EERL
 F-PRO 298
 Feeder Protection Relay

User Manual

Version 1.7 Rev 0

Preface

Information in this document is subject to change without notice.
© 2022 ERLPhase Power Technologies Ltd. All rights reserved.
Reproduction in any manner whatsoever without the written permission of ERLPhase Power Technologies Ltd. is strictly forbidden.
This manual is part of a complete set of product documentation that includes detailed drawings and operation. Users should evaluate the information in the context of the complete set of product documentation and their particular applications. ERLPhase assumes no liability for any incidental, indirect or consequential damages arising from the use of this documentation.
While all information presented is believed to be reliable and in accordance with accepted engineering practices, ERLPhase makes no warranties as to the completeness of the information.
All trademarks used in association with B-PRO, B-PRO Multi Busbar, Multi Busbar Protection, F-PRO, iTMU, L-PRO, ProLogic, S-PRO, T-PRO, M-
PRO, TESLA, I/O Expansion Module, TESLA Control Panel, Relay Control Panel, RecordGraph and RecordBase are trademarks of ERLPhase Power Technologies Ltd.
Windows ${ }^{\circledR}$ is a registered trademark of the Microsoft Corporation.
HyperTerminal ${ }^{\circledR}$ is a registered trademark of Hilgraeve.
Modbus ${ }^{\circledR}$ is a registered trademark of Modicon.

Contact Information

ERLPhase Power Technologies Ltd.
Website: www.erlphase.com
Email: info@erlphase.com
Technical Support
Email: support@erlphase.com
Tel: 1-204-477-0591

Using This Guide

This User Manual describes the installation and operation of the F-PRO 298 feeder protection relay. It is intended to support the first time user and clarify the details of the equipment.

The manual uses a number of conventions to denote special information:

Example	Describes
Start>Settings>Control Panel	Choose the Control Panel submenu in the Set- tings submenu on the Start menu.
Right-click	Click the right mouse button.
Recordings	Menu items and tabs are shown in italics.
Service	User input or keystrokes are shown in bold.
Text boxes similar to this one	Relate important notes and information.
..	Indicates more screens.
Indicates further drop-down menu, click to dis-	
Indicates a warning.	

Table of Contents

Preface i
Contact Information i
Using This Guide iii
Table of Contents V
Acronyms ix
Version Compatibility x
PC System Requirements and Software Installation xi
1 Overview 1-1
Introduction 1-1
Front View 1-3
Rear View 1-4
Model Options/Ordering 1-6
2 Installation and Safety Instructions 2-1
Introduction 2-1
Physical Mounting 2-2
Power Supply 2-3
AC and DC Wiring 2-4
Communication Wiring 2-5
3 Setup and Communications 3-1
Introduction 3-1
Power Supply 3-2
Time Sources 3-3
Communicating with the Relay Intelligent Electronic Device (IED) 3-5
USB Link 3-6
Network Link 3-8
Accessing the Relay's SCADA Service 3-9
Using Terminal to Access the Relay's Maintenance Menu 3-10
Firmware Update 3-14
Communication Port Details 3-15
4 Using the IED (Getting Started) 4-1
Start-up Sequence 4-1
Front Panel Display 4-2
Relay Control Panel 4-10
5 Protection, Recording and Logging Functions 5-1
Fault Locator 5-2
Voltage Protection Functions 5-3
Current Protection Functions 5-16
Frequency Protection Functions 5-46
Power Protection Functions 5-49
Monitoring Functions 5-51
Control Functions 5-60
ProLogic 5-63
Group Change Control Statement 5-66
Recording Functions 5-68
Event Log 5-71
Fault Log 5-72
6 Data Communications 6-1
Introduction 6-1
SCADA Protocols 6-2
7 Settings and Analysis Software 7-1
F-PRO 2000 Offliner Setting Software 7-2
RecordGraph Software 7-25
RecordBase View Software 7-26
RecordBase Central Station Software 7-27
8 Acceptance/Protection Function Test Guide 8-1
Introduction 8-1
Acceptance Testing 8-1
9 IEC 61850 Implementation Overview 9-1
Introduction 9-1
The Substation Configuration Language (SCL) 9-2
The Engineering Process 9-3
Control Commands 9-4
IEC 61850 Edition 2.0 Implementation 9-7
Appendix A IED Specifications A-1
IDMTL Element Operating Time Curves A-7
Appendix B IED Settings and Ranges B-1
Settings and Ranges B-1
Appendix C Hardware Description C-1
Appendix D Event Messages D-1
Appendix E Modbus RTU Communication Protocol E-1
Appendix F DNP3 Device Profile F-1
Appendix G IEC 103 Device Profile G-1
Device Properties G-1
Appendix H Mechanical Drawings H-1
Appendix I AC Schematic Drawings I-1
Appendix J DC Schematic Drawings J-1
Appendix K Connection Diagram K-1
Appendix L IEC 61850 Conformance Statements and Data Mapping Specification L-1
Protocol Implementation Conformance Statement (PICS) L-1
Model Implementation Conformance Statement (MICS) L-9
TISSUES Implementation Conformance Statement (TICS) L-21
Protocol Implementation eXtra Information for Testing (PIXIT) L-30
Data Mapping Specifications L-44

Acronyms

ASG- Active Setting Group
CT- Current Transformer
DCE- Data Communication Equipment
GPS- Global Positioning System
GUI- Graphical User Interface
HMI- Human Machine Interface
ICD- file extension (.ICD) for IED Capability Description
IEC- International Electro technical Commission
IED- Intelligent Electronic Device
IP- Internet Protocol (IP) address
IRIG-B- Inter-Range Instrumentation Group time codes
LED- Light-emitting Diode
LCD- Liquid Crystal Display
LHS- Left Hand Side
RHS- Right Hand Side
RTU- Remote Terminal Unit
SCADA- Supervisory Control And Data Acquisition
SG- Setting Group
TCP- Transmission Control Protocol
TDR - Transient Disturbance Recording
UI - User Interface
VI - Virtual Input

Version Compatibility

For version compatibility check D05105F-PRO Firmware Release Description which is available on the ERLPhase website: www.erlphase.com.

This manual was created using the following software and firmware versions:

- Relay Control Panel v3.3
- F-PRO Offliner v3.1

This manual is compatible with higher versions of firmware or software unless a higher version of this manual states otherwise.

PC System Requirements and Software Installation

Hardware

Operating
System

Software Installation

The minimum hardware requirements are:

- 1 GHz processor
- 2 GB RAM
- 20 GB available hard disk space
- USB port
- Serial communication port

One of the following operating systems must be installed and functional prior to installing the applications:

- Microsoft Windows 7
- Microsoft Windows 10

All required software for user interface, settings and record analysis is available directly from the ERLPhase website. The following relevant software and documentation is available:

- F-PRO Offliner
- Relay Control Panel
- ERL 61850 Configurator Tool
- RecordGraph
- RecordBase View
- USB Driver
- F-PRO 298 User Manual

If an anti-virus/anti-spyware software on your local system identifies any of the ERLPhase applications as a "potential threat", it will be necessary to configure your anti-virus/anti-software to classify it as "safe" for its proper operation. Please consult the appropriate anti-virus/anti-spyware software documentation to determine the relevant procedure.

1 Overview

1.1 Introduction

The F-PRO 298 is a microprocessor-based relay providing protection, monitoring, logging and recording functions suitable for transmission, sub-transmission and distribution applications.

The ERLPhase software has two working modes - online and offline. Relay Control Panel is the online tool, which enables the user to:

- Change, review \& retrieve relay settings
- View event, fault and metering information
- Store records
- Trigger and retrieve recordings

F-PRO Offliner is the offline tool which enables the user to create and review relay settings.

RecordGraph enables users to analyze fault waveforms.
In addition to the protection functions F-PRO 298 provides fault recording (32 samples / cycle) for analysis of the power system after a disturbance has occurred. The triggers for fault recording are established by programming the output matrix. The Output Matrix allows any internal relay function, external input or GOOSE messaging input to initiate record.
The primary protection provided is Voltage, Current and Frequency based. A library for these functions provides commonly used IEEE and IEC inverse curves. Since the curves are equation driven, the user can choose to enter equation parameters directly to create other overcurrent curve shapes as needed.
To provide a complete package of protection and control, F-PRO 298 provides other functions such as:

- Fault Locator
- Breaker failure Protection (50BF)
- Multi-shot Auto Recloser (79)
- CT Fail Supervision (60CTS)
- VT Fail Supervision (60VTS)
- 20 ProLogic statements
- 30 Virtual Inputs
- 8 Setting Groups

Figure 1.1: F-PRO 298 Relay Function Line Diagram

1.2 Front View

Figure 1.2: F-PRO 298 Relay Front View

1.3 Rear View

Figure 1.3: F-PRO 298 Relay Rear View

AC Current and Voltage Inputs

The F-PRO 298 relay is provided with terminal blocks for 4 AC Voltages and 4 AC Currents. 1A and 5A terminals are provided with isolated neutral and CT Secondary is site selectable.

The complete schematics are available in "Mechanical Drawings" on page Appendix H-1 and "AC Schematic Drawings" on page Appendix I-1.

The F-PRO 298 relay has 14 External Inputs.
External dc voltage of either $24,48,110$ or 220 Vdc nominal are possible depending on the range requested. Selection of specific voltage is factory selectable.

The F-PRO 298 Relay has 14 Output Contacts. Each contact is programmable and has breaker tripping capability. All output contacts are isolated from each other. All the contacts are provided with settable dropout timers ($0-1 \mathrm{sec}$) which applies for the Self Reset (see "The relay configuration changes during a relay-initiated setting change, but the protection function operations are not disrupted. Since the relay setting file does not change, the interface processor

Relay
 Functional Alarm Output

uses the new setting group supplementary setting information at the same time as the protection processor switches to the new setting group. An event is logged to show when the new setting group is in service." on page 5-67).

If the relay becomes inoperative, then the Relay Functional Alarm output contact opens and all tripping functions are blocked. Output Contact 14 may be enabled or disabled as Relay Functional Alarm Contact in the Output Matrix. During the relay inoperative period, all tripping functions are blocked.

1.4 Model Options/Ordering

- The relay is available as an E8 size and flush mount type along with standard IRIG-B /SNTP time sync. For details see "Mechanical Drawings" on page Appendix H-1
- The relay is available with optional Ethernet ports for PRP (RJ45/FO).
- The external inputs are $24,48,110,220 \mathrm{Vdc}$ rated. The Auxiliary supply is $20-60 \mathrm{Vdc}$ or $80-300 \mathrm{Vdc}$ rated.
- All of the above options must be specified at the time of ordering.

Refer to www.erlphase.com for the ordering template.

2 Installation and Safety Instructions

2.1 Introduction

This section deals with the installation of the F-PRO 298 when first delivered. The section covers the physical mounting, AC and DC wiring and the Communication wiring.

The following symbols are used in this manual and on the unit. They should be understood before working on the unit:

Caution: refer to equipment documentation

Caution: risk of electric shock

Protective Earth (or Ground) Terminal

Autoranging power supply

Both direct and alternating current

> The equipment ratings, operating instructions and installation instructions shall be checked before commissioning or maintenance. It is the responsibility of the user to ensure that the equipment is installed, operated and used for its intended function in the manner specified in this manual. If this is not the case then any safety protection provided by the equipment may be impaired.

2.2 Physical Mounting

The relay is 177 mm high, 225 mm deep and 207 mm wide. A complete mechanical drawing is shown, for details see "Mechanical Drawings" in Appendix H To install the relay the following is needed:

- E8 cutout ($159 \mathrm{~mm}(\mathrm{H}) \times 201.5 \mathrm{~mm}(\mathrm{~W})$)
- M4 screws and nuts

Case Grounding

WARNING!
Ground the relay to station ground using the Case Grounding terminal at the back of the relay, for details see "F-PRO 298 Relay Rear View" on page 1-4

2.3 Power Supply

A wide range power supply is standard. The relay power supply is provided with nominal operating ranges of:

- $24-48$ Vdc ($-15 \% /+20 \%$)
- 110-250 Vdc / 100-240 Vac ($\pm 20 \%$ for Vdc, $-10 \% /+5 \%$ for Vac)

To protect against a possible short circuit in the supply use an inline fuse or circuit breaker with a 5A rating. Ensure that the chassis is grounded for proper operation and safety.

There are no power switches on the relay. When the power supply is connected, the relay starts its initialization process and takes about 100 seconds to complete the boot up process (indicated by glowing green Relay Functional LED).

2.4 AC and DC Wiring

For details see "AC Schematic Drawings" in Appendix I and "DC Schematic Drawings" in Appendix J.

[^0]
2.5 Communication Wiring

EIA-485

Ethernet Port

USB

IRIG-B

The relay's serial port (32) is an EIA RS-485 Data Communications Equipment (DCE) device. This allows them to be connected directly to other relays in parallel and communicated to a PC serial port with a standard straightthrough male-to-female serial cable with RS485 to RS232 converter. RS 485 cable can work for a maximum of 1.2 km with a single IED. Shielded cable is recommended, for pin-out see "Communication Port Details" on page 3-15.

100BASE Ethernet Port (31A) with RJ-45/FO receptacle on rear side of the relay can be used with CAT5 or CAT5e straight or ST type FO for SCADA Communications. The maximum distance that RJ45 cable can support is 100 meters (328 feet).

COM 1 on the front panel is a standard USB-B connector. This port is the Maintenance port of the relay. This is a USB 2.0 Full Speed interface and can be connected to a PC with a standard USB peripheral cable (A style to B style).

IRIG-B on the rear panel (331) accepts both modulated and un-modulated IRIG -B standard time signals with or without the IEEE 1344 extensions. The IRIG-B connector on the back of the relay is BNC type. SNTP Time sync through RJ-45/FO can also be achieved.

Shielded wire shall be used for all connections that run outside of the panel in which the F-PRO is installed. The shield must be grounded only at one end at the point where the cable enters the panel. The IRIG input is the ONLY exception which uses unbalanced co-axial cable.

3 Setup and Communications

3.1 Introduction

This chapter discusses setting up and communicating with the relay including the following:

- Power supply
- Inter-Range Instrumentation Group time codes (IRIG-B) time input
- Communicating with the relay using a network link, a direct serial link and a modem link (internal, external)
- Using Relay Control Panel to access the relay's user interface
- Using HyperTerminal to access the relay's maintenance menu
- Setting the Baud rate
- Accessing the relay's Supervisory Control And Data Acquisition (SCADA) services

3.2 Power Supply

See "Power Supply" on page 2-3 and "Case Grounding" on page 2-2 for details regarding the power supply.

3.3 Time Sources

The F-PRO 298 relay supports the use of modulated or unmodulated IRIG-B time signals (external), primary/secondary SNTP network based time synchronization (external) and manually configurable system time based on a free running internal oscillator. The internal free running oscillator is always present on the F-PRO 298 and in the absence of any external time source, will become the default mode of time synchronization.

An externally applied IRIG-B time source will have the highest order of precedence, and will typically offer the highest available time accuracy, when derived from an external GPS satellite source. The F-PRO 298 will also process derived IRIG-B style signals generated from alternate time sources, using time quality information to differentiate. The LED output selection on the front panel is available for ongoing presence of a valid IRIG-B time source indication and is evident in data records.

The relay is equipped to handle modulated or un-modulated GPS satellite time IRIG-B signals. The IRIG-B time signal is connected to the BNC connection on the back of the relay. Setting is required to differentiate between modulated or un-modulated signal. This has to be manually changed by the user as per the input provided.
When the relay is drawn out from its case, jumpers are accessible behind the IRIG-B connect. If the J5 and J6 jumpers are positioned to short pins 1 and 2, then the IRIG-B port is configured to accept a modulated signal. If the J5 and J6 jumpers are positioned to short pins 2 and 3, then the IRIG-B port is configured to accept an un-modulated signal. By default the jumper selection is positioned to modulated signal.

