

PLA Tough

Tough PLA filament has been specially formulated to provide impact resistance akin to ABS whilst retaining the printability of PLA.

PLA Tough has superior Charpy Impact (Kj/m2) - a high strain-rate test as per ISO 179 - versus other strong PLA / PLA + / PLA filaments on the market.

PLA Tough exhibits excellent results in layer adhesion and the benefits of strength and durability makes it highly-suited manufacturing aids or even end-use parts where impact resistance is needed beyond a regular PLA.

Material features:

- High impact and stiffness
- Prints like regular PLA (easy to print)
- No warpage & no shrinkage
- Printable with various print temperatures
- Suitable for applications which needs to be strong
- Industrial touch and feel

Filament specs.		
Size	Ø tolerance	Roundness
1,75mm	± 0.05mm	≥ 95%
2.85mm	± 0.10mm	≥ 95%

Material properties		
Description	Testmethod	Typical value
Specific gravity	ISO 1183	1.21 g/cc
MFR 210°C/2,16 kg	ISO 1133	8.75 gr/10 min
Tensile strength at yield	ISO 527	46 MPa
Tensile strength at break	ISO 527	19 MPa
Elongation strain at yield	ISO 527	2%
Elongation strain at break	ISO 527	27%
Tensile (E) modulus	ISO 527	2750 MPa
Impact strength - charpy method 23°C	ISO 179	29.8 kJ/m2
Vicat softening temperature B	ISO 306	57°C
Printing temp.	Internal Method	210±10°C

Additional info:

Recommended temperature for heated bed is \geq 60°C. Adhesion is possible on different surfaces. TOUGH PLA can be used on all common desktop FDM or FFF technology 3D printers.

Storage: Cool and dry (15-25°C) and away from UV light. This enhances the shelf life significantly.

The values presented in this publication are based on Filamentive's knowledge and experience and are intended for reference purposes only. While Filamentive has made every reasonable effort to ensure the accuracy of the information in this publication, Filamentive does not guarantee that it is error-free, nor does Filamentive make any other representation, warranty or guarantee that the information is accurate, reliable or current. Filamentive respressly disclaims warranties of any kind regarding the information contained herein, including, but not limited to, any warranties of merchantability or fitness of a particular purpose, use or application. Filamentive shall not be liable for any damage, injury or loss induced from the use of Filamentive's products in any application. Each user should thoroughly review this publication before selecting a product and, in view of the many factors that may affect processing and application of the product, each user should carry out their own investigations and tests and determining the safety, lawfulness, technical suitability, proprietary rights, and disposal/recycling practices of the materials for the intended application."

Mechanical Specifications

During additional research, a print profile has been made which was optimized for achieving the best performance on printed parts. Table 1 shows the typical values of an injection moulded specimen compared to a 3D-printed specimen in both the X-Y axis (3D-printed horizontally) and the Z-axis (3D-printed vertically).

Table 1: Data of both injection moulded and 3D-printed specimens.*					
	Injection Moulded	3D-Printed X-Y	3D-Printed Z		
Young's Modulus [MPa] ISO 527	2750	2450	2200		
Stress at Yield [MPa] ISO 527	46	41	33		
Stress at Break [MPa] ISO 527	19	32	33		
Strain at Yield [%] ISO 527	2	2	2		
Strain at Break [%] ISO 527	27	20	2,6		
Charpy Impact (Kj/m2) ISO 179	29,8	22,9	2,2		
Flexural Strength ISO 178	72	76	60		
Flexural Modulus ISO 178	2750	2700	2250		
		Z	Z		

PLA Tough has excellent impact properties at a broad range of temperatures.

Print Conditions

All specimens have been printed using a 0.4mm nozzle and the layer height was set to 0.2mm. The room in which the 3D-printer was located had an environmental temperature of \pm 25°C.

*Test Conditions

The tensile tests have been carried out according to ISO-527 using modified 1BA specimens (3D-printing) and 1A specimens (injection moulding). The room in which the Universal Testing Machine was located had an environmental temperature of $\pm 20^{\circ}\text{C}$.

The values presented in this publication are based on Filamentive's knowledge and experience and are intended for reference purposes only. While Filamentive has made every reasonable effort to ensure the accuracy of the information in this publication, Filamentive does not guarantee that it is error-free, no does Filamentive make any other representation, warranty or guarantee that the information is accurate, correct, reliable or current. Filamentive respressly disclaims warranties of any kind regarding the information contained herein, including, but not limited to, any warranties of merchantability or fitness of a particular purpose, use or application. Filamentive shall not be liable for any damage, injury or loss induced from the use of Filamentive's products in any application. Each user should thoroughly review this publication before selecting a product and, in view of the many factors that may affect processing and application of the product, each user should carry out their own investigations and tests and determining the safety, lawfulness, technical suitability, proprietary rights, and disposal/ recycling practices of the materials for the intended application.