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Is calcifediol better than cholecalciferol for vitamin D supplementation?
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Abstract
Modest and even severe vitamin D deficiency is widely prevalent around the world. There is consensus that a good vitamin D
status is necessary for bone and general health. Similarly, a better vitamin D status is essential for optimal efficacy of
antiresorptive treatments. Supplementation of food with vitamin D or using vitamin D supplements is the most widely used
strategy to improve the vitamin status. Cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2) are the most widely used
compounds and the relative use of both products depends on historical or practical reasons. Oral intake of calcifediol (25OHD3)
rather than vitamin D itself should also be considered for oral supplementation. We reviewed all publications dealing with a
comparison of oral cholecalciferol with oral calcifediol as to define the relative efficacy of both compounds for improving the
vitamin D status. First, oral calcifediol results in a more rapid increase in serum 25OHD compared to oral cholecalciferol. Second,
oral calcifediol is more potent than cholecalciferol, so that lower dosages are needed. Based on the results of nine RCTs
comparing physiologic doses of oral cholecalciferol with oral calcifediol, calcifediol was 3.2-fold more potent than oral chole-
calciferol. Indeed, when using dosages ≤ 25 μg/day, serum 25OHD increased by 1.5 ± 0.9 nmol/l for each 1 μg cholecalciferol,
whereas this was 4.8 ± 1.2 nmol/l for oral calcifediol. Third, oral calcifediol has a higher rate of intestinal absorption and this may
have important advantages in case of decreased intestinal absorption capacity due to a variety of diseases. A potential additional
advantage of oral calcifediol is a linear dose-response curve, irrespective of baseline serum 25OHD, whereas the rise in serum
25OHD is lower after oral cholecalciferol, when baseline serum 25OHD is higher. Finally, intermittent intake of calcifediol
results in fairly stable serum 25OHD compared with greater fluctuations after intermittent oral cholecalciferol.
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Abbreviations
Calcifediol 25-Hydroxyvitamin D3

25OHD 25-Hydroxyvitamin D3 and 25-hydroxyvitamin
D2 combined in plasma

Vitamin D Vitamin D3 or D2

RCT Randomized controlled trial

Introduction

The majority of vitamin D comes from endogenous produc-
tion in the skin during exposure to sunlight (UVB 290–
315 nm), whereas dietary vitamin D intake is low in most
areas of the world. In a large European study, the median oral
intake was well below 5 μg/day in most countries apart for the
Scandinavian countries (due to the habitual high consumption
of oily fish and/or cod liver oil) [1]. In North America, the
mean intake of vitamin D is slightly higher than in Europe
because of large-scale supplementation of a variety of food
items with ergocalciferol or cholecalciferol [2]. The UVB
light responsible for the production of vitamin D is also onco-
genic due to DNA damage. Cumulative DNA damage of the
epidermal layers of the skin is ultimately a risk factor for all
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types of skin cancer and photoaging of the skin [3, 4].
Therefore, there is a difficult trade-off between sufficient ex-
posure to UVB to produce the minimal amount of vitamin D
necessary for bone and global health, and the cumulative risks
of skin damage. Many dermatologists recommend an absolute
minimal exposure to sunlight for high-risk groups such as
infants and young children and only occasional short exposure
for adults with a fair skin (Fitzgerald score 1–3). In addition,
several groups avoid sunlight because of religious or cultural
reasons or because of personal preference. This leads to a high
frequency of vitamin D deficiency in several risk groups such
as most Muslims and in the large majority of elderly subjects
around the world. Finally, migration of people with a dark skin
to areas with a much more limited sunshine are prone to vita-
min D deficiency due to the mismatch between their darker
skin color (and consequently higher needs for UVB light to
produce vitamin D) and sunlight exposure [5].

For all these reasons, modest and even severe vitamin D
deficiency is widely prevalent around the world. Based on
extensive literature overviews of vitamin D status around the
world [6], about 7% of the world population is severely vita-
min D deficient (serum 25OHD below 25/30 nmol/l (10/
12 ng/ml)) and 37% has serum 25OHD concentrations below
50 nmol/l (20 ng/ml) and thus suffers from mild vitamin D
deficiency (Table 1). Severe vitamin D deficiency is very rare
in Africa but high in the Middle East and Gulf states as well as
in Northern China andMongolia. However, also about 13% of
adults in Europe have severe vitamin D deficiency [7–15]
(Table 1). Others consider that the optimal vitamin D status
requires 25OHD concentrations above 75 nmol/l (30 ng/ml),
implying that more than half (88%) of the world population
[6] would be vitamin D deficient. In any case, there is now a
general consensus that a better vitamin D status is necessary to
improve both bone and general health [16, 17]. Similarly, a
good vitamin D status is essential for optimal efficacy of
antiresorptive treatments [18, 19]. Governmental and scientif-
ic societies’ recommendations and/or clinical guidelines also
endorse such policy [20].

There are not a large number of strategies to correct vitamin
D deficiency. First, one could recommend a higher regular
exposure to sunlight or artificial UVB light as this was the
natural solution during the evolution of mammals and
humans. However, due to much longer life expectancy of
modern humans (over the last two centuries) and the well-
documented oncogenic character of UVB light, such strategy
may well create more problems than solutions and cannot be
recommended. Moreover, safe exposure to sunlight, such as
only short (5–30 min depending on season, latitude, and skin
type) exposure of sufficient skin areas, is difficult to explain
and to implement in real-life situations. Increasing the dietary
intake of vitamin D by higher consumption of food items with
high natural vitamin D content is not a real option either as
there is no sufficient oily fish in the oceans of the world to

cover the needs of the world population. Increasing the food
content of specific food items by special strategies (such as
increasing vitamin D or 25OHD content of eggs or meat,
UVB irradiation of mushrooms) is still in an early phase of
exploration and thus not proven to be feasible, practical, and
economically viable on a very large scale.