Figure 3.4: IRIG-B Port Selection for modulated and un-modulated input
If the IRIG-B signal contains year information, enable the IEEE 1344 extension on the Utilities > Time screen in Relay Control Panel. If the IRIG-B signal does not contain the year extension, this setting should be disabled.

SNTP SYNC

An SNTP time source has a lower order of precedence from a valid IRIG-B source. SNTP operation (primary and secondary) requires network access and the selection and configuration of suitable SNTP network sources. The SNTP time may be configured for re-synchronization cycles ranging from 15 minutes to 36 hours, adjusting the F-PRO 298 system time to an accuracy of +/- 5 milliseconds in ideal network conditions. The LED output selection on the front panel is available for ongoing presence of a SNTP time source indication and is evident in data records.

The RCP time screen provides means to enable SNTP time source, set the poll interval, set the timeout interval and set the server IP addresses.

Figure 3.5: SNTP sync settings in RCP
If either a valid IRIG-B or SNTP source is present, then the relay will use the RTC run from the internal clock as the time source. The RTC is the lowest priority time source.

The IED comes equipped with an internal free-running oscillator used to generate a 1 PPS time signal in the absence of any alternate available time source. Use of this oscillator as the primary IED time source requires manual time configuration, with the general accuracy subject to user input parameters, and is recommended primarily for stand-alone, unsynchronized applications. The internal oscillator carries a lifetime accuracy (including temperature effects and aging) of $+/-50 \mathrm{ppm}$.

3.4 Communicating with the Relay Intelligent Electronic Device (IED)

Connect to the relay to access its user interface and supervisory control and data acquisition (SCADA) services by:

- Front USB 2.0 interface (user interface and maintenance)
- 2 Rear Ethernet network link -user interface and SCADA (Ordering Option)
- Rear panel serial link (RS485 serial link to SCADA only)

The relay has a front panel USB port and Rear Ethernet Ports (Copper / FO Port 31A \& Port 31B) for user interface and SCADA, 1 rear RS485 Port (Port 32) to provide direct access to SCADA services.

The relay user interface is accessed through the Relay Control Panel.

3.5 USB Link

The PC must be appropriately configured for USB communication.

Figure 3.1: USB Link

USB Driver Installation

To create a USB link between the relay and the computer, connect the PC to the front USB port of the F-PRO. The Gadget Driver needs to be installed in computer as follows. The Gadget Driver can be downloaded from ERLPhase website (https://www.erlphase.com/downloads/software).

Then go the Device Manager to check the port detect.

$$
\text { Start > Control Panel> Device Manager }>\text { Other devices }
$$

In this path a small icon with the name of Gadget Serial v 2.4 will be found (If user removed USB cable, this icon will be removed from that path).

Next to that Right click on the Gadget Serial v2.4 icon and select "update Driver software".
"Update Driver Software - Gadget Serial v2.4" Window will appear. In that select "Browse my computer for driver software".

Now Browse the Gadget driver folder the path where it was saved.
Example;
D: |Gadget_driver|win7 (for Windows 7)

And click the next button. Now the Driver Installation will be started, after the Installation done click close.

Now check ports in Device Manager

$$
\text { Start }>\text { Control Panel }>\text { Device Manager }>\text { Ports }(C O M \& L P T)
$$

Find the "F-PRO2000 Series Relay" port, note COM port number which is installed Ex: COM 6.

Open Relay Control Panel.
Click the Add new Button. The Add New Relay Window will open. Select the "Add New Modem/Serial Link" Button.

A Window will appear. Select the "Add" Button.
"Add Hardware Wizard" Window will open. Click Next twice and click the "Have Disk" button.

Browse the Null_mdm file from the path: C:\Program Files (x86)\ERLPhase\Relay Control Panel

Then click ok and Next.
Select the COM Port at which the relay was connected. Click Next and Finish.
Now come to the "Add New Relay" Window and select the COM \# in the Serial Link to which the Relay is connected. The Baud Rate is Default as "115200".

Click the "Get Information From Relay" Button to Collect the Information from Relay. After the information is retrieved, enter relay name and click save button

3.6 Network Link

Figure 3.2: Network Link
Access both the relay's user interface and 61850 SCADA services simultaneously with the Ethernet TCP/IP LAN link through the network port Port 31A. The rear Port is 100BASE-T copper interface with an RJ45 connector or FO with ST connector interface.

DNP3 SCADA services can also be accessed over the LAN, for details see Table 3.4: Communication Port Details.

Connect to the Ethernet LAN using a Cat 5 or above cable with an RJ-45 connector on both ends in straight fashion.

If an FO connector is used on the IED, then an Ethernet switch with an ST and RJ45 connector to communicate with the device.

By default, the Port 31 is assigned with an IP address of 192.168.100.80. If this address is not suitable, it may be modified using Relay's interface accessed through the Terminal Utility ("Using Terminal to Access the Relay's Maintenance Menu" on page 3-10) or Front LCD display in Change/Service mode. If IP address is changed, then the relay will restart automatically.

3.7 Accessing the Relay's SCADA Service

The relay supports IEC 60870-5-103 slave, DNP3(Level 2), IEC 61850 and Modbus slave SCADA protocols as a standard feature on all F-PRO series relays. The DNP3 is available through a direct serial link or the Ethernet LAN on top of either TCP or UDP protocols. The Modbus implementation supports both Remote Terminal Unit (RTU) binary and ASCII modes and is available through a direct RS485 serial link.
The relay rear serial Port CON 32 is dedicated for use with Modbus slave, IEC 60870-5-103 slave or DNP3 serial protocols. The serial port uses standard RS485 signaling. An external RS-485 <-> RS-232 converter can be used to connect to an RS-232 network.

Figure 3.3: RS485 Connection diagram
The DNP3 and IEC 61850 protocols can also be run across the Ethernet LAN. Both DNP over TCP and DNP over UDP are supported. For details on connecting to the Ethernet LAN see "Network Link" on page 3-8.
Complete details on the Modbus and IEC 60870-5-103 protocol services can be found in the Appendices, for details see "Modbus RTU Communication Protocol" on page Appendix E-1 and "IEC 103 Device Profile" on page Appendix G-1.

Protocol Selection

To select the desired SCADA protocol go to F-PRO Offliner SCADA communication section. Select the desired SCADA protocol and set the corresponding parameters.

Communication Parameters

The serial port's communication parameters are set in the F-PRO Offliner SCADA communication section. Both the baud rate and the parity bit can be configured. The number of data bits and stop bits are determined automatically by the selected SCADA protocol. Modbus ASCII uses 7 data bits. Modbus RTU, IEC 60870-5-103 and DNP3 Serial use 8 data bits. All protocols use 1 stop bit except in the case where either Modbus protocol is used with no parity; this uses 2 stop bits, as defined in the Modbus Standard.

3.8 Using Terminal to Access the Relay’s Maintenance Menu

This section describes how to configure a standard Windows VT-100 terminal program on the PC for use with the relay.

The computer must be connected to the relay via the front USB Port for access to all of the Maintenance functions.

The relay is accessed using a standard VT-100 terminal style program on the computer, eliminating the need for specialized software. Any terminal program that fully supports VT-100 emulation and provides z-modem file transfer services can be used. HyperTerminal PE, is used here as an example.
Configure the terminal program as described in Table 3.1: Terminal Program Setup and link it to the appropriate serial port, modem or TCP/IP socket on the computer.

Table 3.1: Terminal Program Setup

Baud rate	Default fixed baud rate 115,200 N81 (no parity, 8 data bits, 1 stop bit).
Data bits	8
Parity	None
Stop bits	1
Flow control	Hardware or Software. Hardware flow control is recommended. The relay automatically sup- ports both on all its serial ports.
Function, arrow and control keys	Terminal keys
Emulation	VT100
Font	Use a font that supports line drawing (e.g. Terminal or MS Line Draw). If the menu appears outlined in odd characters, the font selected is not supporting line drawing characters.

To configure HyperTerminal follow these instructions:
In Windows 7 or Windows 10,open HyperTerminal PE;
If "Default Telnet Program?" windows pops up,
Check "Don't ask me this question again"
Hit No.
First time use of HyperTerminal will ask for "Location Information".
Fill with appropriate information, e.g.:
"What country/region are you in now"
Choose "Canada"
"What area code (or city code) are you are in now?"

Enter "306"
"If you need to specify a carrier code, what is it?"
Enter "", i.e. leave blank
"If you dial a number to access an outside line, what is it?"
Enter ""
"The phone system at this location uses:"
Choose "Tone dialing".
Hit $O K$.

First time use of HyperTerminal will show "Phone and Modem Options".
Hit Cancel.

HyperTerminal will show initially "Connection Description".
Enter a name for the relay, e.g: "FPRO298".
Hit $O K$.

In the window "Connect To"
"Connect using"
Choose "COM\#", where "\#" was obtained previously in Section 2.5 USB Link, after installing the USB driver.
Let's assume in this case it is COM3.

In the window "COM3 Properties" choose:
"115200"
" 8 "
"None"
"1"
"Hardware"
Hit Apply then hit $O K$
At this time the connection should already be established.
Hit Enter in the terminal window.

Login as maintenance in lower case.

Figure 3.4: Maintenance Menu
Maintenance
Menu Commands

The Maintenance menu is available via a Serial USB connection only, it is not supported via a network connection.

Table 3.2: Maintenance Menu Commands

Modify IP address	Modifies the LAN IP addresses, network mask, default gateway and IEC61850 network port assignment.
View system diagnostic	Displays the internal status log.
Retrieve system diagnos- tics	Automatically packages up the internal status log plus setting and setup information and downloads it in compressed form to the computer. This file can then be sent to our customer support to help diagnose a problem.
Restore settings (com- mands 4, 5 and 6)	Use these commands to force the system back to default values, if a problem is suspected due to the unit's settings, calibration and/or setup parameters.
	NOTE: If Command 4 is performed, the unit must be re- calibrated before being put back into service. See "Calibration" on page 8-2 for calibration instructions.
Force hardware reset	Manually initiates a hardware reset. Note that the communication link is immediately lost and cannot be reestablished until the unit completes its start-up.
Network utilities	Enters network utilities sub-menu.

Table 3.2: Maintenance Menu Commands

Monitor SCADA	Shows real time display of SCADA data.

Table 3.3: Network Utilities Menu Commands

View protocol statistics	View IP, TCP and UDP statistics
View active socket states	View current states of active sockets
View routing tables	View routing tables
Ping	Check network connection to given point
Exit network utilities	Exit network utilities menu and return to Maintenance Menu Commands

3.9 Firmware Update

Contact ERLPhase Power Technologies Ltd., for instructions on Firmware update.

3.10 Communication Port Details

Table 3.4: Communication Port Details

Location	Port	Function
Front Panel	USB	USB-B receptacle, high speed USB 2.0 interface Used for user interface access Default fixed baud rate 115200 8 N 1 (8 Data Bits, No Parity, 1 Stop Bit)
Rear Panel	31 A	RJ-45 receptacle or ST type optical receptacle (factory configured). 100Base-T or 100Base-FX (1300nm, multimode) Ethernet interface. Used for user interface access or IEC61850 or DNP3 SCADA access through Ethernet LAN. SNTP time sync is also available.
Rear Panel	31 B	Additional port for PRP communication as an ordering option (RJ45/ FO)
Rear Panel	32	RS-485. Used for SCADA communication (MODBUS or IEC103 or DNP3). Default setting: 9600 7 N 1 (7 Data Bits, No Parity, 1 Stop Bit)
Rear Panel	331	BNC receptacle, IRIG-B interface. Modulated or un-modulated, 65 ohm impedance

Table 3.5: RS485 Connections to Pins on the Relay Port

Signal Name	Direction PC \leftrightarrow Relay	Pin \# on the Relay Port
D+	\leftrightarrow	1
D-	\leftrightarrow	2
G		3

Note:

If multiple IEDs are connected in daisy chain method, the end unit should be connected with an external 120Ω load resistance.

4 Using the IED (Getting Started)

This section provides information on the start-up sequence and ways to interface with the relay. Descriptions of the Front Panel Display, Terminal Mode and Metering Data are provided.

4.1 Start-up Sequence

When the power supply is connected, the following initialization initializing sequence takes place:

- After 5 seconds "ERL logo with Booting..." displayed in the LCD
- At 70th second "ERL logo with Loading Firmware..." displayed in the LCD
- At 80th second all the LEDs blink once and from now onwards the DSP is actively protecting the system.
- At 100th second the Functional Green LED comes ON and it indicates that the relay is capable of recording and communicating with the user.
- Unit Restarted event displayed in the LCD.

4.2 Front Panel Display

The front panel display of the IED allows the user to interact with the unit to obtain immediate system information. User interface is provided through a graphical LCD screen, LEDs and a push button keypad. The level of interaction and system access is controlled through a series of access level; VIEW, CHANGE and SERVICE, with each requiring a unique password allowing differing levels of accessibility. Additionally, the IED front panel provides a USB Type B port, used in general unit communications and controlled service access.

Figure 4.1: Front Panel Display

LED Indicators

Table 4.6: Description of LED Indicators

Relay Functional (LED 1)	Indicates the relay is functional. When the Relay Functional green LED goes on, the rear Relay Inoperative contact opens and the pro- tective functions become functional.
LED 2-14	Programmable for any Functions, ProLogics, Virtual Inputs, External Inputs and Time Sync.

Target LED assignments are configurable by the user through the Offliner settings (output matrix configuration).

Push Buttons

Table 4.7: Identification of Push Buttons

Up, Down, Right, Left, Enter, Cancel,	Used to navigate the front panel screens.
Test/Reset	

Display
To login into the LCD menu structure, follow these steps:

First, press the Enter button (check mark) on the front panel. The following screen will appear.

Figure 4.2: View / Change / Service: Choice Menu
Choose View, Change or Service access level and press Enter.

Figure 4.3: Enter Password (only required for Change and Service)
Enter the password for the given access level (see defaults below). Use the Up and Down arrows to scroll through characters. Once the correct character is selected, press the Right arrow button to select the character and move to the next character. Once the password has been entered, repeatedly press the Right arrow button until the field is filled. If correct password is entered, user will be granted access to the front panel menus.

