Linearity13

The proof of L’Hôpital’s Rule begins with a lemma – a simple theorem that will 
be used in proving the main theorem: 

If two lines intersect at a point on the x-axis, then the ratio of their y-coordinates is 
equal to the ratio of their slopes. That is, if ( ) ( )andy m x a y m x a1 1 2 2= - = - , then 
for all ,x a y

y
m
m

2

1

2

1! = . 

L’Hôpital’s Rule begins with a similar assumption: two differentiable functions 
that intersect at a point on the x-axis:
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Let f and g be differentiable functions and let ( ) ( )f a g a 0= = , then 

( )
( )

( )
( )lim limg x

f x
g x
f x

x a x a
=

" " l
l , if the limit exists.

As an example, find ( )lim sin
ln

x
x

x 1 r" ^ h. Let ( ) ( ),  ( ) ,ln sin andf x x g x x a 1r= = =^ h . 

The figure below shows the calculator graph of the functions in the window x[–1,3] 
by y[–5, 5].

After zooming in on the point (1,0) several times the local linearity property 
shows the graphs looking like lines.

And this is where the lemma comes into play. The local linearity property of 
differentiable functions has produced two “lines” intersecting on the x-axis. Since the 
hypothesis requires differentiable functions, it will always be the case that the graphs 
will become “lines” due to local linearity.

The rest is easy: in the limit the ratio of the y-coordinates g x
f x
^
^
h
h  is equal to the 

ratio of their slopes g x
f x
l
l

^
^
h
h and 

lim limg x
f x

g x
f x

g a
f a

x a x a
= =

" " l
l

l
l

^
^

^
^

^
^

h
h

h
h

h
h

lim sin
ln lim cosx

x
x

1
x x

x
1 1

1

r r r r
= =

-" "^
^

^h
h

h
In addition to making clear why L’Hôpital’s Rule is true in a way that is much 

easier to see than the analytic proofs in most textbooks, this approach also nicely ties 
together the graphical and analytic aspects of the problem. 

Activity 3
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It may be that the limit of the derivatives is also an indeterminate form. If so, 
L’Hôpital’s Rule may be used again until a limit is found or the expression is no longer 
indeterminate. 

Note that this is just the quotient of the derivatives, not a Quotient Rule 
differentiation situation.

Demonstration using the Tangent Line Approximations:
Another way of demonstrating L’Hôpital’s Rule uses the tangent line 

approximations of the functions. Lines that intersect on the x-axis approximate the 
functions.

lim lim

lim

lim

g x
f x

g a g a x a
f a f a x a

g a x a
f a x a

g a
f a

g a
f a

0
0

x a x a

x a

x a

.

.

.

+ -
+ -

+ -
+ -

=

" "

"

"

l
l

l
l

l
l

l
l

^
^

^ ^ ^
^ ^ ^

^ ^
^ ^

^
^

^
^

h
h

h h h
h h h

h h
h h

h
h

h
h

Both this method and the previous method show the power of the concept of 
local linearity. Here, since the functions are differentiable, they can be approximated 
by their tangent lines. Since f a g a 0= =^ ^h h , the quotient reduces to an equation 
like that in the lemma. Previously, zooming in showed that the functions were locally 
linear and suggested the use of the lemma.

Indeterminate and Determinate Forms:
In addition to 0

0  and  !!33  (with any combination of signs), , , , , and0 0 10 0$3 3 3 3- 3  
are also considered indeterminate forms. These are called indeterminate forms because 
their limits cannot be determined directly and the same form may have different 
values depending on the particular functions and the point at which the limit is found. 
These other forms are handled by manipulating them into 0

0  and !!33 , or reducing them 
to something whose limit can be found. This may involve algebra, trigonometric 
substitutions or using logarithms. Textbooks have many examples of these; the AP 
Calculus exam questions stick to the two basic forms.  

It is helpful to realize that there are determinate forms that resemble the 
indeterminate, but always have the same value. The main determinate forms and their 
limit values are:

	 "3 3 3+
	 "3 3 3- - -
	 0 0"3

	
0
1 0 " 3=3

3-

(MC) 2003 BC 2
(MC) 2008 BC 3

(MC) 2012 BC 28
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Finally, realize that the limit definition of derivative is always an indeterminate 
form. A limit like lim

sin sin
h

h
h 0

3 3+ -
"

r r^ ^h h is an indeterminate for of the type 0
0 . It can 

be evaluated using the definition of the derivative of sin x^ h evaluated at 3
r , or by using 

L’Hôpital’s Rule. In either case the result is the same: cos 3 2
1=r^ h .

