
UNIT 1 

Primitive Types 
 

  

16. (C) 
  

 A common mistake for a question like this is to simply write the numerator followed by a division slash (/), 
followed by the denominator. The problem with that is that according to Order of Operations you are 

simply dividing the last value of the numerator by the first value of the denominator. This is what happens 
in answer choice D, which only divides b by 3. What we want is to divide the entire numerator by the entire 

denominator.  
 
 This requires putting both the entire numerator and the entire denominator in parentheses. Remember 

also that there is no implied multiplication in Java. Anytime you want to multiply, you must use the asterisk 

(*) operator. 

 
 
 

UNIT 2 

Using Objects 
 
 

30. (A) 
 

 This question may look simple but there is actually quite a bit going on here and unless you have a very 
good understanding of strings and objects, you can easily get tricked into choosing a wrong answer. First, 
you need to understand that the is equal to (==) operator does not do the same thing as the equals 

method. The is equal to (==) operator is normally used to compare primitive data types (int, double, 

boolean) like the 3 integers below. In this case, the statement x == y would have a value of false and 

the statement x == z would have a value of true. 

  

x  y  z 

100  200  100 

 
 Unlike primitive data type, objects do not store the data directly. Instead, they store the location or memory 

address of the data. In the diagram below we see all four string variables from this program. When strings 
are simply assigned to string literals, as is done with str1 and str2 in the program, they become part of 
the string pool. Any string variables that store the same string value will actually use the same address. 

When strings are created with the new operator, a new string object is created at a new memory address. 

  

str1  str2  str3  str4 

@15db9742  @15db9742  @6d06d69c  @7852e922 

↓    ↓  ↓ 

@15db9742    @6d06d69c  @7852e922 

Queen Mary 2    Queen Victoria  Queen Victoria 

 
 The statement str3 == str4 would have a value of false and the statement str3.equals(str4) would 

have a value of true. The reason is the is equal to (==) operator compares the shallow values (memory 

addresses) while the equals method compares the deep values (actual data). When comparing str1 and 

str2, both str1 == str2 and str1.equals(str2) have a value of true because they are actually 

sharing the same string object.  



UNIT 3 

Boolean Expressions and if Statements 
 
 

25. (E) 
 

 De Morgan’s Law states that: 
 
 NOT(A AND B) is equivalent to NOT(A) OR NOT(B) 
 

 According to De Morgan's Law, expressions x and y are logically equivalent, 

 which means that the value of z must be true. 

  

 

UNIT 4 

Iteration 
 
 

07. (D) 
 

 In this program, the while condition is n < 1000. At the beginning of the program, n is assigned a value 

of 0, so the program does enter the while loop; however, there is nothing in the while loop that 

changes the value of n. Since n will always be 0, the condition n < 1000 will always be true and the 

while loop will never end. 

 
 

 

UNIT 5 

Writing Classes 
 

 

   25. (E) 
 
 The Fraction class has two attributes: num is used for the fraction’s numerator and den is used for the 

fraction’s denominator. Fraction object f1 stores 3/4; Fraction object f2 stores 2/3; and Fraction 

object f3 initially stores 1/1.  Then f3 calls the multiply method with f1 and f2 as parameters.   

 
 The multiply method multiplies the numerators of f1 and f2. The product becomes the new numerator of 

f3. It also multiplies the denominators of f1 and f2. This product becomes the new denominator of f3. 

Essentially, Fraction object f3 is the product of f1 and f2.  

 
 When 3/4 is multiplied by 2/3, the result is 6/12. Be careful here. The temptation may be to select answer 

choice D because 6/12 reduces to 1/2; however, there is nothing in the Fraction class that reduces the 

fraction. This means 6/12 is the final answer. 

  

 

 



UNIT 6 

Array 
 

 

13. (E) 
 
 First, we need to remember that in Java, anytime you divide an integer by another integer, you get integer 

division where the result is always an integer. This is why answer choice A will not work. If one of the two 

numbers, like sum, is a real number (double) variable, then you will get real number division. 