Change

Configuration
Meters
Records
Utilities
Unit Identifications

Figure 4.4: Main Menu
Note: The default passwords are (remove quotation marks)
View Access - no password required
Change Access "change"
Service Access "service"

Passwords may contain $=.+-0-9 \mathrm{a}-\mathrm{z}$ and A-Z

Table 4.8: Navigation of the LCD Screen

Table 4.8: Navigation of the LCD Screen

Menu Item		Access Level Required ${ }^{1}$
	Der. Neut. OV	
	Fn. 59NDT-1	(C,S)
	Fn. 59NDT-2	(C,S)
	Fn. 59NIT-1	(C,S)
	Phase UC	
	Fn. 37-1	(C,S)
	Fn. 37-2	(C,S)
	Direction	
	Fn. 67	(C,S)
	Fn. 67N	(C,S)
Phase OC		
	Fn. 50/67-1	(C,S)
	Fn. 50/67-2	(C,S)
	Fn. 51/67-1	(C,S)
	Fn. 51/67-2	(C,S)
Neutral OC		
	Fn. 50N/67N-1	(C,S)
	Fn. 50N/67N-2	(C,S)
	Fn. 51N/67N-1	(C,S)
	Fn. 51N/67N-2	(C,S)
	Neg. Seq. OC	
	Fn. 46/50-1	(C,S)
	Fn. 46/51	(C,S)
SEF		
	Fn. 67SEF	(C,S)
	Fn. 64/50SEF/67-1	(C,S)
	Fn. 64/50SEF/67-2	(C,S)
	Fn. 64/51SEF/67-1	(C,S)
	Fn. 64/50SEF/67-2	(C,S)
Thermal OL		
	Fn. 49	(C,S)
CB Failure		

Table 4.8: Navigation of the LCD Screen

Menu Item		Access Level Required ${ }^{1}$
	Fn. 50BF	(C,S)
	Fn. DI-CBF	(C,S)
	Broken Conductor	
	Fn. 46BC	(C,S)
Inrush Detection		
	Fn. 81HBL2	(C,S)
	Frequency	
	Fn. 810/U-1	(C,S)
	Fn. 810/U-2	(C,S)
	Fn. 810/U-3	(C,S)
	Fn. 810/U-4	(C,S)
	Fn. 810/U-5	(C,S)
	Fn. 810/U-6	(C,S)
	Fn. 810/U-7	(C,S)
	Fn. 810/U-8	(C,S)
	Fn. 81R-1	(C,S)
	Fn. 81R-2	(C, S)
	Fn. 81R-3	(C,S)
	Fn. 81R-4	(C,S)
	Directional Power	
	Fn. 32-1	(C,S)
	Fn. 32-2	(C,S)
	Fn. 32-3	(C,S)
	Fn. 32-4	(C,S)
	Supervision	
	Fn. 60VTS	(C,S)
	Fn. 60CTS	(C,S)
	Trip Circuit Supervision	
	Fn. 74TCS_1	(C,S)
	Fn. 74TCS_2	(C,S)
	CB Monitoring	
	$1 \wedge 2 t-C B$	(C,S)

Table 4.8: Navigation of the LCD Screen

Table 4.8: Navigation of the LCD Screen

Menu Item		Access Level Required ${ }^{1}$
	SNTP	(C,S)
	Incoming IRIG Prop.	(C,S)
Communication		
	USB(Serial)	(C,S)
	RS485(CON 2)	(C,S)
	Ethernet(CON 3)	(C,S)
Erase Records		(C,S)
Maintenanace		
	12 T	(C,S)
	79 Cumm. Counter	(C,S)
Calibration		
	Voltage \& Current Channels	(C,S)
Password Settings		
	Change PW	(S)
	PW Access Timer	(S)
	PW Enable/DIsable	(S)
Firmware Update		(S)
Test Mode		
	Test Mode Selection - Enable	(S)
	Digital Output Control	(S)
	LED Control	(S)
Contrast Control		(S)
Virtual Input Control		(S)
Control		
	Control Configuration	See for details see Configuration of Mode and Security on page 9-4
Unit Identifications		

1. All front panel menus may be viewed with View rights. Items marked as C or S require Change or Service rights in order to make and save changes.

4.3 Relay Control Panel

RCP is used for all user interface. A short description of the RCP configuration to connect to a relay is given here. Please refer to the Relay Control Panel User Manual for details.

Metering

The RCP displays the following metering parameters

- Voltage and current magnitudes and angles
- $\mathrm{I}^{\wedge} 2 \mathrm{t}$
- EI Status
- All protection function statuses
- All monitoring function statuses
- OC Statuses
- Virtual Input Statuses
- ProLogic Statuses
- Directional Element Statuses
- MMS Command Statuses

The metering display in RCP has a resolution of three decimals for both measured and calculated analog values.

Configure USB Link for Relay Control Panel

Follow this sequence to configure RCP for USB link to the relay.

1. Execute.

Relay Control Panel.exe
2. Execute.

F-PRO Offliner.exe
3. Install Null Modem Driver.

Please refer to the Relay Control Panel User Manual for details.
4. Run Relay Control Panel.

Go to:
Start $>$ All Programs $>$ ERLPhase $>$ Relay Control Panel $>$ Relay Control
Panel
First time RCP is run.
Hit Add New.
"Add New Relay"
Choose Communication > Direct Serial Link.
Hit Get Information From Relay.
Then RCP will communicate with the F-PRO and retrieve information to fill required fields.
When this is done, hit Save Relay.

If the window "Relay already exists..." pops up, you may need to rename the relay changing the "Relay Name" in the "Relay Definition" category, before saving.

After first time, in "Select Relay", choose relay and hit Connect.In "Relay Password Prompt"

Choose desired access level, enter appropriate password
Note: Default passwords are listed below (remove the quotation marks)

View Access "view"
Change Access "change"
Service Access "service"

Relay Control Panel Structure

The basic structure of the Relay Control Panel information, including basic actions available, is given below:

Table 4.9: Relay Control Panel Structure

Table 4.9: Relay Control Panel Structure

Utilities			
Unit Identification			
Settings Group		Save	Save
Time			
Analog Input Calibration	N/A	N/A	
Virtual Inputs	N/A	Latch/Pulse	Latch/Pulse
Outputs			
Maintenance	N/A	N/A	Close/Open
Passwords	N/A	N/A	
Control		Save	Save
Configuration			
Present Settings	(Get From Relay)		
Saved Settings		(Load to Relay)	(Load to Relay)

Notice that some options are not available (N/A) depending on the access level.

5 Protection, Recording and Logging Functions

This section describes the equations and algorithms that are define the F-PRO 298 relay protection functions.

The available functions are Fault Locator, 27/59DT (1 to 6), 27/59IT (1 to 2), 24DT (1 to 2), 24IT, 47DT (1 to 2), 47IT, 59NDT (1 to 2), $59 \mathrm{NIT}, 37$ (1 to 2), $67,50 / 67$ (1 to 2), $51 / 67$ (1 to 2), $67 \mathrm{~N}, 50 \mathrm{~N} / 67 \mathrm{~N}$ (1 to 2), $51 \mathrm{~N} / 67 \mathrm{~N}$ (1 to 2), $46 /$ 50, 46/51, 67SEF, 64/50SEF (1 to 2), 64/51SEF (1 to 2), 49, 50BF_Int, 50BF_Ext, 50BF_DICBF, 46BC, 81HBL2, 81U/O (1 to 8), 81R (1 to 4), 32(1 to 4), $60 \mathrm{VTS}, 60 \mathrm{CTS}, 74 \mathrm{TCS}$ (1 to 2), $\mathrm{I}^{\wedge} 2 \mathrm{t}-\mathrm{CB}, \operatorname{THD}(1$ to 2), $79,25 / 27 / 59$ and ProLogic. These functions are explained below with setting ranges and logic diagrams.

The protection functions have user-settable pick-up and drop-off delays. The Alarm and Trip outputs are initiated when the function's input value exceeds the set pick-up value. When Alarms or Trips occur, programmable front LEDs turn on and output contacts close. The mapping of protection functions to LEDs and output contacts is performed in the Output Matrix. The output contacts and LEDs are user configurable for Self Reset or Hand Reset.
A complete list of the settings and their range values can be found in "IED Settings and Ranges" in Appendix B.

5.1 Fault Locator

The relay uses the Takagi algorithm to provide fault location based on single end measurement. This method is an on-line method i.e. when any of the following protection operates then the relay starts calculating the fault location value from one cycle data of 3 phase voltages and currents from the protection tripping and provides the fault locator's information compared with the line impedance data provided in the settings. This information is available in relay event log, fault log data and also on Modbus, DNP, 61850 and 103 protocols through COMM ports.

The fault locator is initiated only by any of the following protection function.

- 50/67 Trip
- 51/67 Trip
- 50N/67N Trip
- $51 \mathrm{~N} / 67 \mathrm{~N}$ Trip
- 64/50SEF Trip
- 64/51SEF Trip

Fault locator can be enabled/disabled through setting, however there is no separate initiation setting for fault locator function.

At least 1 V of positive sequence voltage is needed to provide the fault location information. If there is no voltage in all the three phases during any of the above protection operations then the relay will display the fault location value as '++++++++km'.

Table 5.10: Fault Locator

Setting Description	Setting Range
Fault Locator	Enabled/Disabled
Line	
Line to Line Voltage	$\sqrt{ } 3^{*}$ Phase VT Sec Volt*Phase VT Ratio
Line Length	0.50 to 2000.00 Km (or) miles
Sequence Impedence	
Postive Sequence Impedence(Z1)	0.05 to 330.00 ohm for (1A) 0.01 to 66.00 ohm for (5A)
Positive Sequence Angle(Z1)	5.0 to 89.0 deg
Zero Sequencelmpedence(Z0)	0.05 to 1500.00 ohm for (1A) 0.01 to 300.00 ohm for (5A)
Zero Sequence Angle(Z0)	5.0 to 89.0 deg

5.2 Voltage Protection Functions

27/59DT - Phase Definite Time Under/ Overvoltage

The Phase Definite Time Under/Overvoltage function has six stages. Each individual stage consists of both time delayed and instantaneous protection.

- Undervoltage (UV) - Whenever the injected voltage is equal to or less than the precise pick-up value, this function operates after a set time delay. The drop-out value of this function mainly depends on the $\%$ hysteresis.
- Over Voltage (OV) - Whenever the injected voltage value is equal to or greater than the precise pick-up value, this function operates after a set time delay. The drop-out value of this function mainly depends on the $\%$ hysteresis.

Figure 5.5: 27/59DT Function Logic

Table 5.11: 27/59DT - Phase Definite Time Under/Overvoltage Settings

Setting Description	Setting Range
$27 / 59$ DT-n	Enable/Disable
Function Selection	UV or OV
Measurement Input	Fundamental (non-configurable)
Input Type	Ph-N or Ph-Ph
Output Gate	AND or OR
Pickup V	3.0 V to 250.0 V
Hysteresis	1% to 80%
Pickup DTL Delay	0.00 s to 999.99 s
Reset DTL Delay	0.00 s to 999.99 s
VTS Blocking	Enable/Disable

27/59IT - Phase Inverse Time Under/ Overvoltage

The Phase Inverse Time Under/Overvoltage function has two stages. Each individual stage consists of both time delayed and instantaneous protection.

The time delay options include DTL, IEC Standard, IEC Extreme, IEC Long Time inverse curve and user defined curve.

- Undervoltage (UV) - Whenever the injected voltage is equal to or less than the precise pick-up value, this function operates after a set time delay. The drop-out value of this function mainly depends on the $\%$ hysteresis.
- Over Voltage (OV) - Whenever the injected voltage value is equal to or greater than the precise pick-up value, this function operates after a set time delay. The drop-out value of this function mainly depends on the $\%$ hysteresis.

For 27IT(UV), the pickup time is determined by the following equation:

$$
T(V)=T M S\left[B+\frac{A}{1-\left(\frac{V}{V_{\text {Pickup }}}\right)^{p}}\right]
$$

For $59 \mathrm{IT}(\mathrm{OV})$, the pickup time is determined by the following equation:

$$
T(V)=T M S\left[B+\frac{A}{\left(\frac{V}{V_{\text {Pickup }}}\right)^{p}-1}\right]
$$

Where:

T-pickup time
V - Phase voltage
$\mathrm{V}_{\text {pickup }}$ - User-settable voltage pickup setting
TMS, B, A, ρ - curve parameters (predetermined by IEC curve type, or user-settable for user defined curves)

Figure 5.6: 27/59IT Function Logic

Table 5.12: 27/59IT - Phase Inverse Time Under/Overvoltage Settings

Setting Description	Setting Range
$27 / 591 T-n$	Enable or Disable
Function Selected	UV or OV
Measurement Input	Fundamental (non-configurable)
Input Type	Ph-N or Ph-Ph
Output Gate	AND or OR
Pickup V	3.0 to 250.0 V
Hysteresis	1% to 80%
Curve Type	DTL, IEC Standard Inverse, IEC Extreme Inverse, IEC Long Time Inverse, User Defined
TMS	0.01 to 10.00
Pickup DTL Delay	0.00 s to 999.99 s
Reset DTL Delay	0.00 s to 999.99 s
A	0.1 to 50.0
B	0.0 to 10.0
P	0.1 to 10.0
VTS Blocking	Enable/Disable

24DT - Definite Time Overflux

The over flux protection is used to detect the overflux condition in electrical equipment, which can damage equipment such as transformers and generators. These are caused due to the increase in voltage and decrease in frequency.

The magnetic flux density is directly proportional to voltage and inversely to its frequency, defined by the following equation:
$\Phi=\mathrm{V} / \mathrm{F}$
Whenever the injected (fundamental) value reaches the same or above the precise pick up (V/F) value, this function operates after a configurable pickup timer. The drop out value of this function varies with the $\%$ hysteresis. There are two stages provided, 24DT-1 and 24DT-2.

Figure 5.7: 24DT Function Logic

Table 5.13: 24DT - Definite Time Overflux

Setting Description	Setting Range
24DT-n	Enable/Disable
Measurement Input	Fundamental (fixed)
Input Type	Ph-N or Ph-Ph
Output Gate	AND or OR
Pickup V/F	1.00 to 2.00 pu
Hysteresis	1 to 80%
Pickup DTL Delay	0.05 to 999.99 s
Reset DTL Delay	0.00 to 999.99 s
VTS Blocking	Disable or Enable

24IT - Inverse Time Overflux

The over flux protection is used to detect the overflux condition in electrical equipment, which can damage equipment such as transformers and generators. These are caused due to the increase in voltage and decrease in frequency.
The magnetic flux density is directly proportional to voltage and inversely to its frequency, defined by the following equation:

$$
\Phi=\mathrm{V} / \mathrm{F}
$$

Whenever the injected (fundamental) value reaches the same or above the precise pick up (V/F) value, this function operates after a configurable inverse time pickup timer. The drop out value of this function varies with the $\%$ hysteresis. There is one stage of the 24IT provided (24IT-1).

The configurable inverse time characteristics are defined by the following equations.
For the IEC Extremely Inverse 1 Curve:

$$
T=\left(\frac{A}{\left(M^{2}-1\right)^{2}}\right) T M S
$$

For the IEEE Extremely Inverse 1-3 Curves:

$$
T=e^{-(M \times 100-K) / C}
$$

Where M and K are defined by:

$$
\begin{gathered}
M=\left[\frac{(V / F)}{\left(V_{n} /\left(F_{n}\right)\right) B}\right] \\
K=A+((T M S \times 10)-1) 2.5
\end{gathered}
$$

For the Inverse Curve:

$$
T=\frac{\text { InverseK }}{(N-\text { Pickup })^{2}}
$$

Where N is defined as:

$$
N=\left[\frac{(V / F)}{\left(V_{n} /\left(F_{n}\right)\right)}\right]
$$

Figure 5.8: 24IT - Inverse Time Overflux Logic

Table 5.14: 24IT - Inverse Time Overflux

Setting Description	Setting Range
24 IT-1	Enable/Disable
Measurement Input	Fundamental (fixed)
Input Type	Ph-N or Ph-Ph
Output Gate	AND or OR
Pickup V/F	1.00 to 1.50 pu
Hysteresis	1 to 80%
Curve Type	DTL, Inverse Curve, IEC Extremely Inverse 1, IEEE Extremely Inverse 1, IEEE Extremely Inverse 2, IEEE Extremely Inverse 3, User defined
TMS	0.01 to 10.00
Pickup DTL Delay	0.05 to 999.99 s
Reset Delay	DTL or ANSI Decay
Reset DTL Delay	0.0 to 99.9 s
A	Automatically configured based on curve
B	Automatically configured based on curve
C	Automatically configured based on curve
Inverse K	0.01 to 99.90
User defined set point - X1	1.00 to 3.00 pu 0.00 to $9999.99 ~ s ~$
User defined set point - Y1	1.00 to 3.00 pu 0.00 to $9999.99 ~ s ~$
User defined set point - X2	
User defined set point - Y2	

Table 5.14: 24IT - Inverse Time Overflux

User defined set point - X3	1.00 to 3.00 pu
User defined set point - Y3	0.00 to 9999.99 s
User defined set point - X4	1.00 to 3.00 pu
User defined set point - Y4	0.00 to 9999.99 s
User defined set point - X5	1.00 to 3.00 pu
User defined set point - Y5	0.00 to 9999.99 s
User defined set point - X6	1.00 to 3.00 pu
User defined set point - Y6	0.00 to 9999.99 s
User defined set point - X7	1.00 to 3.00 pu
User defined set point - Y7	0.00 to 9999.99 s
VTS Blocking	Disable or Enable

47DT - Negative Sequence Definite Time Overvoltage

The Negative Sequence Definite Time Overvoltage function provides protection for rotating equipment from the damaging effects of excessive negative sequence voltage resulting from phase failure, phase unbalance and reversed phase sequence.