Supplementation of food with vitamin D or using vitamin
D supplements is therefore the most widely used strategy to
improve the vitamin status. Cholecalciferol and ergocalciferol
are the most widely used compounds and the relative use of
both products depends on historical or practical reasons
(ergocalciferol being the most widely used product in North
America and cholecalciferol most frequently used in Europe).
There is extensive discussion about the relative potency of
both compounds whereby there is growing consensus that
daily use of ergocalciferol is largely equipotent to daily use
of cholecalciferol but intermittent use of ergocalciferol is
much less efficient than intermittent cholecalciferol [21, 22].
Nevertheless, some well-performed comparative studies re-
veal that even daily supplementation with ergocalciferol
added to either biscuits or juice is only about 70% as potent
as cholecalciferol in raising serum 25OHD in vitamin D-
deficient adults [23].

25-Hydroxyvitamin D (25OHD) is present in low concen-
trations in some natural food products and the use of modern
assay technology has led to a reappraisal that 25OHD may be
present in some foods and thereby (slightly) increase the over-
all biological Bvitamin D-like^ activity of several food items
such an egg or meat [24].

Table 1 Selective overview of mean serum 25OHD concentrations in
adults around the world

Serum 25OHD (nmol/l) < 25/30 < 50

World overview [6] 6.7% 37%

USA: NHANES 2010 data [7] (> 12 years) 6.7% 26%

EU countries (adults) [8] 13% 40%

Middle East/N Africa [9]

Iran and Jordan ~ 50% 90%

US elderly men (MrOs) [10] 2.9% 26%

European adult men (EMAS) [11] 7.9% 41%

Postmenopausal osteoporotic women [12] 4.1% 28%

5 continents—25 countries

Australia [13]

Adult women (< 60 years) in wintertime

Queensland (27° S) 7.1% 41%

Geelong (38° S) 7.9% 37%

Tasmania (67° S) 13% 67%

African countries [14] < 0.1% 7.0%

China [15] ~ 72% ~ 37%

Mongolia [9] ~ 50%
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25-Hydroxyvitamin D (calcifediol), however, should also
be considered for oral supplementation, either added to food
or prescribed as supplement. We will first review the differ-
ences between the fate of oral ergocalciferol/cholecalciferol
and calcifediol, from intestinal absorption to further metabo-
lism into the biologically active or inactive metabolites. Then,
we will summarize the existing literature comparing the rela-
tive biological properties of cholecalciferol with calcifediol.
Indeed, as we aim to compare the fate of oral cholecalciferol/
ergocalciferol with that of calcifediol, it is essential to compare
the intestinal absorption and secondly to discuss the fate of
vitamin D before it is converted to 25OHD (or other metabo-
lites). Once vitamin D is 25-hydroxylated into 25OHD, its fate
(metabolism) becomes indistinguishable whether it is derived
from direct intake or from 25-hydroxylation of vitamin D.

Intestinal absorption of vitamin D
(metabolites)

Vitamin D produced in the skin is transported directly by the
blood stream while being mostly bound to the serum-binding
protein, vitamin D-binding protein (DBP), or GC [25]. Dietary
vitamin D is absorbed by intestinal cells and transported by
chylomicrons into the lymph before being delivered to the
blood stream [26].

Mechanism and efficacy of intestinal absorption
of vitamin D or 25OHD

The absorption efficacy of cholecalciferol/ergocalciferol is
good but not complete, as the mean absorption is about 79%
(62–91%) in normal subjects as determined from recovery of
labelled cholecalciferol in feces [27]. The intestinal absorption
of radiolabelled calcifediol is 93% in normal subjects and
(nearly) equally efficient in patients with severe fat malabsorp-
tion due to celiac disease or pancreatectomy and only slightly
decreased in patients with short bowel disease [28].
Cholecalciferol/ergocalciferol is poorly absorbed in patients
with intestinal fat malabsorption. The malabsorption of
cholecalciferol/ergocalciferol was first demonstrated in pa-
tients with celiac disease, pancreatic insufficiency, or biliary
cirrhosis [27, 28] as the absorption of labelled cholecalciferol/
ergocalciferol varied between nil and 48%. A similar differ-
ence in intestinal absorption of cholecalciferol/ergocalciferol
was observed in patients with severe biliary cirrhosis (absorp-
tion nearly nil) whereas their absorption of 25OHD was sub-
stantially better [29]. Absorption of calcifediol from the gut is
largely achieved by the vena porta [30]. This is also in line
with the observation that the intestinal absorption of
calcifediol is not dependent on the presence of bile acids and
micelle formation [31]. Intestinal fat malabsorption for what-
ever reason is therefore frequently associated with

malabsorption and deficiency of fat-soluble vitamins such as
vitamins A, D, E, and K, and such deficiencies should be
routinely explored and treated accordingly in such situations.
Patients with bariatric surgery are at increased risk for a large
number of nutritional deficiencies including fat-soluble vita-
mins [32]. Deficiency of vitamin D is quite common and can
cause in first instance calcium malabsorption, osteomalacia,
and osteoporosis after weight loss surgery. Vitamin D defi-
ciency in this patient group can progress to severe secondary
or tertiary hyperparathyroidism and even brown tumors [33].