 
 Second, answer choice C will not work because the loop starts on index 1. This means it does not add the 

very first number in the list (the one at index 0) so the mean is not accurate. 

 
 While answer choice B uses an enhanced for loop and answer choice D uses a traditional for loop, both 

properly add all of the numbers in the array and then use real number division to properly compute the 
mean. 

 
 
 

UNIT 7 

ArrayList 
 

 

16. (A) 
 
 This one can easily trick you into thinking the answer is choice E. It starts by copying the contents of the 

list1 array to the list2 ArrayList in a manner similar to what is done in the past few questions. After 

that, it seems like every element in the list2 ArrayList is removed; however, this is not what happens.  

 
 Right before the second for loop begins, list2 stores [11, 22, 33, 44, 55, 66, 77], which means 

list2.size() equals 7.  After that, if we trace through what happens to list2 with each iteration of the 

second for loop, we get: 
  

k Removed item at index k list2 list2.size() 

0 11 [22, 33, 44, 55, 66, 77] 6 

1 33 [22, 44, 55, 66, 77] 5 

2 55 [22, 44, 66, 77] 4 

3 77 [22, 44, 66] 3 

 
  
 After the first iteration, the first item – the one at index 0 – is removed.  This is expected; however, in the 

second iteration, when the second item – the one at index 1 – is removed, it is the 33, not the 22 that gets 

deleted. This is because 22 is no longer at index 1. It is now at index 0 because the 11 was deleted.  

 
 Also, even though the ArrayList had 7 items and the value of list2.size() was 7 before the second 

for loop began, the second for loop will not repeat seven times. This is because as we keep removing 

items from list2, its size keeps decreasing and after only four iterations the statement k < 
list2.size() becomes false. 

  
 



UNIT 8 

2D Array 
 

 

08. (C) 
 

 In this question, you need to ignore the arbitrary names given to the “rows”. They are misleading because 
row1 is actually at index 0; row2 is actually at index 1 and is row3 is actually at index 2.  

 
 Remember that a 2D ArrayList is really a 1D ArrayList of 1D ArrayLists. To access the 500, we first 

need to access the “row” at index 1. Within that row, we need to access the item at index 1.  

 
 In answer choice C, the first .get(1) retrieves the proper row and the second .get(1) retrieves the 

proper item within that row. 
 
 
 

UNIT 9 

Inheritance 
 

 

05. (A) 
 

 This is similar to the first question in that it reemphasizes the point that anytime an object of a subclass is 
 called; the constructor of the superclass is called first. The difference now is we have Multi-Level 
 Inheritance. In this code segment Class3 extends Class2 and Class2 extends Class1.  

 
 When a Class1 object is constructed, we simply get the Class1 constructor. When a Class2 object is 

constructed, get the Class2 constructor followed by the Class1 constructor. When a Class3 object is 

constructed, get the Class3 constructor followed by the Class2 constructor followed by the Class1 

constructor. 
 
 
 

UNIT 10 

Recursion 
 

 

09. (E) 
 

 The mystery method will recursively traverse the array from the first element all the way to the second to 

last element. Each of these elements, list[q], is then compared to the next element, list[q+1].  

 
 If the current element, list[q], is greater than the next element, list[q+1], the two elements are 

swapped. The effect of this traversing and swapping will change the position of some of the array 
elements.  

 
 One particular element, the one with the largest value, will be swapped all of the way to the end of the 

array.  
 
 



Free-Response Samples  
 

Question 1.  (Methods and Control Structures) 

Part (a). 