When the relay detects negative phase sequence voltage greater than the set pickup value, the 47DT function operates. The drop-out value of this function varies with the $\%$ hysteresis.

Figure 5.9: 47DT Function Logic

Table 5.15: 47DT - Negative Sequence Definite Time Overvoltage Settings

Setting Description	Setting Range
47DT-n	Enable/Disable
Pickup V2	1.0 V to 150.0 V
Hysteresis	1% to 80%
Pickup DTL Delay	0.02 s to 999.99 s
Reset DTL Delay	0.00 s to 999.99 s
VTS Blocking	Enable/Disable

47IT - Negative

 Sequence Inverse Time OvervoltageThe Negative Sequence Inverse Time Overvoltage function provides protection for rotating equipment from the damaging effects of excessive negative sequence voltage resulting from phase failure, phase unbalance and reversed phase sequence.

When the relay detects negative phase sequence voltage greater than the set pickup value, the 47IT function operates after an inverse time delay determined by the time curve settings and the equation shown below. The drop-out value of this function varies with the $\%$ hysteresis. The pickup time curve options consist of DTL, IEC inverse curves and User defined curves.

$$
T\left(V_{2}\right)=T M S\left[B+\frac{A}{\left(\frac{V_{2}}{V_{2 \text { Pickup }}}\right)^{\rho}-1}\right]
$$

Where:
T-pickup time
V_{2} - Negative phase sequence voltage
V_{2} pickup - User-settable pickup setting

TMS, B, A, ρ - curve parameters (predetermined by IEC curve type, or user-settable for user defined curves)

Figure 5.10: 47IT Function Logic

Table 5.16: 47IT - Negative Sequence Inverse Time Overvoltage Settings

Setting Description	Setting Range
47 IT	Enabled/Disabled
Measurement Input	Fundamental (non-configurable)
Pickup V2	1.0 V to 150.0 V
Hysteresis	1% to 80%
Curve Type	DTL, IEC Standard Inverse, IEC Extreme Inverse, IEC Long Time Inverse, User Defined
TMS	0.01 to 10.00
Pickup DTL Delay	0.00 s to 999.99 s
Reset DTL Delay	0.02 s to 999.99 s
A	0.1 to 50.0
B	0.0 to 10.0
p	0.1 to 10.0
VTS Blocking	Enable/Disable

59NDT - Derived

 Residual Definite Time OvervoltageThis function provides protection against ground faults irrespective of the system grounding connection used. The protection will operate from an internally calculated value from the 3 phase to neutral voltage.

This 59NDT function works based on the injected voltage (unbalanced). This unbalanced voltage flows through the ground via neutral. Whenever the neutral voltage (Vn) is equal to or exceeds the pickup value then the function operates after a definite time delay. The dropout voltage mainly depends on the $\%$ hysteresis.

Figure 5.11: 59NDT Function Logic

Table 5.17: 59NDT - Derived Residual Definite Time Overvoltage Settings

Setting Description	Setting Range
59NDT-n	Enabled/Disabled
Measurement Input	Fundamental (non-configurable)
Pickup VN	1.0 V to 250.0 V
Hysteresis	1% to 80%
Pickup DTL Delay	0.00 s to 999.99 s
Reset DTL Delay	0.00 s to 999.99 s
VTS Blocking	Enable/Disable

59NIT - Derived Residual Inverse Time Overvoltage

This function provides protection against ground faults irrespective of the system grounding connection used. Depending on the VT configuration, the protection will operate from an internally calculated value from the 3 phase to neutral voltage.

This 59NDT function works based on the injected voltage (unbalanced). This unbalanced voltage flows through the ground via neutral. Whenever the neutral voltage (Vn) is equal to or exceeds the pickup value then the function operates after an inverse time delay determined by the time curve settings and the equation shown below. The pickup time curve options consist of DTL, IEC inverse curves and User defined curves.

The dropout voltage mainly depends on the $\%$ hysteresis.

$$
T\left(V_{N}\right)=T M S\left[B+\frac{A}{\left(\frac{V_{N}}{V_{N_{\text {Pickup }}}}\right)^{\rho}-1}\right]
$$

Where:

T-pickup time
V_{N} - Negative phase sequence voltage
$\mathrm{V}_{\mathrm{N} \text { pickup }}$ - User-settable pickup setting
TMS, B, A, ρ - curve parameters (predetermined by IEC curve type, or user-settable for user defined curves)

Figure 5.12: 59NIT Function Logic

Table 5.18: 59NIT - Derived Residual Inverse Time Overvoltage Settings

Setting Description	Setting Range
Pickup VN	1.0 V to 250.0 V
Hysteresis	1% to 80%
Curve Type	DTL, IEC Standard Inverse, IEC Extreme Inverse, IEC Long Time Inverse, User Defined
TMS	0.01 to 10.00
Pickup DTL Delay	0.00 s to 999.99 s
Reset DTL Delay	0.00 s to 999.99 s
A	0.1 to 50.0
B	0.0 to 10.0
p	0.1 to 10.0
VTS Blocking	Enable/Disable

5.3 Current Protection Functions

37 -
Instantaneous
Phase
Undercurrent

The 37 Instantaneous Phase Undercurrent protection function is an undercurrent element that is used to protect against the no-load condition.

If this function is enabled, when individual phase current or three phase currents ($\mathrm{Ia}, \mathrm{Ib}, \mathrm{Ic}$) exceeds the minimum current threshold value and are less than the 37 pickup setting, this function will operate after the specified pickup time delay.

To prevent spurious tripping, the function requires current greater than the minimum current threshold (configured on the System Parameters screen in Offliner). If the current is less than the pickup value, and greater than the minimum current threshold, the function will operate after the configured pickup delay.

Two 37 function elements, 37-1 and 37-2 are provided with independent pickup and delay settings.

Figure 5.13: 37 - Loss of Load Protection Logic

Table 5.19: 37 - Instantaneous Phase Undercurrent Protection Settings

Setting Description	Setting Range
$37-n$	Enable/Disable
Pickup	0.05 A to $3.20 \mathrm{~A}(1 \mathrm{~A})$
	0.25 A to $16.00 \mathrm{~A}(5 \mathrm{~A})$
Pickup Delay	0.00 s to 999.99 s

67 Directional Function for Phase Overcurrent

Power systems may have various circuit combinations such as parallel feeders, transformers, ring main circuits and circuits with sources on either end. In these cases faults can occur in any circuit and fault current can flow in either direction. It is necessary to restrict breaker tripping to a particular direction to avoid mis-operation of a healthy system.

The directional overcurrent has four stages (two 50/67, two 51/67). See "50/67 Phase Overcurrent" on page 5-21 and "51/67 IDMTL Phase Overcurrent" on page 5-23 for more details.

In the event of a VT fuse fail, the relay does not have a polarizing quantity to determine direction. In this case, the element may be set to operate as non-directional or it may set to block. VTS Blocking is applicable for Quadrature Method (Cross polarization technique for directional analysis) and Sequence Method (Symmetrical Components for directional analysis).
For the relay to determine direction (forward or reverse), the reference polarization signal and the direction boundary must be defined. The relays uses two types of polarization methods based on the user selection

1. Quadrature Method (Cross polarization technique)
2. Sequence Method (Symmetrical Components)

Quadrature Method

Generally, voltages are used as the reference since the angles remain constant in all cases in the Quadrature method. Voltage polarization for the phase-fault elements is achieved by using the quadrature voltage.

Each phase current is compared to the voltage between the other two phases (IA compared to VBC, IB compared to VCA, IC compared to VAB).

There are following settings used to govern the directional element based on Quadrature method:

- Characteristic angle
- Minimum Voltage
- Two Out-Of- Three Logic

When a fault occurs in the system, in general, current lags the voltage by an angle corresponding to the system X / R ratio. Therefore it is required to set the characteristic angle according to the equipment which the overcurrent relay is protecting. The forward and reverse regions are determined based on the characteristic angle. The total 360° region is divided into two exact halves, one half is forward and another half is reverse. A Blind Zone is introduced as the 5° region on either side.

Figure 5.14: Characteristic Angle
In the F-PRO, the directional overcurrent element has a settable minimum voltage pick-up level. This is the minimum polarization voltage to enable directional element operation.
The Two-Out-Of-Three Logic provides additional security to the directional function. In some power system applications fault current may flow in different directions in the different phases. When the Two-Out-Of-Three Logic setting is enabled, the directional element will operate only for the majority direction. For example, if phase A and C detect forward current flow and phase B detects reverse current flow, phase A and C will operate forward, while phase B will be blocked.

Sequence Method

Sequence method directional element considers negative-sequence impedance, zero-sequence impedance, or positive sequence impedance, depending on relay settings and system conditions at the time of the fault. The element declares a forward fault when the impedance determined by the directional element is within 90 deg of the line impedance.
This directional element actually consists of 3 separate internal elements: a negative-sequence element, a zero-sequence element, and a positive-sequence element. All the three elements use directly measured currents and voltages. The sensitivity for the negative- and zero sequence elements may be set by the user, to correctly account for load conditions and system configuration. Both of these elements may be disabled as well. The positive-sequence element is always active.

For 3-phase faults, the directional element will only use the positive-sequence element. For all other faults, the directional element will consider, in order, the negative-sequence calculation, the zero-sequence calculation, and the positive sequence calculation. The directional element will only move from one calculation to the next calculation if insufficient sequence voltages and currents exist to make a valid calculation.

Figure 5.15: Sequence Logic
The negative-sequence calculation determines the angle between the measured negative-sequence impedance, and the positive-sequence line impedance angle (Z1) entered in settings. To perform this calculation, the default minimum amount of negative-sequence voltage required is 0.5 V secondary, and the default minimum amount of negative-sequence current required is 0.04 x In secondary.
The zero-sequence calculation determines the angle between the measured zero-sequence impedance and the zero-sequence line impedance angle (Z0) entered in settings. To perform this calculation, the default minimum amount of zero-sequence voltage (3 V 0) required is 1.0 V secondary, and the default minimum amount of zero-sequence current (3I0) required is 0.04 x In secondary.

The positive-sequence calculation determines the angle between the measured positive-sequence impedance and the positive-sequence line impedance angle (Z1) entered in settings. To perform the positive-sequence impedance calculation, the directly measured positive-sequence current must exceed 0.04 x In secondary and the positive-sequence voltage must exceed 1 V secondary.
The default setting of the directional element in the relay should be correct for most applications. There are some applications where it may be advisable to change the sensitivity thresholds for the negative-sequence or zero-sequence calculations or Positive-sequence calculations as per system conditions (V2 Sensitivity level, I2 Sensitivity level, V0 Sensitivity level, I0 Sensitivity level, V1 Sensitivity level, I1 Sensitivity level) or it may be desirable to disable Neg-ative-sequence directional element or Zero-sequence directional element or both of these elements.

The settings for the negative-sequence voltage sensitivity level (V2) and neg-ative-sequence current sensitivity level (I2) should be normally higher than the maximum negative sequence quantities generated by unbalanced load. These
settings should also be low enough to maintain sensitivity for the minimum unbalanced fault, in terms of negative sequence quantities.
The zero-sequence directional element can be used in many applications. However, where strong mutual coupling between parallel lines exist, the zero-sequence calculation must be disabled to prevent an incorrect directional determination. The sensitivity settings should be low enough to permit operation during the lowest expected ground fault in terms of zero-sequence quantities expected during a fault and high enough to allow for normal load imbalance.

Table 5.20: 67 Direction Function for Phase Overcurrent Settings

Setting Description	Setting Range		
2 out of 3 Logic	Enable/Disable		
VTS Blocking	Disable, Enable, Non-Dir		
Polarization Method	Sequence or Quadrature		
Sequence Method	Enabled/Disabled		
Negative Sequence Direction Element	0.5 to 5.0 V		
V2 Sensitivity Level	0.02 to $0.20 \mathrm{~A} \mathrm{(1A)}$ 0.10 to $1.00 \mathrm{~A} \mathrm{(5A)}$		
I2 Sensitivity Level	Enabled/Disabled		
Zero Sequence Direction Element	1.0 to 10.0 V		
3V0 Sensitivity Level	0.04 to $0.40 \mathrm{~A} \mathrm{(1A)}$ 0.2 to $2.0 \mathrm{~A} \mathrm{(5A)}$		
3I0 Sensitivity Level	1.0 to 10.0 V		
V1 Sensitivity Level	0.04 to $0.40 \mathrm{~A} \mathrm{(1A)}$ 0.2 to $2.0 \mathrm{~A}(5 \mathrm{~A})$		
I1 Sensitivity Level	5.0 to 89.0 deg		
Characteristic/Positive Sequence Angle (Z1)	5.0 to 89.0 deg		
Zero Sequence Angle (Z0)			
Quadrature Method	-95 to 95 deg		
Characteristic Angle	1.0 to 40.0 V		
Minimum Voltage			

50/67 Phase

 OvercurrentThe Phase Overcurrent function (50/67) provides instantaneous or definite time lag protection to the protected equipment. The current and time settings for the operation of the function are user defined. This function has two elements, 50/67-1 and 50/67-2, both of which can be configured independently as required. Each function has independent directional settings (Non-directional, forward or reverse). Each phase is compared with the set value after current filtering. If the measured current is greater than the set pick-up value, the relay will operate after the set time delay.

The function has an additional "Inrush Blocking" feature. This blocks the operation of the function when the second harmonic current is present over the fundamental. This allows the relay to be used in transformer applications.
Each element (50/67-1, 50/67-2) can be independently inhibited via an external input status which can be configured from the input matrix. This is useful in comprehensive blocking schemes.
The Metering menu provides the current and voltage values and their phase angles. The correctness of the polarity of the directional overcurrent element should be verified on the metering screens.

Figure 5.16: 50/67 Function Logic

Table 5.21: 50/67 Instantaneous Phase Overcurrent Settings

Setting Description	Setting Range
$50-67-n$	Enabled/Disabled
Direction Selection	Non-Dir, FWD, REV
Pickup I	0.05 to $25.00 \mathrm{~A} \mathrm{(1A)}$ 0.25 to $125.00 \mathrm{~A}(5 \mathrm{~A})$
Pickup Delay	0.00 to 999.99 s (Non-Dir) 0.01 to 999.99 s (FWD or REV)
Inrush Blocking	Enabled/Disabled

51/67 IDMTL

 Phase OvercurrentRelay co-ordination can be achieved by means of adjusting Time Multiplier Settings (TMS), current setting or a combination of both time and current. Based on the fault, the relay can be used with current grading. If fault current is approximately constant then time grading can be used. For grid connected stations combination of both is used. When Zsource (the impedance between the relay and the power source) is small compared to that of the protected section ZL, there is an appreciable difference between the current for a fault at the far end of the section (Esource / (Zsource+Zline), and the current for a fault at the near end (Esource/Zsource). When operating time is inversely proportional to the current, the relay operates faster for a fault nearer the power source, and the operating time is more for a fault at far end. Grading by time is used in rare cases since it can often lead to excessive fault clearance time at substations where the fault level is high. For these reasons the most commonly applied characteristic in coordinating Overcurrent relays is the IDMTL type.
Each function has independent setting for direction selection - Non Direction / Forward / Reverse. Function 51/67 provides five IEC inverse time curve types, three IEEE inverse time curve types of Overcurrent protection and one user- defined curve as well as definite time delayed protection also i.e. DTL. The equation and the parameters of Function 51/67-1 and 51/67-2 are listed in below.