The intestinal absorption of cholecalciferol/ergocalciferol
has long been considered to be due to simple diffusion by
the proximal jejunum and distal ileum as based on gut perfu-
sion studies in anesthetized rats [34]. However, more recent
data dispute this hypothesis. Indeed, both in vitro and in vivo
animal data suggest that several proteins involved in the in-
testinal absorption of cholesterol are also involved in the up-
take of cholecalciferol/ergocalciferol. This should not be a
surprise as both compounds are closely related lipophilic
(seco)steroids with the same long side chain structure. In
CaCo2 cells (intestinal epithelial-like cells), cholecalciferol/
ergocalciferol uptake is concentration-, temperature-, and
direction-dependent and can be significantly impaired by co-
incubation with cholesterol or tocopherol [35]. Synthetic in-
hibitors of the cholesterol transporter proteins also inhibit
cholecalciferol/ergocalciferol uptake in vitro and ex vivo (in-
testinal explants). Mice with overexpression of one of the
cholesterol transporters (scavenger receptor class B type 1)
have a 60% higher intestinal absorption of cholecalciferol/
ergocalciferol [35]. Whether a similar mechanism is also op-
erational in humans or whether the intestinal absorption of
cholecalciferol/ergocalciferol is dependent on genetic varia-
tions in these transporters is so far unexplored. As calcifediol
is much more polar and absorbed via the blood stream (vena
porta), it is unlikely to use the same cholesterol transport
system.

Profile of vitamin D concentration and 25OHD
concentration after oral intake

When serum concentrations of vitamin D3 or 25OHD3 are
measured repeatedly after a single high (140 μg) dose, the
maximal concentration of each vitamin D metabolite (thus
independent from further conversion) or the area under the
curve during the first 24 h is about 2-fold higher for calcifediol
compared with cholecalciferol [36]. Whether meal composi-
tion has an effect on the efficacy of the intestinal uptake of
cholecalciferol is unclear but several studies suggest that a
low-fat meal may facilitate the uptake of cholecalciferol com-
pared with intake of cholecalciferol without a meal [37, 38]. A
high-fat meal however may also impair the absorption of cho-
lecalciferol from the intestine in rodents and humans [37, 38].
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Moreover, poly-unsaturated fats were particularly effective in
decreasing cholecalciferol absorption [39].

In summary, the intestinal absorption of cholecalciferol is
probably carrier-mediated and has a good efficacy (about
70%) in normal subjects. Its intestinal absorption can however
be severely impaired in case of intestinal fat malabsorption
(including after bariatric surgery). Oral cholecalciferol is
transported by chylomicrons and reaches the general circula-
tion after transport via the lymph pathway. Oral calcifediol is
absorbed with very high efficacy (close to 100%), and after
intestinal absorption, it is transported directly to the general
blood stream via the vena porta. These differences explain the
more rapid and higher peak of plasmatic levels of calcifediol
compared with cholecalciferol after acute oral intake.

Metabolism of vitamin D and its metabolites

Metabolism of vitamin D

Pre-vitamin D3 or vitamin D3, produced in the skin, can be
photochemically transformed into a number of mainly inac-
tive steroids such as tachysterol, lumisterol, and suprasterol I
and II-5,6-transvitamin D. Vitamin D, either synthesized in
the skin or absorbed from the gut, is rapidly taken up by the
liver (about 50% of an oral dose is taken up within 2–6 h), or
other tissues such as fat and muscle. The liver rapidly metab-
olizes vitamin D into 25OHD mainly by the microsomal en-
zyme CYP2R1 [40, 41]. Indeed, this enzyme is clearly capa-
ble of 25-hydroxylation of vitamin D3 to the same extend as
vitamin D2 and its characteristics are fully in line with the
characteristics of 25-hydroxylase activity of liver homoge-
nates [40, 42]. However, mice with bi-allelic null mutations
of Cyp2R1 still have some circulating 25OHD and can pro-
duce 1,25(OH)2D, thereby demonstrating that some other en-
zyme must be present and capable of 25-hydroxylation of
vitamin D3/D2. There are several candidates as reviewed by
De Luca’s group [43]. The initially most likely running-up
candidate, CYP27A1, is however not the physiologic back-
up candidate as Cyp27A1 KO mice did have higher (not low-
er) circulating 25OHD and the same was to some extend even
true in mice with double Cyp2R1/Cyp27a1 KO [40].
Moreover, the high Km of CYP27A1 makes it more likely
to be involved in metabolism of pharmacological amounts of
vitamin D. Four other microsomal candidates are Cyp2J2/3,
cyp3A4, Cyp2D25, and Cyp2C11, as reviewed by Zhu et al.
[40]. The crystal structure of human CYP2R1-vitamin D3

complex has been published, and gene mutations thus can
be modeled to evaluate their consequences [44]. Several bi-
allelic mutations of CYP2R1 can cause clinical rickets clini-
cally indistinguishable from vitamin D deficiency rickets. The
patients, however, do not respond to normal repletion with
cholecalciferol, but rapidly normalize after calcifediol therapy

[45–47]. In such patients with bi-allelic mutations of
CYP2R1, some very low 25OHD concentrations remain de-
tectable as well as low-normal 1,25(OH)2D concentrations,
clearly indicating some (alternative) 25-hydroxylase activity.
The conversion of vitamin D into 25OHD is thus undoubtedly
complex, not fully understood and its regulation (if any) is
also not fully explored. Whatever mechanisms are involved,
vitamin D is cleared from the circulation within several hours
and then reappears as 25OHD in serum bound to the liver-
produced vitamin D-binding protein (DBP) [25].

A number of studies have addressed the conversion efficacy
of vitamin D into 25OHD in vivo based on serum 25OHD con-
centrations. In chickens, calcifediol is about 2 to 4 times more
potent than cholecalciferol to increase calcium absorption or
bone resorption [48]. Divergent results were obtained in rats
(conversion factors of 1.4 to 5) and pigs (equipotent effects of
cholecalciferol and calcifediol on serum levels of 25OHD) [49].
In a recent study in pigs, the authors concluded that feeding sows
with calcifediol were considered to improve maternal supply
with cholecalciferol and thereby maintain calcium homeostasis
during gestation and lactation [50]. The conversion efficacy in
humans will be summarized and discussed below.