(MC) 2012 AC 18
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Activity 1: MVT discussion question: 

The procedure used in the proof of the MVT to find the value of c for the function 
h x^ h is quite similar to the procedure for finding extreme values of h x^ h. Are the 
extreme values of h x^ h at the value(s) of c? Why or why not? Think graphically. 

Activity 2: Related Rate Questions without Geometry.

Physics Formulas: This is a different type Related Rate problem that is not found in 
many textbooks. They are good beginning questions because there is no geometry to 
worry about.

	 a.	 The kinetic energy, K in joules, of a moving object is given by the equation 
K mv2

1 2=  where m is the mass of the object and v is its velocity. The mass of 
a rocket decreases at a constant rate of 25 kg/sec due to the burning of its fuel. 
When the mass of the rocket is 6000 kg, the velocity is 12 m/sec and increasing 
at the rate of 2 m/sec/sec. At this instant how fast is the kinetic energy in 
joules / sec., changing?

(A)	 142,200
(B)	 144,000
(C)	 145,800
(D)	 217,600
(E)	 432,000

	 b.	 The force, F in Newtons, of a moving object is given by the equation F ma=  
where m is the mass of the object and a is its acceleration. A rocket sled is 
propelled along a track with an acceleration given by fora t t t t5 6 02 $= +^ h . 
When t 6=  sec. its mass is 10 kg and is decreasing at the rate of 0.2 kg/sec 
due to the burning of its fuel. At this instant how fast is the force changing in 
Newtons / second?

(A)	 228
(B)	 327.4
(C)	 519.2
(D)	 616.8
(E) 703.2 

 
Answers: a. A, b. D
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Activity 3: L’Hôpital’s Rule by graphing. 

For each of the limits graph the numerators and denominators separately on the same 
graph. Zoom-in several times at the point where they intersect on the x-axis until 
the graphs look like lines. Compare their slopes at the point where they meet on 
the x-axis. What is the ratio of the slopes? Explain how you can determine this by 
looking at the graph and not doing any computation.

a.	 lim sin
tan

x
x

x" r ^
^
h
h

b.	 lim sin
x

x
x 0"

^ h

c.	 lim cos
x

x1
x 0

-
"

^ h 

Answers: a. –1; b. 1; c. 0

Activity 4: Cutting a wire.

Often when student finish this problem they have found the minimum; unfortunately 
the maximum is required.

A wire 3 feet long is cut and formed into a square and a circle. Where should the 
wire be cut so that the total area of the square and circle is a maximum? 

	 Answer: The maximum occurs when the wire is formed entirely into a 
circle. This is an endpoint maximum. 

Activity 5: Project – The Law of Reflection. An optimization exercise

	 1.	 Light travels at a constant speed from a point a units above a flat surface, to the 
surface, and then is reflected to a second point b units above the surface, so that 
the total time is a minimum. Show that this implies that the angle between the 
incoming ray and the normal to the surface (angle of incidence, a) equals the 
angle between the normal and the reflected ray (angle of reflection, b). 

α β

a
b

A 

B 

E D C 
x CE  x –
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	 2.	 Using the Law of Reflection and the formula for the angle between two lines 
(see hints) , prove the reflection properties of the conic sections:

(A)	 A light ray originating from the focus of a parabola is reflected parallel to 
the axis of the parabola; a ray traveling parallel to the axis of a parabola is 
reflected to the focus.

(B)	 A light ray originating from one focus of an ellipse is reflected to the other 
focus. 

(C)	 A light ray originating from one focus of a hyperbola is reflected (from 
either branch of the hyperbola) as through it originated from the other 
focus. 

Hints:
For the Law of Reflection

1.	 Since the speed is constant, minimizing the distance is equivalent to 
minimizing the time.

2.	 This involves a very messy computation; there is, however, a way to bail 
out long before the end. 

3.	 The acute angle rotated counterclockwise from a line with slope of m1 to a 

line with a slope of m2 is tan m m
m m
1

1

1 2

2 1
+
-- a k. 

	 Solution: The total distance T a x CE x b2 2 2 2= + + - +^ h  

and 
dx
dT

a x
x

b CE x

CE x
2 2 2 2

= + +
+ -

- -
^
^

h
h

. This equals zero when 

a x
x

b CE x
CE x

2 2 2 2+
=

- -

-

^ h
. 

But ,sin sinand
a x
x

b CE x
CE x

2 2 2 2
a b=

+
=

- -

-

^ h
. So 

,sin sin anda b a b= = .