Pickup:

$$
T(I)=\left(B+\frac{A}{\left(\left(\frac{I}{I_{\text {Pickup }}}\right)^{p}-1\right)}\right) T M S
$$

Reset:

$$
T(I)=\left(\frac{T R}{1-\left(\frac{I}{I_{\text {Pickup }}}\right)^{2}}\right) T M S
$$

Each element (51/67-1, 51/67-2) can be independently inhibited via external input status which can be configured from input matrix. This will help in achieving comprehensive blocking schemes.
User can define the reset delay for the relay; It can be set as DTL or by ANSI delay. Setting of the timer to a value other than zero, delays the resetting of the protection element timers for this period. This may be useful in special applications especially in cable feeders. By providing the setting, fault clearance gets reduced for intermittent faults.

Figure 5.17: 51/67 Function Logic

Table 5.22: 51/67 IDMTL Phase Overcurrent Settings

Setting Description	Setting Range
$51 / 67-n$	Enabled/Disabled
Direction Selection	Non-Dir, FWD, REV
Pickup I	For IDMTL curve type selection:
	0.05 to $10.00 \mathrm{~A}(1 \mathrm{~A})$
	0.25 to $50.00 \mathrm{~A}(5 \mathrm{~A})$
	For DTL curve type selection:
	0.05 to $25.00 \mathrm{~A}(1 \mathrm{~A})$
	0.25 to $125.00 \mathrm{~A}(5 \mathrm{~A})$

Table 5.22: 51/67 IDMTL Phase Overcurrent Settings

Curve Type	DTL, IEC Standard Inverse-1, IEC Standard Inverse-3, IEC Very Inverse, IEC Extremely Inverse, IEC Long Time Inverse, IEEE Mod- erately Inverse, IEEE Very Inverse, IEEE Extremely Inverse, User Defined
TMS	0.01 to 10.00
Pickup DTL Delay	0.00 to 999.99 s (Non-Dir) 0.01 to 999.99 s (FWD or REV)
Reset Delay	DTL or ANSI Decay
Reset DTL Delay	0.0 to 99.9 s
A	0.0010 to 1000.0000 settable if chosen for user defined characteristics
B	0.0000 to 10.0000 settable if chosen for user defined characteristics
p	0.01 to 100.00 settable if chosen for user defined characteristics
TR	0.10 to 150.00 settable if chosen for user defined characteristics
Inrush Blocking	Enable/Disable

67N Directional Function for Neutral Overcurrent

In a solidly earthed system the neutral points of the power transformers are connected directly to earth to reduce overvoltage and facilitate fault detection. The disadvantage of solid earthing is that fault currents can be very high and must be disconnected quickly. Since the impedance of the source is normally very low, fault current varies greatly in magnitude depending on the location of the fault. Selective isolation of a faulty section is therefore possible via time/ current graded earth fault over current protection. Fault current is detected by measuring the system residual current.

In an interconnected system, where fault current can flow in either direction, directional earth fault relays are applied. The earth fault causes a residual voltage/ negative sequence voltage to be generated, and this can be used for directional polarization.

The F-PRO 67N Directional Function provides two user selectable polarization methods:

1. Zero sequence voltage polarization / residual voltage polarization (ZPS)
2. Negative sequence voltage polarization (NPS)

For the Zero Sequence polarization method, the residual voltage and current generated during earth fault conditions is used for polarization. The relay internally derives 3 V 0 voltage \& 3 I_{0} Current for directionality.

For the Negative Sequence polarization method, the negative sequence voltage and current is used for polarization. In some applications zero sequence polar-
ization cannot be adaptive. In such cases negative sequence polarization can be used. This will help in using the relay in parallel lines with mutual impedance. The relay derives negative sequence voltage and negative sequence current for directionality.

The Minimum sensitivity level for negative sequence Voltage (V2), Negative Sequence Current (I2), Residual Voltage 3V0, Neutral Current (3I0) are user settable level used to determine the pick-up level for the directional earth fault elements. The sensitivity settings should be low enough to permit operation during the lowest expected ground fault in terms of zero-sequence and Negative Sequence quantities expected during a fault and high enough to allow for normal load imbalance.

When a fault occurs in the system, in general, current lags the voltage by an angle corresponding to the system X / R ratio. Therefore it is required to set the characteristic angle according to the equipment which the overcurrent relay is protecting. The forward and reverse regions are determined based on the characteristic angle. The total 360° region is divided into two exact halves, one half is forward and one half is reverse. As the relay directional element operation is based on the impedance plane, the relay will operate for Forward directional faults when the characteristic angle is set in positive value similar like impedance/distance relay. Similarly for negative characteristic angle setting, the relay will operate for reverse directional faults.

In the event of a VT fuse fail, the relay does not have a polarizing quantity to determine direction. In this case, the element may be set to operate as non-directional or it may set to block.
The F-PRO directional overcurrent has four stages (two 50N/67 and two 51N/ 67). See "50N/67N Derived Neutral Overcurrent" on page $5-28$ and " $51 \mathrm{~N} / 67 \mathrm{~N}$ IDMTL Derived Neutral Overcurrent" on page 5-30 for more details.

Figure 5.18: 67N Directional Function Logic

Table 5.23: 67N Directional Function for Derived Neutral Overcurrent Settings

Setting Description	Setting Range

Table 5.23: 67N Directional Function for Derived Neutral Overcurrent Settings

Characteristic Angle	-95 to 95 deg
Polarization Method	Negative or Zero Sequence
V2 or 3V0 Sensitivity Level	0.5 to 5.0 V
I2 or 310 Sensitivity Level	0.02 to $0.20 \mathrm{~A}(1 \mathrm{~A})$
	0.1 to $1.0 \mathrm{~A}(5 \mathrm{~A})$
VTS Blocking	Disable, Enable, Non-Dir

50N/67N Derived Neutral Overcurrent

Neutral Overcurrent provides protection for line-to-ground faults. Derived neutral Overcurrent ($50 \mathrm{~N} / 67 \mathrm{~N}$) provides instantaneous and definite time lag protection to the equipment. Relay internally sums all three phase currents and calculates 3 I 0 current flowing in the neutral. The function operates on the derived neutral current. User can define the current and time setting for the function operation. This function has two stages $50 \mathrm{~N} / 67 \mathrm{~N}-1$ and $50 \mathrm{~N} / 67 \mathrm{~N}-2$ both can be set independently based on the requirement of the user.

Derived neutral current is compared with the set value of current after filtering. If calculated current is greater than the pickup current, the function will operate after the set time delay. The function has an additional feature of "Inrush Blocking". This is provided to block the function from operation when second harmonic current is present over the fundamental.

Each element ($50 \mathrm{~N} / 67 \mathrm{~N}-1,50 \mathrm{~N} / 67 \mathrm{~N}-2$) can be independently inhibited via external input status which can be configured from input matrix. This will help in achieving comprehensive blocking schemes.

Metering menu provides the current and voltage values and their phase angles. The correctness of the polarity of the directional overcurrent elements can be verified in metering.

Figure 5.19: 50N/67 Function Logic

Table 5.24: 50N/67 Directional Instantaneous Neutral Overcurrent Settings

Setting Description	Setting Range
$50 \mathrm{~N} / 67 \mathrm{~N}-$ -	Enabled/Disabled
Direction Selection	Non-Dir, FWD, REV
Pickup IN	0.05 to $25.00 \mathrm{~A}(1 \mathrm{~A})$
	0.25 to $125.00 \mathrm{~A}(5 \mathrm{~A})$
Pickup Delay	0.00 to 999.99 s (Non-Dir)
	0.01 to 999.99 s (FWD or REV)
Inrush Blocking	Enabled/Disabled

51N/67N IDMTL Derived Neutral Overcurrent

Neutral overcurrent provides protection for line-to-ground faults. All the curve definitions are the same as the phase overcurrent except that this function uses 3 IO rather than phase current. The equation is:

Pickup:

$$
T(I)=\left(B+\frac{A}{\left(\left(\frac{I_{N}}{I_{\text {NPickup }}}\right)^{p}-1\right)}\right) T M S
$$

Reset:

$$
T(I)=\left(\frac{T R}{1-\left(\frac{I_{N}}{I_{\text {NPickup }}}\right)^{2}}\right) T M S
$$

Figure 5.20: 51N/67N Function Logic

Table 5.25: 51N/67N Derived IDMTL Neutral Overcurrent Settings

Setting Description	Setting Range
$51 / 67-n$	Enabled/Disabled
Direction Selection	Non-Dir, FWD, REV
Pickup I	For IDMTL curve type selection: 0.05 to 10.00A (1A) 0.25 to 50.00A (5A)
	For DTL curve type selection: 0.05 to 25.00A (1A) 0.25 to 125.00A (5A)
Curve Type	DTL, IEC Standard Inverse-1, IEC Standard Inverse-3, IEC Very Inverse, IEC Extremely Inverse, IEC Long Time Inverse, IEEE Mod- erately Inverse, IEEE Very Inverse, IEEE Extremely Inverse, User Defined
TMS	0.01 to 10.00
Pickup DTL Delay	0.00 to 999.99 s (Non-Dir) 0.01 to 999.99 s (FWD or REV)
Reset Delay	DTL or ANSI Decay
Reset DTL Delay	0.0 to 99.9s
A	0.0010 to 1000.0000 settable if chosen for user defined characteristics
B	0.0000 to 10.0000 settable if chosen for user defined characteristics
P	0.01 to 100.00 settable if chosen for user defined characteristics
Inrush Blocking	0.10 to 150.00 settable if chosen for user
defined characteristics	

46/50

Instantaneous
Negative
Sequence Overcurrent

Negative Sequence Overcurrent provides protection for any unbalanced faults. The 46-50 function is similar to that of 50 N except that it uses the calculated negative sequence current as the input to the function.

Figure 5.21: 46/50 Instantaneous Negative Sequence Overcurrent

Table 5.26: 46/50 Instantaneous Negative Sequence Overcurrent Settings

Setting Description	Setting Range
$46 / 50$ Function	Enabled/Disabled
Pickup I2	0.05 to $25.00 \mathrm{~A}(1 \mathrm{~A})$
	0.25 to $125.00 \mathrm{~A}(5 \mathrm{~A})$
Pickup Delay	0.00 to 999.99 s

All the curve definitions are the same as the Phase Overcurrent except standard inverse is merged to one curve. The only difference is that this function uses the negative sequence current (I_{2}) rather than phase current. The equations are as given below:

Pickup:

$$
T(I)=\left(B+\frac{A}{\left(\left(\frac{I_{2}}{I_{2 \text { Pickup }}}\right)^{p}-1\right)}\right) T M S
$$

Reset:

$$
T(I)=\left(\frac{T R}{1-\left(\frac{I_{2}}{I_{2 \text { Pickup }}}\right)^{2}}\right) T M S
$$

Figure 5.22: 46/51 Instantaneous Negative Sequence Overcurrent

Table 5.27: 46/51 IDMTL Negative Sequence Overcurrent Settings

Setting Description	Setting Range
$46-51$ Function	Enabled/Disabled
Pickup I2	0.05 to 0.95 A (1A) 0.25 to 4.75 A (5A)
Curve Type	DTL, IEC Standard Inverse-1, IEC Standard Inverse-3, IEC Very Inverse, IEC Extremely Inverse, IEC Long Time Inverse, IEEE Mod- erately Inverse, IEEE Very Inverse, IEEE Extremely Inverse, User Defined
TMS	0.01 to 10.00
Pickup DTL Delay	0.00 to 999.99 s
Reset Delay	DTL or ANSI Decay
Reset DTL Delay	0.0 to 99.9 s
A	0.0010 to 1000.0000 settable if chosen for user defined characteristics
B	0.0000 to 10.0000 settable if chosen for user defined characteristics
p	0.01 to 100.00 settable if chosen for user defined characteristics
TR	0.10 to 150.00 settable if chosen for user defined characteristics

67SEF Directional Function for Sensitive Earth Fault

The sensitive earth fault protection works by measuring the residual current across the three phases in a system. This is done using a Core balanced current transformer (CBCT). In the event of a fault, the residual current over the three phases will not be equal to zero as the current from the faulted phase flows through the earth. The sensitive earth fault protection is usually used in alternators and transformers with high resistance grounding. High resistance grounding restricts the earth fault current to lower than load current. High resistance grounding enables electrical systems to continue running when one of the phases is faulted. This prevents interruptions to the power supply. This kind of earthing system provides time to identify and isolate the fault.

Once an earth fault occurs in the high resistance grounding system, an alarm needs to be generated and the fault needs to be traced. For this a reliable protection which detects earth faults even when the fault current is very low is necessary. Undetected earth faults in this system are dangerous as a second earth fault in another phase may result in a short- circuit. Conventional earth fault relays may not be accurate in detecting an earth fault at such low current values.

The sensitive earth fault protection, as the name suggests, is a highly sensitive relay. It can sense currents as low as 0.2% of the CT secondary current.

The sensitive earth fault relay may be configured to either generate an alarm or a trip signal.

The F-PRO 67SEF Directional Function provides two user selectable polarization methods:

1. Zero sequence voltage polarization / residual voltage polarization (ZPS)
2. Negative sequence voltage polarization (NPS)

For the Zero Sequence polarization method, the residual voltage and current generated during earth fault conditions in power system are used for polarization. The relay internally derives 3 V 0 voltage \& ISEF Current for directionality.

In some applications zero sequence polarization cannot be adaptive. In such cases negative sequence polarization can be used. This will help in using the relay in parallel lines with mutual impedance.Relay derives $\left(\mathrm{V}_{2}\right)$ negative sequence voltage \& I2 negative sequence current for directionality.

The Minimum sensitivity level for negative sequence Voltage (V2), I2, ISEF Current, Residual Voltage 3V0 are user settable level used to determine the pick-up level for the directional earth fault elements. The sensitivity settings should be low enough to permit operation during the lowest expected ground fault in terms of zero-sequence and Negative Sequence quantities expected during a fault and high enough to allow for normal load imbalance.

When a fault occurs in the system, in general, current lags the voltage by an angle corresponding to the system X / R ratio. Therefore it is required to set the characteristic angle according to the equipment which the overcurrent relay is protecting. The forward and reverse regions are determined based on the characteristic angle. The total 360° region is divided into two exact halves, one half
is forward and one half is reverse. As the relay directional element operation is based on the impedance plane, the relay will operate for Forward directional faults when the characteristic angle is set in positive value similar like impedance/distance relay. Similarly for negative characteristic angle setting, the relay will operate for reverse directional faults.

In the event of a VT fuse fail, the relay does not have a polarizing quantity to determine direction. In this case, the element may be set to operate as non-directional or it may set to block.

The 67SEF directional overcurrent has four stages (two 64/50 and two 64/51). See "64/50 Instantaneous Sensitive Earth Fault" on page 5-36 and "64/51 Inverse Time Sensitive Earth Fault" on page 5-38 for more details

Figure 5.23: 67SEF Function Logic

Table 5.28: 67SEF Direction Function for SEF Settings

Setting Description	Setting Range
Characteristic Angle	-95 to 95 degrees
Polarization Method	Negative or Zero Sequence
V2 or 3V0 Sensitivity	0.5 to 5.0 V
I2 or ISEF Sensitivity Level	0.02 to $0.2 \mathrm{~A} \mathrm{(1A)}$ 0.1 to $1.0 \mathrm{~A}(5 \mathrm{~A})$ VTS Blocking Enable, Disable, Non-Dir

64/50

 Instantaneous Sensitive Earth FaultThe 64/50 function provides instantaneous overcurrent protection for sensitive earth fault conditions. It has two modes of operation, non-direction and directional (FWD and REV).