The liver is undoubtedly the major tissue capable of 25-
hydroxylation but the enzyme is also expressed in many other
tissues at low concentration (including the skin). The regula-
tion of the B25-hydroxylase activity^ is not fully explored but
most data indicate that the increase in serum 25OHD does not
linearly increase with increasing vitamin D dosages, with
steeper increase when vitamin D-deficient subjects are ex-
posed to low dosages of vitamin D and much lower slope
when vitamin D-replete subjects receive higher dosages. In
some studies, even a real plateau level was observed. There
are no hard data to interpret these results as being due to
feedback inhibition of the enzyme activity, but they fit with
the Km and Vmax of the major enzyme Cyp2R1.

Vitamin D may also be metabolized into 20S- and 22-
hydroxymetabolites rather than 25OHD by CYP11A1 resulting
in 20SOHD; 22OHD; 20S,22(OH)2D; and 20S,23(OH)2D but
the regulation of this metabolism and above all the functional
implications are largely unknown [51, 52]. 3-Epi-25OHD is also
found in serum but it is presently unclear which enzyme is re-
sponsible for the generation of this metabolite [53]. About 5% of
serum25OHD is present as 3-epi-25OHD in adults, but in infants
and young children, the absolute and relative concentration of
this epimer can be much higher, up to 50% [54]. The enzyme
responsible for the generation of this epimer is unknown and not
even whether this is the product of vitamin D conversion or the
result of transformation of 25OHD into 3-epi-25OHD [55, 56].

Metabolism of 25OHD

25OHD is converted into 1α,25(OH)2D by a single P450
enzyme, CYP27B1. This is the only enzyme capable to
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perform this reaction as clearly shown by the total absence of
1α,25(OH)2D in mice or humans with bi-allelic deletion of
the gene for CYP27B1 [45, 57, 58]. This enzyme is mainly
expressed in the renal proximal tubuli where it catalyzes the
production of the vitamin D hormone, 1α,25(OH)2D. Several
other cells and tissues (such as keratinocytes, monocytes,
brain glia cells, and parathyroid cells) also express this en-
zyme at mRNA and protein level. The kidney is however
the only tissue that exports the production of this hormone,
whereas other cells and tissues are producing 1α,25(OH)2D
only in an auto/paracrine fashion, except in some pathological
conditions (monocytic excess production of 1α,25(OH)2D in
case of inflammatory diseases such as sarcoidosis) [16, 17].
Whether the parathyroid glands are also able to secrete
1α,25(OH)2D into the circulation is unclear but one publica-
tion (in abstract form only) suggests this to be possible in mice
[59].

The uptake of 25OHD into its target tissues is supposed to
be largely limited to free 25OHD (not protein bound). The
kidney has access to free 25OHD at the serosal (blood) site
and also to DBP-bound 25OHD filtered in the glomeruli
whereby a cargo receptor complex (megalin, cubulin) can me-
diate the uptake of Btotal^ 25OHD from the luminal site. A
few other cells/tissues also express megalin but at a much
lower level and their capability for uptake of DBP-bound
25OHD is unclear [60].

25OHD and 1α,25(OH)2D can be further metabolized into
24-hydroxylated metabolites [24R,25(OH)2D and
1α,24R,25(OH)3D] by another P450 enzyme, CYP24A1
[61]. The enzyme is responsible for multiple further enzymatic
transformations of their end product, finally resulting in the
production of calcitroic acid and lactones [62]. Alternatively,
25OHD can be hydroxylated at the 23 position. The expres-
sion of CYP24A1 in many tissues is strongly upregulated by
1,25(OH)2D and helps to maintain a strict feedback regulation
of this active hormone and calcium homeostasis. This tight
feedback control is clearly demonstrated by the clinical picture
of infantile hypercalcemia or adult-onset renal calcification in
case of inactivating CYP24A1 mutations [63]. Whether
24R,25(OH)2D itself has biological activity on cartilage and
fracture healing by activating a G-protein-coupled receptors
(GPCRs) is still controversial [64].

Cyp3A4 is not only capable of metabolizing vitamin D into
25OHD but also capable of metabolizing 25OHD into
4β,25(OH)2D. This enzyme can be induced by many drugs,
including a number of anti-epileptic or anti-tuberculosis
drugs, and thereby cause severe vitamin D deficiency up to
clinical rickets or osteomalacia [65, 66]. A few cases of acti-
vating mutations of this gene resulted in accelerated 25OHD
degradation and clinical rickets, labelled as vitamin D-
dependent type rickets III [67].

There are in general about 50 metabolites of vitamin D
identified from either in vitro or in vivo experiments [68].

Most of these compounds are believed to be degradation prod-
ucts, whereas only 1α,25(OH)2D is believed to be the active
hormone able to bind with high affinity to vitamin D receptor
(VDR). 25OHD itself is considered to be the precursor for the
active hormone and most of the other metabolites. Due to its
lower affinity to VDR and higher affinity to DBP, in compar-
ison with 1α,25(OH)2D, one may reasonably assume that
25OHD is a poor agonist. 25OHD is therefore only able to
activate VDRwhen serum concentrations are > 150 ng/ml and
thus far exceeds normal concentrations as found in adults even
when living in equatorial areas of the world with plenty of sun
exposure [69].