  
/** Precondition:  n1 and n2 are positive integers. 
 *  Postcondition: returns the GCF of n1 and n2. 
 */ 
public static int getGCF (int n1, int n2) 
 
/** Precondition:  n1 and n2 are positive integers. 
 *  Postcondition: returns the GCF of n1 and n2. 
 */ 
private int getGCF(int n1, int n2) 
{ 
   int rem = 1; 
   int gcf = 1; 
   while (rem != 0) 
   { 
      rem = n1 % n2; 
      if (rem == 0) 
      { 
         gcf = n2; 
      } 
      else 
      { 
         n1 = n2; 
         n2 = rem; 
      } 
   } 
   return gcf; 
 } 
    
 
 
 

Part (b). 

 

/** Precondition: n1 and n2 are positive integers. 
 *                getGCF is available to compute the LCM of n1 and n2.   
 * Postcondition: getLCM returns the LCM of n1 and n2.  
 */ 

public static int getLCM(int n1, int n2) 
{ 
   int gcf = getGCF(n1,n2); 
   int lcm = n1 / gcf * n2; 
   return lcm; 

 

 

 



Question 2.  (Class) 

    

 

Part (a). 

 

/** Precondition:  fract1 and fract2 are objects with attributes initialized.  
 *  Postcondition: the results of adding fract1 to fract is stored in "this". 
 */             

public void add(Fraction fract1, Fraction fract2) 

{ 

   int tempNum = fract1.num * fract2.den + fract2.num * fract1.den; 

   int tempDen = fract1.den * fract2.den; 

   int gcf = getGCF(tempNum,tempDen); 

   this.num = tempNum / gcf; 

   this.den = tempDen / gcf; 

} 

 

 

 
 
 
 
 
 

 

 

 

Part (b). 
 
  
/** Precondition:  fract1 and fract2 are objects with attributes initialized.  
 *  Postcondition: the results of adding fract1 to fract is stored in "this". 
 */             

public String toString() 
{  
   String fraction = num + "/" + den; 
   return fraction; 
} 
   

  

 

 
 
 
 
 
 
 



Question 3.  (Array/ArrayList) 

 

 

Part (a). 

 
 
/** Precondition:  list is a non-empty static array of random integers 
 *  Postcondition: returns the mean of the numbers in list. 
 */ 
public static double getMean(int[] list) 
{ 
   int sum = 0; 
   for (int k = 0; k < list.length; k++) 
         sum += list[k]; 
      double mean = (double) sum / list.length; 
      return mean; 
} 
 
    
 
 

 
Part(b). 
 
/** Precondition:  list is a non-empty static array of random integers 
 *  Postcondition: returns the Standard Deviation of the numbers in list. 
 */   
public static double getStdDev(int[] list) 
{ 
   double mean = getMean(list); 
   int n = list.length; 
   int[] squaredDiffs = new int[n]; 
   double diffSum = 0.0; 
   for (int k = 0; k < n; k++) 
   { 
      double diff = list[k] - mean; 
      double sqDiff = diff * diff; 
      diffSum += sqDiff; 
   } 
   double stdDev = Math.sqrt(diffSum / (n-1)); 
   return stdDev; 
} 
 

 

 
 
 
 
 

 

 

 

 



Question 4. 
 

 
/** Precondition:  m1 and m2 are 2D static arrays with unknown int values. 
 *                The number of rows of m1 are equal to the number of columns 
 *                of m2, which allows matrix multiplication. 
 *  Postcondition: returns a product matrix that uses the proper mathematical 
 *                rules of matrix multiplication.  
 */   
public static int[][] multiply(int[][] m1, int[][] m2) 
{ 
   int rows = m1.length; 
   int cols = m2[0].length; 
   int[][] product = new int[rows][cols]; 
   for(int r = 0; r < rows; r++) 
   { 
      for(int c = 0; c < cols; c++) 
      {    
         int sum = 0; 
         for(int k = 0; k < m1[0].length; k++) 
         { 
            sum = sum + m1[r][k] * m2[k][c]; 
         } 
         product[r][c] = sum; 
      } 
   } 
   return product; 
}  
 