For the Non directional mode of operation, the relay will operate irrespective of the current angle. When the injected current one the SEF CT input is equal to or greater than the pickup value, the function will operate after the time delay. The voltage level is not considered in this mode of operation.

For the forward or reverse modes of operation (directional) the function gets considers the polarization characteristic angle and the injected voltage and current is same or above the pickup value configured

Figure 5.24: 64/50 Instantaneous SEF Function Logic

Table 5.29: 64/50 Instantaneous SEF Settings

Setting Description	Setting Range
64/50SEF-n	Enabled/Disabled
Direction Selection	Non-Dir, FWD, REV
Measurement Input	Fundamental (non-configurable)
Pickup Isef	0.005 to $3.000 \mathrm{~A}(1 \mathrm{~A})$
	0.025 to $15.000 \mathrm{~A}(5 \mathrm{~A})$
Pickup Delay	0.00 to 999.99 s (Non-Dir)
	0.01 to 999.99 s (FWD or REV)

Table 5.29: 64/50 Instantaneous SEF Settings

Current Compensation	0.000 to $0.500 \mathrm{~A}(1 \mathrm{~A})$
	0.000 to $2.500 \mathrm{~A}(5 \mathrm{~A})$

64/51 Inverse Time Sensitive Earth Fault

The 64/51 function provides time delayed overcurrent protection for sensitive earth fault conditions. It has two modes of operation, non-direction and directional (FWD and REV).
For the Non directional mode of operation, the relay will operate irrespective of the current angle. When the injected current one the SEF CT input is equal to or greater than the pickup value, the function will operate after the inverse time delay. The voltage level is not considered in this mode of operation.
For the forward or reverse modes of operation (directional) the function gets considers the polarization characteristic angle and the injected voltage and current is same or above the pickup value configured
The inverse time delay is determined by the following equations:
Pickup:

$$
T(I)=\left(B+\frac{A}{\left(\left(\frac{I_{\text {SEF }}}{I_{\text {SEFPickup }}}\right)^{p}-1\right)}\right) T M S
$$

Reset:

$$
T(I)=\left(\frac{T R}{1-\left(\frac{I_{\text {SEF }}}{I_{\text {SEFPickup }}}\right)^{2}}\right) T M S
$$

Figure 5.25: 64/51 Inverse Time SEF Function Logic

Table 5.30: 64/51 Inverse Time SEF Settings

Setting Description	Setting Range
64/51SEF-n	Enabled/Disabled
Direction Selection	Non-Dir, FWD or REV
Measurement Input	Fundamental (fixed)
Pickup Isef	$\begin{aligned} & 0.005 \text { to } 3.000(1 \mathrm{~A}) \\ & 0.025 \text { to } 15.000 \mathrm{~A}(5 \mathrm{~A}) \end{aligned}$
Curve Type	DTL, IEC Standard Inverse-1, IEC Standard Inverse-3, IEC Very Inverse, IEC Extremely Inverse, IEC Long Time Inverse, IEEE Moderately Inverse, IEEE Very Inverse, IEEE Extremely Inverse, User Defined
TMS	0.01 to 10.00
Pickup DTL Delay	0.00 to 999.99s
Reset Delay	DTL or ANSI Decay
Reset DTL Delay	0.0 to 99.9s
A	0.0010 to 1000.0000
B	0.0000 to 10.0000
p	0.01 to 100.00
TR	0.10 to 150.00
Current Compensation	$\begin{aligned} & 0.000 \text { to } 0.500 \mathrm{~A}(1 \mathrm{~A}) \\ & 0.000 \text { to } 2.500 \mathrm{~A}(5 \mathrm{~A}) \end{aligned}$

49 Thermal

 OverloadThe insulating material surrounding the windings ages rapidly if the temperature exceeds the design limit value. Thus, a thermal protection function is required to supplement the existing winding temperature device. The thermal overload protection estimates winding temperature and thus prevents it from thermal damaging. The thermal overload protection operates based on an approximate replica of the temperature rise in the protected object caused by overload. The thermal overload in the IED is provided with one trip stage as well as one alarm stage. It is possible to set the alarm stage at a certain percentage of the setting value applied at the trip stage. The calculation is performed separately for three phase, based on fundamental component and negative sequence components.
The function takes single input energizing quantity for measurement. The input used for the measurement is phase current. Thermal overload is measured based on the input current applied to it. There are dedicated functions for each phase. Operate time of the thermal overload characteristics can be calculated from the following formula given below:

$$
t=\tau \cdot \ln \frac{I^{2}-I_{p}^{2}}{I^{2}-I_{\theta}^{2}}
$$

Where,
$\mathrm{t}=$ Operating time in minutes
$\tau=$ Thermal time constant in minutes
$\ln =$ Natural \log
$\mathrm{Ip}=$ Steady state relay current prior to overload
$\mathrm{IB}=$ Basic current
$\mathrm{I}=$ Effective relay current
Basic current IB is full load current of the protected feeder. Constant k is a multiplying factor resulting in the 49 Thermal OL setting of the relay I θ which is equal to k.IB. Thermal time constant $-\tau$ for the relay can be set using 49 Time constant setting. The effective relay current I is calculated as below:

$$
I=\sqrt{I_{R M S}^{2}+k I_{2}^{2}}
$$

Where:
I = Effective relay current
IRMS $=3$ phase RMS current
I2 $=$ Negative sequence current
$\mathrm{K}=$ Negative sequence weighing factor

Negative sequence weighing factor-K for the relay can be set using 49 Neg. Seq. weighing factor setting.
Thermal operating time of thermal OL function is based on prior load current to the relay. If Ip <0.02 IB prior to thermal OL condition, then it is treated as cold condition, hence it adopts cold curve. If Ip is greater than zero prior to thermal OL condition, then it is treated as hot condition, hence it adopts hot curve.

Thermal state (θ) for the heating curve is calculated as below:

$$
\theta=\frac{I^{2}}{I_{\theta}^{2}} \cdot\left(1-e^{-t / \tau}\right) \cdot 100 \%
$$

Thermal state (θ) for the cooling [or] reset curve is calculated as below:

$$
\theta=\theta_{F} \cdot e^{-t / \tau}[\mathrm{or}] \quad t=\tau \cdot \operatorname{Ln} \frac{\theta}{\theta_{F}}
$$

Where
$\theta=$ Thermal state in percentage at time t
$\theta_{\mathrm{F}}=$ Final thermal state before disconnection of feeder
$\mathrm{I}=$ Effective relay current.
$\mathrm{I}_{\theta}=$ Thermal overload setting
$t=$ Thermal time constant in minutes.
The final thermal state θ_{F} for any steady state value of input current can be predicted using the following formula.
$\Theta=\mathrm{I}_{2} / \mathrm{I}_{\mathrm{e} 2} * 100 \%$

Figure 5.26: 49 Thermal Overload Function Logic

Table 5.31: 49 Thermal Overload Settings

Setting Description	Setting Range
Themal Overload Pickup	0.20 to $2.00 \mathrm{~A}(1 \mathrm{~A})$
	1.00 to $10.00 \mathrm{~A}(5 \mathrm{~A})$
Time Constant	0.5 to 100.0 min
Neg. Seq. Weighting Factor (k)	0.0 to 10.0
Enable Thermal OL Alarm	Enable or disable
Alarm \% Th	50 to 100%

50 CBF Circuit Breaker Failure

There are two sets of breaker failure protection functions. When breaker failure is initiated by an external trip or other internal logic (user-settable through the output matrix) and the breaker current still exists, two timers (T1 and T2 -user-settable) are started. After these timers are timed out, and if the current still exists indicating a breaker failure, the output of this function is set high. Use the two outputs of this function to trip another trip coil or the next level of breakers, such as bus breakers. The breaker failure protection logic diagram is shown below. Phase current supervision is fixed at 4% of I nominal.

Figure 5.27: 50 CBF Function Logic

Table 5.32: 50 CBF Function Logic

Setting Description	Setting Range
Internal	Enable/Disable
External	Enable/Disable
Pickup I	0.05 to $2.00 \mathrm{~A}(1 \mathrm{~A})$ 0.25 to $10.00 \mathrm{~A}(5 \mathrm{~A})$
Pickup Delay 1	0.005 to 999.999 s
Pickup Delay 2	0.005 to 999.999 s
DI Circuit Breaker Failure	Enable/Disable
Pickup Delay 1	0.005 to 999.999 s
Pickup Delay 2	0.005 to 999.999 s

46BC - Broken

 ConductorThe Broken Conductor (46BC) function can detect unbalanced series or opencircuit faults (referred to as series faults from here on). Series faults can arise from broken conductors or jumpers, misoperation of single phase switchgear and the operation of series fuses. Series faults do not cause an increase in phase currents in the system and thus are not easily detectable by standard overcurrent relays. However, series faults produce an unbalance and a detectable level of negative sequence current.

A negative sequence overcurrent relay (46-50/46-51) could possibly be used to detect series fault conditions. However, on a lightly loaded line, the negative sequence current resulting from a series fault may be very close to, or less than, the full load steady state unbalance in the system. A negative sequence element therefore would not operate at low load levels. For this reason, the 46BC function is used to detect series faults.

The function incorporates an element which measures the ratio of negative sequence to positive phase sequence current (I2/I1). This ratio is affected less severely than the measurement of negative sequence current alone, since the ratio remains approximately constant with variations in load current. This ratio allows for a more sensitive setting to be achieved.

An adequate time delay should be used to coordinate with other protective devices and to ensure that the device does not trip during the operation of single phase switchgear or during re-close sequences.

Figure 5.28: 46BC Protection Function Logic

Settings

Table 5.33: 46BC - Broken Conductor Protection Settings

Setting Description	Setting Range
46 BC	Enabled/Disabled
Pickup I_{2} / I_{1}	20.0% to 100.0%
Pickup Delay	0.02 s to 999.99 s

81HBL2 - Inrush

 BlockThe protection relay may detect large magnetizing inrush current during transformer energizing. In addition to considerably unbalanced fundamental current, inrush current comprised of large second harmonic current which doesn't appear in short circuit current. Therefore, the inrush current may affect the protection functions which operate based on the fundamental component of the measured current. Accordingly, inrush restraint logic is provided to prevent overcurrent protection from misoperation.

Figure 5.29: 81HBL2 Inrush Block Logic

Table 5.34: 81HBL2 - Inrush Protection Settings

Setting Description	Setting Range
81HBL2 Function	Enabled/Disabled
Cross Blocking	Enabled/Disabled
Pickup I Ind	5% to 50%

5.4 Frequency Protection Functions

81U/O Under/ Over frequency

Over frequency: Over frequency arise due to excess of power generation and it can easily be corrected by reduction in the power Outputs with the help of the governor or manual control.

Under frequency: Under frequency occurs due to the excess of load. During an overload, generation capability of the generator increases and reduction in frequency occurs. The power system survives only if we drop the load so that the generator output becomes equal or greater than the connected load. If the load increases the generation, then frequency will drop and load need to shed down to create the balance between the generator and the connected load. The rate at which frequency drops depend on the time, amount of overload and also on the load and generate or variations as the frequency changes. Frequency decay occurs within the seconds so we cannot correct it manually. Therefore automatic load shedding facility needs to be applied.

Operation:

The over frequency protection function operates, when the injected value of frequency is same or greater than the pickup value.

The under frequency function operates, when the injected value of frequency is equal or lesser than the pickup value.

The dropout of 81U/O Under/Over frequency function depends on the hysteresis setting.The user can set the hysteresis frequency (Hz) as per the requirement.

Figure 5.30: 81 U/O Function Logic

Table 5.35: 81U/O - Under/Over Frequency

Setting Description	Setting Range
81/U/O-n	Enabled/Disabled

Table 5.35: 81U/O - Under/Over Frequency

Function Selection	UF or OF
Pickup F	40.00 to 49.99 for 50 Hz UF
	50.01 to 60.00 for 50 Hz OF
	50.00 to 59.99 for 60 Hz UF
	60.01 to 70.00 for 60 Hz OF
Hysteresis	0.05 to 2.00 Hz
Pickup Delay	0.05 to 999.99 s
VTS Blocking	Enabled/Disabled

81R Rate of change of frequency

Rate of change of frequency (ROCOF or df/dt):- It is used for fast load shedding, to speed up operation time in over- and under-frequency situations and to detect loss of grid. For example a centralized dedicated load shedding relay can be omitted and replaced with distributed load shedding, if all outgoing feeders are equipped with protection devices.

A special application for ROCOF is to detect loss of grid (loss of mains, islanding). The more the remaining load differs from the load before the loss of grid, the better the ROCOF function detects the situation.

Operation:

Whenever the rate of change of frequency reaches same or above (If set Pickup is Positive values) the pickup value, then this function gets operated.

Whenever the rate of change of frequency reaches same or below (If set Pickup is Negative values) the pickup value, then this function gets operated.
The dropout frequency mainly depends on the $\%$ hysteresis.

Figure 5.31: 81R Rate of Change of Frequency Function Logic

Table 5.36: 81R Rate of Change of Frequency Settings

Setting Description	Setting Range
81R-n	Enabled/Disabled
Pickup df/dt	-10.0 to $-0.1 \mathrm{~Hz} / \mathrm{s}$ or 0.1 to $10.0 \mathrm{~Hz} / \mathrm{s}$
Hysteresis	1 to 80%
Pickup Delay	0.20 to 999.99 s
VTS Blocking	Disable or Enable

5.5 Power Protection Functions

32 Directional Power

Directional Power protection is used to detect the abnormal power flow in a power system and isolate it from the healthy system. Directional power protection measures either the active or the reactive power (based on the setting) flowing through the power system in which the current transformers are placed and operates if the power is greater/lesser than a set value based on the setting selection and flowing in a required direction.

The power pickup settings in FPRO relay is in Per Unit value.
Directional protection is useful for all networks in which the direction of flow of power is likely to change, notably in the instance of a short circuit between phases or of an earthing fault (single phase fault).

Figure 5.32: 32 Directional Power Protection Function Logic

Table 5.37: 32 Directional Power Settings

Setting Description	Setting Range
$32-n$	Enabled/Disabled
Power Mode	Real or Reactive
Measurement Mode	1 Phase or 3 Phase
Operate Level	High or Low

Table 5.37: 32 Directional Power Settings

Power Pick-up	-3.000 to -0.030 pu or 0.030 to 3.000 pu
Pickup Delay	0.00 to 999.99 s
Polarity Reversal	Enabled or disabled

5.6 Monitoring Functions

60VTS - VT
Supervision

The Voltage Supervision function is used to detect loss of one, two or all three phases of voltage input to the relay. The voltage failure may happen due to internal faults in the voltage transformer or due to human errors such as faults in terminal wiring to relay.

On detection of VT failure, the function may blocks the other voltage protection functions. The function detects VT failure on the basis that during single or two phase VT failure, there will be presence of negative sequence voltage but the negative sequence current which usually accompanies it during normal unbalance will not be present. But, during three phases VT fails, there will not be even negative sequence voltage. At that time, the function works according to the logic settings that have been loaded. The 60VTS function operates after a settable time-delay.
The 27/59 DT/IT, 47 DT/IT and 59N DT/IT functions may be cross-blocked when the 60 VTS is high. However, this blocking feature may be enabled or disabled on the settings for each of these functions.