Recently, 1β,25(OH)2D has been found in serum of normal
adults in picogram per milliliter concentrations and at about
15% of the concentrations of total 1α,25(OH)2D [70]. The
origin (tissue and enzyme) of this compound is unknown but
as its concentration is strongly correlated with total 25OHD
and much less with 1α,25(OH)2D, it is likely to be the product
of an alternative hydroxylation of 25OHD in the 1β instead of
the 1α position. 1β,25(OH)2D is a poor agonist of VDR but a
strong antagonist of non-genomic actions of VDR [71].

Most of the enzymes involved described so far in the me-
tabolism of vitamin D belong to the large (n = 59) group of
CYP 450 enzymes [72] except for the enzymes involved in
epimerization of vitamin D metabolites. However, vitamin D
and its major metabolites can also be glucuronidated or
sulphatated and such metabolites can be found in serum [73]
but are mainly eliminated by hepatocytes into bile [74].
Whether these products can be converted back into vitamin
D or 25OHD and be recirculated via the intestine (as is the
case for bile acids) is not finally settled but most (older) data
suggest this is not a major source of vitamin D [74].

Bile acids are structurally related to cholesterol and vitamin
D and some bile acids and especially some metabolites of
these bile acids, as produced in the intestine (lithocholic acid),
are able to bind to VDR [75]. The functional implications of
this phenomenon for calcium homeostasis are unknown but
unlikely to be of major physiologic importance as these bile
acid metabolites do not activate the intestinal VDR in case of
the absence of vitamin D or its major metabolites. Whether
this bile acid-VDR interaction would play a role in detoxifi-
cation of some toxic bile acid metabolites requires further
studies but is plausible in view of a series of enzymatic reac-
tions induced by VDR activation in the intestine [76].

In summary, vitamin D produced in the skin is sensitive to
photochemical conversion into inactive compounds.
Circulating vitamin D (from endogenous synthesis or from
dietary origin) is mainly metabolized in the liver into
25OHD. Among the different 25-hydroxylases, CYP2R1 is
the main enzyme, with high affinity and low capacity and
similar efficacy for conversion of vitamin D2 and D3. The
efficacy of this metabolic step in humans is discussed in detail
in the next paragraph. Alternative metabolic pathways include
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the hydroxylation of vitamin D into 20S- and 22-OHD and
some further metabolites mediated by CYP11A. Moreover,
vitamin D can be inactivated by either sulphation or
glucuronidation as start of their excretion in the bile and intes-
tine [73, 74].

Conversion efficacy of vitamin D into 25OHD
in humans

Only a limited number of studies have evaluated the conver-
sion efficacy of vitamin D into 25OHD. As mentioned above,
the conversion in experimental animals varies from 1:1 to
1:10, or a conversion efficacy of 10–100%.Most in vivo stud-
ies are based on the relative potency of oral cholecalciferol
and calcifediol to increase serum 25OHD concentrations.

The seminal study by Stamp et al. [77] in the early 1970s
concluded that, in humans, 25OHD was found initially to be
about 10-fold more potent than cholecalciferol/ergocalciferol
itself for increasing serum 25OHD concentrations into the
100–200 ng/ml range. This study dealt with a variety of pa-
tients, mostly with metabolic bone diseases [77]. These pa-
tients were, however, not randomized, the vitamin D arm re-
ceived either cholecalciferol or ergocalciferol without further
sub-analysis, the treatment duration was not the same for
cholecalciferol/ergocalciferol (> 4 months) and calcifediol
(> 6 weeks), and the groups were not matched for the etiology
of the disease. Above all, few patients received physiological
dosages of calcifediol so that the 1:10 ratio is largely based on
comparison of high dosages of cholecalciferol/ergocalciferol
(45–1000 μg/day) with more physiologic dosages of
calcifediol (15–80 μg/day) [77].

Several other studies evaluated, in a randomized controlled
trial (RCT) design, a comparison of a single dose of cholecal-
ciferol with a single oral dose of calcifediol (Table 2).

1) Rossini et al. [86] compared the efficacy of cholecalcifer-
ol (mean intake of about 21 μg/day) with that of
calcifediol (100 μg/week or about the equivalent of
14 μg/day) in 271 postmenopausal vitamin D-deficient
women, followed over 1 year. The calculated relative po-
tency of calcifediol versus cholecalciferol was 1.66. The
baseline serum 25OHD was very low (mean 22 nmol/l or
8.8 ng/ml).

2) Jetter et al. [36] compared the evolution of serum
calcifediol after daily intake of 20 μg of cholecalciferol
with daily intake of 20 μg of calcifediol and in addition
compared the equivalent dose of 140 μg of cholecalcifer-
ol or 25OHD3 given weekly, for a total observation peri-
od of 15 weeks. The treated group (n = 35) consisted of
healthy postmenopausal women with a mean baseline
serum 25OHD of about 13 ng/ml. Based on the delta
25OHD [serum 25OHD on the last day of treatment

versus baseline 25OHD], the conversion ratio was 2.82
for the daily dosages and 5.6 when weekly dosages were
compared. The authors, however, also measured the ki-
netics of serum 25OHD during the last day so that they
could calculate the area under the curve. Based on these
data, the relative potency was 2.23 and 2.78 for daily
versus weekly supplementation with cholecalciferol or
calcifediol. The authors concluded, based on all data in
this extensive study, that oral calcifediol was 2–3-fold
more potent than cholecalciferol to increase serum
25OHD in these elderly women with modest vitamin D
deficiency at baseline [36].

3) Bischoff-Ferrari [80] compared 20 μg of either cholecal-
ciferol with 20 μg of calcifediol per day for 4 months in
postmenopausal Swiss women (n = 20) and studied either
immune/inflammatory parameters or muscle function.
These subjects were mildly vitamin D deficient at base-
line (mean 25OHD of 13 ng/ml) and the relative potency
or conversion efficiency as calculated from the change in
serum 25OHD above baseline [delta 25OHD] at a single
end point after 4 months. The conversion efficacy was
found to be 3.4. Serum 25OHD was measured by MS/
MS technology. Another important difference between
both compounds was the more rapid increase in serum
25OHD in the calcifediol-treated group, when compared
to changes in serum concentration 25OHD after oral in-
take of cholecalciferol [81].

