

- 1. Butane (C_4H_{10}) , a gaseous hydrocarbon under standard conditions, is compressed into a liquid to be used as a fuel in disposable lighters.
 - (a) Write a balanced equation with smallest whole number coefficients for the combustion of butane gas in excess oxygen, yielding products of carbon dioxide gas and liquid water.
 - (b) Butane reacts with the oxygen gas in the air. Calculate the volume of air, measured at 28°C and 750. torr, required to complete the combustion of 2.00 g butane. The air in the atmosphere contains 20.9% oxygen by volume.
 - (c) Use the values in the table of heats of formation to calculate the heat of formation for one mole of butane if its heat of combustion is -2877.5 kJ mol⁻¹.

Substance	ΔH_f^0 (kJ mol ⁻¹)
C_4H_{10}	?
CO_2	-393.5
$\mathrm{H_2O}(\ell)$	-285.8
O_2	0.0

- (d) Draw a Lewis structure for each reactant and product in the reaction.
- (e) Use the table of bond energies to calculate (an estimate of) the heat of combustion of butane.

Bond type	Bond energy (kJ mol ⁻¹)
C-C	347
C=C	614
С–Н	413
С-О	358
C=O (in CO ₂)	799
О–Н	467
O=O	498

2. The (idealized) photoelectron spectrum of sulfur is shown in the plot below.

Idealized Photoelectron Spectrum of S

- (a) Label each of the peaks in the plot above with the orbital from which the photoelectrons came.
- (b) The most tightly bound electrons in sulfur have binding energy of 258.5 MJ/mol. What is the energy in electron volts (eV) of <u>one</u> of these electrons? $(1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}, 1 \text{ MJ} = 1.0 \times 10^{6} \text{ J})$
- (c) List two ways in which the photoelectron spectrum of the S²⁻ ion would differ from the photoelectron spectrum of atomic S.