Figure 5.33: 60VTS Function Logic

Table 5.38: 60VTS - VT Supervision Settings

Setting Description	Setting Range
V phase to neutral less than 0.75 per unit (fixed)	
I1 Blocking	0.1 to $10.0 \mathrm{~A} \mathrm{(1A)}$

Table 5.38: 60VTS - VT Supervision Settings

310 Blocking	0.1 to $10.0 \mathrm{~A}(1)$ 0.5 to $50.0 \mathrm{~A}(5 \mathrm{~A})$ Negative Sequence Monitoring Enabled/Disabled
Vnps	7.0 V to 110.0 V
Inps	0.05 A to $1.00 \mathrm{~A}(1 \mathrm{~A})$
	0.25 A to $5.00 \mathrm{~A}(5 \mathrm{~A})$

60CTS - CT Supervision

Current Supervision function is used to detect failure of the current inputs to the relay. When a current input to the relay fails, there will be presence of negative sequence current and the absence of negative sequence voltage. The function operates when the negative sequence current is greater than the set value and the negative sequence voltage is less than the set value. The logic diagram for the function is shown below.

Figure 5.34: 60CTS Function Logic

Settings

Table 5.39: 60CTS - CT Supervision Settings

Setting Description	Setting Range
Vnps Pickup	7.0 V to 110.0 V
Inps Pickup	0.05 A to $1.00 \mathrm{~A}(1 \mathrm{~A})$
	0.25 A to $5.00 \mathrm{~A}(5 \mathrm{~A})$
Pickup Delay	0.03 s to 999.99 s

74TCS - Trip Circuit Supervision

Trip Circuit Supervision generates a trip circuit failure/unhealthy alarm, either if the trip circuit auxiliary supply is disconnected or the breakage of trip circuit connection.

74 TCS function detects trip circuit failure when 74 TCS asserts and followed by the drop-off timer unit operation. The drop-off timer delay can be set using 74TCS DTL setting value. On expiry of the drop-off delay, the final operate output of the function is issued. The 74TCS is externally initiated via an External Input, configured on the Input Matrix. If the 74 TCS initiation is not configured in the Input Matrix, the function cannot operate.

Figure 5.35: 74TCS Function Logic

Settings

Table 5.40: 74TCS - Trip Circuit Supervision Settings

Setting Description	Setting Range
TCS-1	Enabled/disabled
Name	Configurable text string. Max 12 characters.
Dropoff Delay	0.00 s to 9.99 s
TCS-2	Enabled/disabled
Name	Configurable text string. Max 12 characters.
Dropoff Delay	0.00 s to 9.99 s

TCS Schemes

Figure 5.36: TCS Scheme 1

Figure 5.37: TCS Scheme 2

74TCS Using ProLogic

If the Trip Coil Supervision function is required for more than two coils, it can be achieved using ProLogics. The above mentioned schemes can be achieved using the ProLogic feature, as shown in the figures below.

ProLogic 1 [TCS Scheme 1]

> V Enabled

Figure 5.38: ProLogic TCS Scheme 1

ProLogic 1 [TCS Scheme 2]

Enabled
Name: TCS Scheme 2

Pickup Delay-Tp:	0.00 s
Dropout Delay-Td:	0.40 s

NOR		
0	0	1
0	1	0
1	0	0
1	1	0

Figure 5.39: ProLogic TCS Scheme 2
The Output Contact and LED can be assigned for ProLogic 1 to generate an alarm during Trip Circuit unhealthy condition.

$1^{2} t$ - CB Condition

The $I^{2} t$ function is used for monitoring the wear and tear of the breaker due to fault interruptions. The $I^{2} t$ value is accumulated for every operation and stored in the non-volatile memory. The write time interval is 0.5 seconds. A fixed maximum write time of 20 seconds prevents the $\mathrm{I}^{2} \mathrm{t}$ function from constantly writing to non-volatile memory. Therefore if the start signal is held on for longer than 20 seconds the accumulator stops accumulating and stops writing to the flash memory. The output of the $\mathrm{I}^{2} \mathrm{t}$ function is only available in the Event Log, the Output Matrix or in the ProLogic input list.

The terminal UI and SCADA interfaces show the accumulated value of each breaker I^{2} t function and value of last operation. The terminal UI also includes the time of last reset/preset.
The following figure shows the $\mathrm{I}^{2} \mathrm{t}$ function's logic diagram. The accumulation is started when the trip coil of the breaker is energized (breaker starts to open), and is stopped when the trip coil of the breaker is de-energized. The breaker open/close is determined by the tripping of the following functions:

- 50 Trip, 51 Trip
- 50N Trip, 51 N Trip
- 46/50 Trip, 46/51 Trip
- 49 Trip, 49 Alarm
- 50BF Trip

The current that is used for accumulation is the maximum current among phase A, B and C. An event message is generated when the accumulated $I^{2} t$ value is above the limit.

Figure 5.40: $I^{2} \mathrm{~T}$ Logic

Settings

Table 5.41: $\mathbf{I}^{2} \mathrm{t}$ - CB Condition Settings

Setting Description	Setting Range
$\mathrm{I}^{2} \mathrm{t}$ CB Condition	Enabled/Disabled
$\mathrm{I}^{2} \mathrm{t}$ Limit	0.1 to $99999.9 \mathrm{kA}^{2} \mathrm{~s}$

THD - Total Harmonic Distortion

The Total Harmonic Distortion monitoring function is used to trigger an alarm based on the total harmonic distortion present in the voltage input.
Total harmonic distortion of the voltage, or THD-V, is the summation of all harmonic components of the voltage waveform compared against the fundamental component of the voltage waveform.

$$
\text { THD }-V_{\text {percent }}=\frac{100 \times \sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+\ldots+V_{n}^{2}}}{V_{1}}
$$

Where,
V_{1} - Nominal voltage at fundamental frequency
V_{2} - Harmonic voltage of 2 nd order
...
V_{n} - Harmonic voltage of nth order
The function includes two stages, both of which are based on the voltage input, which have independent pickup values and time delays. Both stages include a VTS blocking enable/disable setting. If enabled, when the VTS condition occurs, the THD-V function output will be blocked.

Table 5.42: THD - Total Harmonic Distortion Settings

Setting Description	Setting Range
THD-1	Enable/disable
Pickup THD-V	1% to 100%
Pickup Delay	0.00 s to 999.99 s
VTS Blocking	Enable/Disable
THD-2	Enable/disable
Pickup THD-V	1% to 100%
Pickup Delay	0.00 s to 999.99 s
VTS Blocking	Enable/Disable

Count Alarms

The Count Alarms provide alarm indications for a number of recurring conditions including Undervoltage, Overvoltage, Underfrequency, Overfrequency, External Input and Autorecloser.

UV Alarm

The UV alarm will provide an alarm if the pickup value is exceeded more times than the count setting, over the count accumulation period.

Table 5.43: UV Count Alarm Settings

UV Count Alarm	Enabled/disabled
Pickup V	1.0 to 220.0 V
UV Count	1 to 1000
Count Accumulation Period	1 to 31 days

OV Alarm

The OF alarm will provide an alarm if the pickup value is exceeded more times than the count setting, over the count accumulation period.

Table 5.44: OV Count Alarm Settings

OV Count Alarm	Enabled/disabled
Pickup V	1.0 to 220.0 V
OV Count	1 to 1000
Count Accumulation Period	1 to 31 days

UF Alarm

The UF alarm will provide an alarm if the pickup value is exceeded more times than the count setting, over the count accumulation period.

Table 5.45: UF Count Alarm Settings

UF Count Alarm	Enabled/disabled
Pickup F	50.0 to $60.0 \mathrm{~Hz}(60 \mathrm{~Hz})$ 40.0 to $50.0 \mathrm{~Hz}(50 \mathrm{~Hz})$ UF Count Count Accumulation Period 1 to 1000

OF Alarm

The OF alarm will provide an alarm if the pickup value is exceeded more times than the count setting, over the count accumulation period.

Table 5.46: OF Count Alarm Settings

OF Count Alarm	Enabled/disabled
Pickup F	60.0 to $70.0 \mathrm{~Hz}(60 \mathrm{~Hz})$
50.0 to $60.0 \mathrm{~Hz}(50 \mathrm{~Hz})$	
OF Count	1 to 1000
Count Accumulation Period	1 to 31 days

El Alarm

The EI alarm will provide an alarm if the external inputs pickup times than the count setting, over the count accumulation period.

Table 5.47: El Count Alarm Settings

El Count Alarm	Enabled/disabled
El Count	1 to 1000
Count Accumulation Period	1 to 31 days

AR Counter

The AR counter will provide an alarm if the total number of reclosures exceeds the count setting. This counter does not have a time period, it simply operates based on total accumulated reclosures.

Table 5.48: AR Count Alarm Settings

AR Count Alarm	Enabled/disabled
Reclosure Cumulative count	0 to 999

5.7 Control Functions

79 Reclose
F-PRO includes a four shot recloser. After four reclose attempts, the recloser is locked out. The lockout is cleared once the feeder returns to normal by manual operation, meaning that the feeder has been on with a load greater than the low set setting for a certain amount of time. The 79 function initiate and block functions are defined in the output matrix.

Figure 5.41: 79 Reclose Function Logic

Table 5.49: 79 Settings

Setting Description	Setting Range
79 Function	Enable/Disable
Number of Shots	1 to 4
First Reclose (T1)	0.10 to 999.99 seconds
Second Reclose (T2)	1.00 to 999.99 seconds
Third Reclose (T3)	1.00 to 999.99 seconds
Fourth Reclose (T4)	1.00 to 999.99 seconds
Close Time (Tp)	0.01 to 1.00 seconds
Reclaim Time (Td)	0.00 to 999.99 seconds
Initiate Reset (TDI)	0.00 to 999.99 seconds
Block Reset (TDB)	0.00 to 999.99 seconds

25/27/59 Check Synchronization

The relay can bring in voltages from both Line and Bus PTs. The Sync Check function, If enabled, looks at the voltage magnitude, frequency and steady state angle of Line and Bus PT voltages. If the angle difference between Bus and Line PT's is within the specified value (1 to 50 -degree), frequency difference is within the defined setting range and voltage magnitudes of both the PT's are between minimum and maximum voltage setting value, then the sync check function enables a definite time delay pickup(0.00 to 10.00 seconds) after which time, a sync-check output is generated.

The main voltage can be taken from either Bus or Line PT, depends on the system availability. The relay should only accepts 3 -phase-to-neutral voltage.
The sync (Vsync) voltage can be taken from either Bus or Line PT and it accepts any phase-to-neutral voltage and the Synch Voltage Input setting shall be made accordingly in System Parameters menu.
The Dead Main Live Sync (DMLS), Live Main Dead Sync (LMDS) and Dead Main Dead Sync (DMDS) logic functions use fixed values of bus selected phase voltages \& 'A' Synch voltage to determine the Sync Check condition. The voltage is fixed at 20 V secondary, voltages below 20 V are declared a dead state and voltages above 20 V are declared a live state. The above said functions have fixed delay of 25 msec .

Figure 5.42: 25/27/59 Check Sync Function Logic

Table 5.50: 25/27/59 Settings

Setting Description	Setting Range
$25 / 27 / 59$ Function	Enabled/Disabled
Maximum Voltage	60.0 to 138.0 V
Minimum Voltage	40.0 to 69.9 V
Voltage Difference	1.0 to 20.0 V
Angle Difference	1.0 to 50.0 deg
Pickup Delay	0.00 to 10.00 s
Frequency Difference	Enabled/Disabled
Frequency Difference	0.010 to 2.000 Hz
Main/Sync	
Enable Dead Main Live Sync (DMLS)	Enabled/Disabled
Enable Live Main Dead Sync (LMDS)	Enabled/Disabled
Enable Dead Main Dead Sync (DMDS)	Enabled/Disabled

5.8 ProLogic

The relay includes 20 ProLogic functions. A ProLogic is a user customizable logic statement which can be created using any of the protection functions, External Inputs, Virtual Inputs or other ProLogics. These inputs are placed into Boolean-like statements. A graphical function logic interface is provided for creating the ProLogic logic. Each ProLogic handles up to 5 inputs to generate one ProLogic statement. The results from these statements are mapped to Output Contacts using the Output Matrix.

The ProLogic control statements are used to create Boolean-like logic. The possible gates are AND, NAND, OR, NOR, XOR, XNOR, and SR-LATCH. The control can be time delay pickup and or time delay dropout, and can drive the front panel target LED. Twenty-four ProLogic control statements outputs are available and can be used in the output matrix to customize the relay to specific needs. Inputs to ProLogic are all the elements plus previous ProLogic statements for logic nesting usage.
The example, for details see Figure 5.43: ProLogic on page 5-63, shows A to E inputs are status points of devices that are user-selectable. Each ProLogic output can be given a specific name, pickup and reset time delay.

Figure 5.43: ProLogic

Table 5.51: ProLogic Setting Functions

Name	Give the ProLogic a meaningful name
Pickup Delay	Delay time from pickup to operate. 0.00 to 999.00 s
Dropout Delay	Delay time from dropout to ProLogic status of low. 0.00 to 999.00 s
A, B, C, D, E	Relay elements as input statements
Operators	Boolean-type logic gates

Pole Discrepancy Protection

Pole Discrepancy Protection ensures that all the three poles of Circuit Breaker are tripped / closed within a predefined time period. If there is a mismatch of Breaker opening / closing time, then Pole Discrepancy Protection will operate and will trip all the three poles of the Breaker. Suppose due a fault, a trip command is issued to the Breaker but due to some problem only two poles of Breaker could open simultaneously, and the third pole of Breaker is not opened. In this case Pole Discrepancy Protection will operate after the set time delay and will trip all the three pole of the Breaker.

This functionality shall be achieved by using F-PRO 298 relay ProLogic feature. Basically, Pole Discrepancy function is achieved through a Timer and breaker statuses connected to F-PRO 298 relay via External/Virtual inputs.

PD function shall be achieved in two methods depends on the CB contacts availability. If both NO and NC contacts of CB are available, then follow below Logic -1. If only NO contacts of CB are available, then follow Logic- 2 .

Logic-1:

Figure 5.44: Logic 1

Logic 2:

All the three pole of CB Normally Closed (NC) and Normally Opened (NO) contacts shall be connected as either External or Virtual inputs to F-PRO 298 relay. The below ProLogic shall be configured in the setting file to achieve the Pole Discrepancy Protection.

Figure 5.45: Logic 2
In the output matrix, ProLogic 3 or ProLogic 5 (depends on the Logic) shall be assigned to output contact(s) to trip the CB on PD protection operation.

Logic Output	Output Contact													Block \& Initiate			
	1	2	3	4	5	6	7	8	9	10	11	1213	14	791	798	BFI	TDR
Function	\square	$\square \square$	x	\square	\square	\square	\square										
A Phase Operated	\square	$\square \square$	\square	\square	\square	\square	\square										
B Phase Operated	\square	$\square \square$	\square	\square	\square	\square	\square										
C Phase Operated	\square	$\square \square$	\square	\square	\square	\square	\square										
Neutral Operated	\square																
PL 1 [CB NO Cont]	\square		\square														
PL2 [CB NC Cont]	\square	$\square \square$	\square	\square	\square	\square	\square										
PL 3 [PD Logic-1]	\square	$\square 8$	\square	\square	\square	\square	\square										
PL 4 [CB NC Cont]	\square																
PL 5 [PD Logic-2]	\square																
D1 6 IDPol nnir	\square		\square	\square	\square	\square											

5.9 Group Change Control Statement

The F-PRO298 relay has eight setting groups (SG1 to SG8). The user can change all relay setting parameters except the physical connections such as input, in each setting group. Setting group changes can also be performed by using any one of the 14 available Digital Inputs per setting group or through Relay Control Panel or through relay display interface. The Group change inputs are similar to the LED and output. The processing for activating the setting group is half a second. During the transition of one setting group to another setting group, the previous setting group will still be operational. The active setting group (ASG) is viewed using the Relay Control Panel, the front panel or from a record stored by the relay (the active setting group is stored within the record).