4) Shieh et al. [83] compared a daily dose of 60 μg
(2400 IU) of cholecalciferol with 20 μg of calcifediol in
35 healthy adults with a baseline 25OHD below 20 ng/ml
with a follow-up of 16 weeks. Based on delta 25OHD
between final concentration and baseline, oral calcifediol
was 5.5-fold more potent than cholecalciferol in increas-
ing the serum concentration of total 25OHD. They used a
chemiluminescent assay for total 25OHD which is
claimed to correlate well with MS/MS results. In addi-
tion, they alsomeasured by direct ELISA the free 25OHD
concentration, and based on the ration of delta free
25OHD, a similar relative potency (5.66) of oral
calcifediol versus oral cholecalciferol was found.

Four studies have compared the relative potency of
calcifediol versus cholecalciferol using multiple dosages.

1) Barger-Lux et al. [78] compared three dosages of chole-
calciferol (25–250–1250 μ/day) with three dosages of
calcifediol (10–20–50 μg/day) during 8 weeks using an
open-label design. The subjects were healthy adults
(mean age 28 years; n = 116). 25OHDwas measured with
a competitive protein-binding assay after extraction and
chromatographic separation as to remove dihydroxylated
vitamin D metabolites. When a low dosage of
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cholecalciferol (25 μg) was compared with similar dos-
ages of oral calcifediol, a relative potency calcifediol/
cholecalciferol of 3.5, 3.3, and 3.5 was found (10–20–
50 μg/day). When pharmaceutical dosages of cholecalcif-
erol (10–50,000 IU/day) were compared with the highest
dose of calcifediol (50 μg or 2000 IU/d), oral calcifediol
was 7–8-fold more potent than cholecalciferol.

2) Cashman et al. [79] compared, in a RCT design, the rel-
ative potency of oral calcifediol (7 or 20 μg/day) versus
cholecalciferol (daily dose of 20 μg only). The study sub-
jects were 56 healthy Irish adults (> 50 years), and
25OHD was measured by ELISA. The study lasted
10 weeks and was organized in wintertime as to avoid
endogenous vitamin D synthesis. Oral calcifediol was
found to be 4.2 to 5 times more potent than oral cholecal-
ciferol in raising serum 25OHD.

3) Navarro-Valverde et al. [84] compared the effects of cho-
lecalciferol (20 μg/day) versus calcifediol (20 μg/day,
266 μg/week, or 266 μg/every 2 weeks) in 4 × 10 post-
menopausal osteoporotic women for 1 year. The majority
of these women were modestly vitamin D deficient at
baseline. The relative potency of calcifediol given at
equivalent daily physiologic doses (20 μg) was 3.3 com-
pared to that of cholecalciferol. When cholecalciferol was
given at weekly or biweekly intervals, the relative poten-
cy varied between 2.25 and 3.93.

4) Vaes et al. [82] compared a single dosage of oral chole-
calciferol (20 μg/day) with three dosages of oral
calcifediol (5–10–15 μg/day) for 24 weeks in 50 Dutch
elderly subjects (> 65 years) during wintertime. Baseline
serum 25OHD concentration was 39 nmol/l (~ 16 ng/ml).
25OHD was measured by MS/MS technology. The rela-
tive potency of the low dose of oral calcifediol (7 μg) was
about 1.04 versus cholecalciferol, whereas for both other
dosages (10–15 μg), a relative potency of 3 and 2.8, re-
spectively, was found.

Minisola et al. [85] reported the efficacy of different oral
doses (20 or 40 μg/day or 125 μg/week) of calcifediol in
Caucasian Italian postmenopausal women with mean baseline
serum 25OHD of 41 nmol/l, given for 1 year [85], but did not
include a control group using cholecalciferol. Therefore, no
conversion efficacy can be calculated but the data allow to
calculate the increase in serum 25OHD per daily microgram
of oral calcifediol. The mean increase per microgram was
about 4 nmol/l, well in line with the mean of all previously
described comparative studies (see below).

Table 2 shows an overview of all studies comparing oral
cholecalciferol and oral calcifediol. Themajority of the studies
included subjects with rather low baseline serum 25OHD con-
centrations (mean below 50 nmol/l). This table summarizes
the potency of cholecalciferol versus calcifediol in each study
with a mean relative potency of 4.62 when the results of all

studies are combined. The relative potency may be dependent
on the dosages as the relative potency of calcifediol is lower
(about 3.2), when it is compared with low daily doses of
cholecalciferol (below 25 μg or 1000 IU/day as evaluated in
7 studies). When only studies using high-dose oral cholecal-
ciferol (≥ 50 μg or 2000 IU/day) are considered, then the
relative efficacy of oral calcifediol over cholecalciferol is 8
(3 studies). For each study, we calculated the mean increase
in serum 25OHD per microgram oral intake of either chole-
calciferol or oral calcifediol (or daily equivalent when the
compounds were given intermittently). The mean increase in
serum 25OHD (all studies combined) after intake of 1 μg
cholecalciferol per day was 1.53 ± 0.89 nmol/l (M ± SD; n =
10), whereas the mean increase was 4.76 ± 1.17 nmol/l per
microgram oral intake of calcifediol. Based on this calcula-
tion, the overall relative potency of oral calcifediol was 3.11
greater when compared with oral cholecalciferol.

The increase in serum 25OHD after oral intake of chole-
calciferol depended (significantly) on baseline serum 25OHD
concentrations (Fig. 1a) with higher Bdelta 25OHD^ in case of
lower baseline serum 25OHD. By contrast, Bdelta 25OHD^

Fig. 1 Mean changes (Bdelta^) in serum 25OHD concentration after oral
supplementation with cholecalciferol (a) or with calcifediol (b) according
to baseline serum 25OHD concentration, as reported in RCTs comparing
oral both supplementation options

Osteoporos Int (2018) 29:1697–1711 1705



after oral intake of calcifediol was independent from baseline
serum 25OHD concentrations (Fig. 1b).

Discussion

Vitamin D is essential for bone health throughout life. Dietary
vitamin D intake is low in most countries and dietary intake of
25OHD is very limited as this metabolite is only present in
trace amounts in food. Vitamin D supplementation is thus of
vital importance if endogenous synthesis is limited for what-
ever reason. This is especially so for some risks groups, such
as infants and small children, the very elderly population
around the world and people who for voluntary or other rea-
sons have limited or no access to UVB sunlight. Vitamin D is
thus a very widely used therapy around the world either as
ergocalciferol, as cholecalciferol, or more recently as
calcifediol, and its use increases even rapidly as mild to even
severe vitamin D deficiency is being recognized as an impor-
tant health problem in many countries.

Oral intake of calcifediol rather than cholecalciferol itself
may have some advantages but is at present not widely used.
The intestinal absorption of calcifediol has a higher efficacy
than that of cholecalciferol. Calcifediol is absorbed via the
vena porta, whereas cholecalciferol uptake is more complex
via the lymph pathway. These differences in intestinal trans-
port can explain part of the greater overall bioavailability of
calcifediol. Secondly, vitamin D must be converted into
25OHD and this takes place mostly, but not exclusively, in
the liver by CYP2R1. The exact details of the conversion and
the conversion efficacy have not received intensive attention.
Efficacy could be affected by liver diseases, interactions with
inducer/inhibitors, or allelic heterogeneity of cytochrome
P450 enzymes involved in the hydroxylation of vitamin D
metabolites. Based on all available data published in nine
comparative RCTs (Table 2), it seems that oral calcifediol is
more potent than oral cholecalciferol. When using only data
comparing a daily dose of less than 25 μg/1000 IU of chole-
calciferol with similar low dosages of calcifediol, oral
calcifediol seems to be 2–5-fold more potent (mean of all
studies is about 3.2) than oral cholecalciferol (Table 2).
Based on eight studies comparing the efficacy of oral
calcifediol supplementation versus oral cholecalciferol in
mostly mildly vitamin D-deficient elderly Caucasian women,
the increase in serum 25OHD after long-term daily intake of
1 μg of calcifediol is about 4.8 nmol/l. This is substantially
greater than the increase of 1.5 nmol/l per 1 μg of cholecal-
ciferol supplement. The increase in serum 25OHD after cho-
lecalciferol supplementation found in the set of comparative
RCTs is fully in line with the potency of cholecalciferol as
found in numerous studies summarized in the IOM report
[87] and summarized by Heaney as 1 ng/ml increase in serum
25OHD by an additional 100 IU of cholecalciferol [88]. These

data indicate that, at low dose of cholecalciferol supplementa-
tion, about one out three molecules of vitamin D is trans-
formed into 25OHD. When higher cholecalciferol dosages
(> 2000 IU/day) are used, only about one in one of eight
molecules of vitamin D is ultimately found in serum as
25OHD. Indeed, the potency of calcifediol is much higher in
studies using high-dose oral of cholecalciferol, varying from
5.5 [84] to 7–8 [81, 82] and 9–12 times [78] (Table 2). A lower
conversion rate of vitamin D into 25OHD at higher oral dos-
ages of cholecalciferol can be explained by a non-linear in-
crease in serum 25OHD with increasing cholecalciferol in-
take. Indeed, increasing the daily dose of cholecalciferol sup-
plementation does not result in a linear increase in serum
25OHD (Fig. 1b) and dose-response curves indicate a lower
efficacy at higher doses of cholecalciferol or even a true pla-
teau level of 25OHD once the daily intake exceeds about
5000 IU cholecalciferol [87, 89, 90]. As oral calcifediol is
absorbed in the gut with high efficacy and does not need to
be converted in the liver, a more linear relationship between
dosage and final concentration can be expected and is in line
with several studies in humans [78, 79, 82] (Table 2) and
animals [91]. The precise fate of vitamin D not recovered as
25OHD is unclear. The studies reviewed here dealt with gen-
erally healthy people and provide data on the relative potency
of oral calcifediol versus cholecalciferol but it remains to be
explored whether this potency would be different in patients
with hepatic or renal diseases or in other situations of abnor-
mal vitamin D transport (pregnancy, trauma, intensive care
patients).

There are genetic factors influencing the vitamin D status
[92]. Twin studies indicate that genetic factors may explain
about 50% of the variation of serum 25OHD. Several GWAS
and other studies demonstrated independently a modest effect
o f p o l ymo r p h i sm s o f DBP /GC , CYP2R1 , 7 -
dehydrocholesterol reductase (DHCR7), and possibly
CYP24A1 on serum 25OHD concentrations in Caucasians
and Asians. These polymorphisms combined may explain
about 5% of the variation in serum 25OHD. Moreover, these
polymorphisms are found in nearly all populations [93–98].
The variation in serum 25OHD found in different areas and
populations in the world is thus mainly due to environmental
and lifestyle factors, with only minimal contribution of purely
racial differences. One genetic variant of DBP, GC2, is asso-
ciated with a modest (∼ 10%) decrease in serumDBP and total
25OHD concentrations for unexplained reasons [92].
However, of these four genes, only CYP2R1 plays a role in
the metabolism of oral vitamin D compared with oral 25OHD.
Mutations in CYP2R1 are rare in the general population and it
seems that only bi-allelic mutations create problems in pro-
ducing sufficient 25OHD [45, 98]. CYP2R1 is also a poly-
morphic gene and such polymorphism has a minor influence
on vitamin D status. However, the overall effect to CYP2R1
polymorphism on serum 25OHD is minimal, explaining less
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than 2% of the overall variation in serum 25OHD. Therefore,
whether gene polymorphism has a major influence on the
relative potency of cholecalciferol compared to calcifediol is
unclear but rather unlikely.

Whether the baseline vitamin D status influences the dif-
ference between oral vitamin D and 25OHD is not clear so far.
The present overview confirms that the increase in serum
25OHD after oral intake of cholecalciferol is greater in case
of more severe vitamin D deficiency [25]. This is in line with
the Km of Cyp2R1. The Bdelta 25OHD^ after oral calcifediol
however was found to be independent from baseline serum
25OHD and this is in line with the excellent intestinal absorp-
tion and the absence ofmetabolic conversion before appearing
in the blood stream. This conclusion is, however, preliminary
as most subjects participating in the randomized trials started
with mean baseline serum 25OHD concentrations below
50 nmol/l (20 ng/ml), except for the subjects studied by
Barger-Lux et al. [78] (mean baseline serum 25OHD of
67 nmol/l) (Table 2). Serum concentrations of 25OHD show
very large inter-individual variation for largely unexplained
reasons. All known factors related to vitamin D status (skin
color, sun exposure, body weight, vitamin D intake…) can
explain less than 50% of the variation in serum 25OHD.
Supplementation with cholecalciferol does not markedly di-
minish the inter-individual variations. Supplementation with
oral calcifediol could potentially reduce the inter-individual
variations as it eliminates a number of steps in the absorption
and metabolism of vitamin D into 25OHD. If this would be
confirmed, then that would be a great advantage over oral
cholecalciferol. However, as we did not have access to indi-
vidualized data, we cannot reliably answer that question.
Indeed, a limitation of the present evaluation is the lack of
individual data so that we were unable to perform a true per
person meta-analysis. Moreover, the assay methodology used
for serum 25OHD concentrations was not standardized. The
measurement of serum 25OHD is known to be very assay
dependent [99], but recent harmonization efforts have im-
proved the accuracy of the methods [100]. The studies evalu-
ated here used a variety of assay methods. The choice of assay
probable did, however, not markedly influence the overall
results, as the relative potency is each time calculated based
on the delta (final minus baseline) 25OHD concentrations.

In conclusion, severe or mild vitamin D deficiency is high-
ly prevalent around the world, affecting millions or even bil-
lions of people [1, 2, 6] (Table 1). Vitamin D supplementation
is therefore an essential strategy to improve the vitamin D
status and its beneficial effects on bone and maybe on global
health [20]. Indeed, a poor vitamin D status is causally linked
with increased bone resorption, bone loss, osteoporosis, and
fracture risks. It is also likely to increase the risks of falls and
associated fractures. Finally, poor vitamin D status may have
many other health consequences. Therefore, correction of vi-
tamin D deficiency by either vitamin D or calcifediol

supplementation mainly aims to improve musculoskeletal
health and may have other health benefits.

Up to now, only ergocalciferol or cholecalciferol has found
wide applications. Based on the overall results summarized in
this manuscript, we conclude that oral calcifediol may have
some advantages for oral supplementation in comparison with
the parent vitamin D compound. First, oral calcifediol results
in a more rapid increase and significant increase in serum
25OHD compared to oral ergocalciferol/cholecalciferol.
Therefore, oral calcifediol is able to normalize vitamin D de-
ficiency more rapidly and consistent ly than oral
ergocalciferol/cholecalciferol. Second, oral calcifediol is more
potent than ergocalciferol/cholecalciferol so that lower dos-
ages are needed. Third, oral calcifediol has a higher rate of
intestinal absorption and this may have important benefits in
case of decreased intestinal absorption capacity due to a vari-
ety of diseases. A potential additional advantage of oral
calcifediol is a more linear dose-response curve whereas a
higher intake of ergocalciferol/cholecalciferol does not result
in a linear increase in serum 25OHD concentrations. This is
probably, however, only relevant when high 25OHD is need-
ed such as in patients with chronic renal failure as to maximize
endogenous production of 1,25(OH)2D3. The kinetics of in-
termittent cholecalciferol is complex and may give rise to
more variable serum 25OHD concentrations and have been
associated with increased risks of falls and fractures in case of
transient use of megadoses of cholecalciferol [101–103].
Intermittent intake of calcifediol results in fairly stable serum
25OHD [104]. This is not a surprise, as calcifediol is known to
have a very long half-life of 2–3 weeks [105].

In the present manuscript, we did not discuss in-depth the
potential therapeutic value of oral calcifediol in rare cases of
inactivating mutations of genes encoding hepatic 25-
hydroxylases (CYP2R1) or in case of specific conditions,
where the activity of cytochrome enzymes might be abnormal
(e.g., anticonvulsants, corticosteroids, and some antiretroviral
and antitubercular drugs), other diseases with abnormal vita-
min D handling such as advanced liver insufficiency, obesity,
intestinal malabsorption, nephrotic syndrome, or chronic renal
failure, as this will be the subject of a separate literature review
and analysis.

Based on our review, we suggest that oral calcifediol may
be a valid and sometime more favorable alternative compared
to oral cholecalciferol for the prevention or treatment of vita-
min D deficiency at whatever age or as part of prevention or
treatment of osteoporosis.
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