Active Setting Group

Default Setting

Group Change Through RCP

Group Change Through LCD

Setting Group Change During Setting Load

Manual Settings Change

The relay uses Setting Group 1 as the factory default setting group and retains the current active setting group in memory. This allows the relay to use the last active setting group prior to interruption of relay power as the default setting group following power up.

The user can at any time change the active setting group. When user initiate a setting group change, this change takes precedence over an automatic setting group change.

The setting group can be changed using the Relay Control Panel, with either Change or Service access level, using the following path:

Relay Control Panel > Utilities > Settings Group
In this tab, choose desired setting group number and Click Save.

The setting group can also be changed using the relay display interface, after login in with the Change or Service access level, using the following path:

Main Menu > Configuration > Setting Group $>$ Active

In this screen, hit Enter and choose the desired setting group number using Up and Down keys, and then click Enter.

The user can change the active setting group while loading settings from Offliner using Relay Control Panel. Relay Control Panel prompts the user for a setting group to active while loading the setting. The same setting group may be used or the user may switch to a different setting group.

Relay settings can be changed via the LCD manually. The relay logs an acceptance of the change request and puts the new setting file in service. When the new setting file is queued the relay loads the new setting configuration for protection functions. The relay loads the new name definitions for the supplementary settings (includes channel names, ProLogic names, Group Logic statement names, front panel target LED activation rules and record initiation rules) to the interface processor. When the setting load is completed, an event is logged to show the com-
pletion of the request. There is a delay (approximately five seconds) between the load request and the completion of the request where the new supplementary settings may be temporarily applied to the previous setting file.

The Protection processor does not have any interruption in service.

Automatic Settings Change

The relay configuration changes during a relay-initiated setting change, but the protection function operations are not disrupted. Since the relay setting file does not change, the interface processor uses the new setting group supplementary setting information at the same time as the protection processor switches to the new setting group. An event is logged to show when the new setting group is in service.

5.10 Recording Functions

Introduction

Fault Recording

Record Initiation

The relay has high speed fault recording and logging functions to allow the user to analyze faults and to review the operation of the overall protection scheme.

The relay provides DFR-quality fault recording, capturing input signal waveforms and external input states at a rate of 32 samples per cycle. Each record also contains the timing of the internal logic produced by the relay (e.g. Device 51 trip). Obtain this information by uploading the records from the relay via the Relay Control Panel file transfer process and view them with RecordBase View software.

The quantities recorded are:

- 8 analog channels: 3 Phase current, 1 SEF current, 3 Phase voltage and 1 Vsync
- Voltages and current at 32 samples/cycle
- External digital inputs at 1 msec resolution
- Relay Output internal logic signals at 8 samples/cycle
- Summation channel at 32 samples/cycle
- 30 Virtual Inputs at 8 samples/cycle
- 20 ProLogic signals at 8 samples/cycle
- Active setting group

Recording can be initiated automatically by the relay when a fault or abnormal condition is detected. A user can set the relay to initiate a fault record upon activation of any of its trip or alarm functions or on assertion of any external digital inputs.
The assignment of fault record initiation to the various relay functions is done through the relay's Output Matrix settings.

Recording can also be initiated manually through the Relay Control Panel interface in the Records tab and the command is Trigger Event.

Record Duration and Extension

Record
 Storage

Record Retrieval and Deletion

The length of each record is information by the Record Length setting. Fault record lengths can be set between 1 and 10 seconds. Pre-trigger times can be fixed from 0.1 to 0.5 seconds for fault records and are included as part of the normal record length.

F-PRO 298 relay automatically extends a record as required to capture consecutive triggers that are close together. If a trigger occurs while a recording is in progress, the record is stretched to include the full post-trigger time of subsequent triggers, up to a maximum length 10 seconds for fault records. If a trigger occurs before the end of a record caused by a previous trigger, but too late to allow sufficient post-trigger time in a maximum extended record, a new overlapping record is created.
The normal record lengths settings can be set from either the HMI or the Offliner Settings software and accessible in Menu below.
Configuration $>$ Disturbance record setting $>$ Record Length
The F-PRO compresses records on the fly, achieving a typical lossless compression rate of $4: 1$. As a result, the F-PRO 298 can store up to 200 seconds of fault recordings in non-volatile storage. If the storage is full, new records automatically overwrite the oldest, ensuring that the recording function is always available.

A list of stored records is available through the Relay Control Panel in the Records tab. From Relay Control Panel user can retrieve the record and delete or leave on the relay, graph the record, export the record to COMTRADE/ PTI \& CSV formats. Records are named by combining the Unit ID setting with the date and time of the initiating record trigger.

To delete a record from storage, right-click on the record and select Delete, or alternatively, select the record and press the $<$ Del $>$ key. User can also do group deleting and group transferring. To select multiple records:

1.Select a record

2.Hold the $<$ Shift $>$ key.
3.Continue selecting records until all desired records are selected.
4.Press the $<$ Del $>$ key. A message asks "Are user sure user want to delete multiple records from the relay?" shown above. Select Delete and the files are deleted.

When a record is retrieved from the relay using Relay Control Panel program, it is automatically transferred to user PC as well. The record is placed in user Relay Control Panel program's Recordings folder.

Figure 5.46: Recordings folder

Event Recording

The event recording provides permanent storage for the event log. The user can create an event record automatically or manually.

5.11 Event Log

The F-PRO 298 maintains a log of events in a 1000 entry circular log. Each entry contains the time Logged events include trips, alarms, external input information plus internal events such as setting changes. Fault information and classification information is included in event messages where appropriate. For example, the event log entry for a function trip might be:
2019 DEC 25, 15:34:19.832: 51-1 ABC Operated.
The event \log can be viewed in three ways:
-Relay Front HMI
-Relay Control Panel interface is in the Events tab
-SCADA protocols included in the F-PRO allow the SCADA server/client access to Trip and Alarm event data.

Events that occur during a transient fault recording are also embedded in the transient record and can be viewed in Relay Control Panel, RecordBase View and RecordGraph. Although the event log is circular, user may ensure events are not lost by checking the manual trigger option on the records menu in Relay Control Panel. When this option is selected, as the event \log is required by user, it will save the records to an event file .fpe. The event \log will then be ready to capture up to 1000 new events.

This display is a snapshot of the event list which must be manually refreshed to display new events that occur while the display is up.

There is a list of Event Messages, for details see "Event Messages" in Appendix D.

5.12 Fault Log

The F-PRO stores a log of faults in a 20 entry circular log. Each entry contains the time of the fault, fault type, faulted phase, fault quantities as per the below table. Fault \log will be triggered only for trip condition and it won't \log for an alarm condition.

Table 5.52: Fault Log

Fault Type	Fault Quantities
27DT Under Voltage	VA / VB / VC Phasors
$271 T$ Inverse time Under Voltage	VA / VB / VC Phasors
59DT Over Voltage	VA / VB / VC Phasors
5917 Inverse Time Over Voltage	VA / VB / VC Phasors
24DT Overflux	VA / VB / VC Phasors, \%V/F
24IT Inverse Time Overflux	VA / VB / VC Phasors, \%V/F
47DT Negative Sequence Overvoltage	VA / VB / VC Phasors, V2
47IT Negative Sequence Inverse Time Overvoltage	VA / VB / VC Phasors, V2
59NDT Residual Overvoltage	VN Phasor
59NIT Residual Inverse Time Overvoltage	VN Phasor
37 Undercurrent	IA/ IB / IC Phasors
50/67 Overcurrent 51/67 Inverse Time Overcurrent	IA/ IB / IC Phasors
50N/67N Neutral Overcurrent 51N/67N Inverse Time Neutral Overcurrent	IN Phasor
46/50 Negative Sequence Overcurrent 46/51 Inverse time Negative Sequence Overcurrent	IA / IB / IC / I2 Phasors
64/50SEF 64/51SEF Inverse Time SEF	ISEF Phasor
49 Thermal Overload	IA / IB / IC / IN Phasors
50BF Breaker Failure	IA / IB / IC / IN Phasors
46BC Broken Conductor	IA / IB / IC / IN Phasors, \%I2/I1
81U Under Frequency	VA / VB / VC Phasors, Frequency
810 Over Frequency	VA / VB / VC Phasors, Frequency
81R ROCOF	VA / VB / VC Phasors, dF/dt
32 Power	VA / VB / VC / VN Phasors, IA / IB / IC / IN Phasors, A, B, C-Real \& Reactive

The fault \log can be viewed in three ways:

- Relay Front HMI
- Relay Control Panel interface is in the Events tab
- 61850 SCADA protocol included in the F-PRO allow the SCADA client access to Trip event data

6 Data Communications

6.1 Introduction

This chapter deals with data communications with the relay. First, the SCADA protocol is discussed, and it is then followed by the IEC 61850 communication standard.

The SCADA protocol deals with the Modbus, IEC 60870-5-103 and DNP3 protocols. The SCADA configuration and its settings are described. The parameters for SCADA communications are defined using F-PRO Offliner software. Finally, details on how to monitor SCADA communications are given for maintenance and troubleshooting of the relay.

6.2 SCADA Protocols

Modbus Protocol

The relay supports either a Modbus RTU or Modbus ASCII SCADA connection. Modbus is available exclusively via a direct serial link. Serial Modbus communications can be utilized exclusively via serial Port 122, an RS-232 DCE DB9F port located on the back of the relay. An external RS-232 to RS485 converter can be used to connect the relay to an RS-485 network. For details on connecting to serial Port, see "Communicating with the Relay Intelligent Electronic Device (IED)" on page 3-5 and "Communication Port Details" on page 3-15.
The data points available for Modbus SCADA interface are fixed and are not selectable by the user. Complete details regarding the Modbus protocol emulation and data point lists can be found in "Modbus RTU Communication Protocol" in Appendix E.

The relay supports IEC 60870-5-103 SCADA connection. IEC 103 is available via a RS485 serial link.

Serial IEC 103 communications can be utilized exclusively via serial CON 32 (RS485 port) is located on the rear of the relay. An external RS-485 to RS-232 converter can be used to connect the relay to an RS- 232 network. For details on connecting to serial Port, see "Communicating with the Relay Intelligent Electronic Device (IED)" on page 3-5 and "Communication Port Details" on page 3-15.

Complete details regarding the IEC 103 protocol emulation and data point lists can be found in "IEC 103 Device Profile" in Appendix G.

The relay supports a DNP3 (Level 2) SCADA connection. DNP3 is available via a direct serial link or an Ethernet LAN connection using either TCP or UDP.

Serial DNP communications can be utilized exclusively via serial Port 122. Port 122 is an RS-232 DCE DB9F port located on the back of the relay. An external RS-232 to RS-485 converter can be used to connect the relay to an RS485 network. For details on connecting to serial Port, see "Communicating with the Relay Intelligent Electronic Device (IED)" on page 3-5 and "Communication Port Details" on page 3-15.

Network DNP communications can be utilized via physical LAN Port 119 or Port 120. Port 119 is available as a RJ-45 port on the front of the relay and as an RJ-45 or ST fiber optic port on the rear. Port 120 located on the rear of the relay is available as an $\mathrm{RJ}-45$ or ST fiber optic port. DNP communications can be used with multiple masters when it is utilized with TCP. For details on connecting to the Ethernet LAN, see "Network Link" on page 3-8.

The data points available for DNP SCADA interface are user configurable. Complete details regarding the DNP3 protocol emulation and data point lists can be found in "DNP3 Device Profile" in Appendix F

Offliner SCADA Configuration

Open the Offliner application and highlight the SCADA Communication selection. The screen appears as follows.

Figure 6.47: SCADA Communications
The configuration of SCADA communication parameters via the Offliner application is very intuitive. Several settings options are progressively visible and available depending on other selections. As noted before, there is no field to configure the number of data and stop bits. These values are fixed as follows:

- Modbus Serial - 7 data bits, 1 stop bit
- DNP Serial - 8 data bits, 1 stop bit

For more details on the IEC 61850 standard, and it's implementation on the FPRO 298, see "IEC 61850 Implementation Overview" on page 9-1 and "IEC 61850 Conformance Statements and Data Mapping Specification" in Appendix L' on page Appendix L-1.

7 Settings and Analysis Software

This section describes the supporting software used to set the relay parameters and to analyze records. There are three main software tools used for these purposes: F-PRO 2000 Offliner Setting Software, RecordGraph and ERL 61850 IED Configurator. The F-PRO 2000 Offliner software will be described at length, while the RecordGraph and ERL 61850 IED Configurator tools will be briefly introduced.

F-PRO 2000 Offliner is used to configure all of the protection and system parameter variables on the IED. Setting files are created locally on a personal computer with the Offliner software and then are sent to the IED through Relay Control Panel (see "Relay Control Panel" on page 4-10) via a communication link (see "Communicating with the Relay Intelligent Electronic Device (IED)" on page 3-5).

RecordGraph is a powerful record analysis tool used to analyze both highspeed Fault Recordings and low-speed Swing Recordings. RecordGraph provides many useful tools including fault impedance plotting and harmonic analysis.
RecordBase View is a Windows-based software tool for displaying and managing records from ERLPhase recorders and relays.
The RecordBase Central Station software provides automated collection, storage and network-wide access to fault and disturbance data produced by supported ERLPhase recorders and relays. It is available for purchase.
The ERL 61850 IED Configurator is used to configure ERLPhase IEC 61850 based devices for substation automation. This tool helps the user to map data from remote GOOSE into ERLPhase IED data, to perform GOOSE mapping from ERLPhase IEDs to other devices and to map the required RCB (Report Control Block) datasets for SCADA.

7.1 F-PRO 2000 Offliner Setting Software

Introduction
Offliner is used to configure all of the protection and system parameter variables on the IED. The following section provides a full breakdown of the user interface and all of the features available within the software.

More detailed information about relay settings and protection functions are provided in Chapter 5.

Figure 7.1: F-PRO 298 Offliner Software

Menu and

Toolbar

The Offliner software includes the following menu and system tool bar.

Figure 7.2: Top Tool Bar

Table 7.1: Windows Menu

Windows Menu	Sub Menu	Comment
Document Menu (Icon)	Restore	Restores active window to previous size
	Move	Allows user to move active window
	Size	Allows user to resize active window
	Minimize	Makes the active window as small as possible
	Maximize	Makes the active window as large as possible
	Close	Closes the active Offliner setting docu- ment
	Next	Switches to the next open Offliner set- ting file, if more than setting file is being edited

Table 7.1: Windows Menu

File Menu	New	Opens up a default setting file of the most recent setting version
	Open	Open an existing setting file
	Close	Closes the active Offliner setting document
	Save	Saves the active setting file
	Save As	Saves the active setting file with a new name or location
	Convert to Newer	Convert an older setting version to a newer version.
	Print	Prints graphs or setting summary depending on active screen
	Print Preview	Provides a print preview of the setting summary
	Print Setup	Changes printers or print options
	1-8	The eight most recently accessed setting files
	Exit	Quits the program
Edit Menu	Undo	Undo last action
	Cut	Cut the selection
	Copy	Copy the selection
	Paste	Insert clipboard contents
	Copy Graph	Copy the graph for the active screen to the clipboard
	Copy Setting Group	Copy values from one Setting Group to another
Window	Cascade	Cascades all open windows
	Tile	Tiles all open windows
	Hide/Show Tree	If this option is checked then the LHS Tree view will be hidden
	1-9, More Windows	Allows access to all open Offliner setting files. The active document will have a check beside it
Help	User Manual	Displays the user manual
	About Offliner	Displays the Offliner version
Toolbar		
New	Create a new document.	Create a new document of the most recent setting version
Open	Open an existing document.	Open an existing document
Save	Save the active document.	Save the active document

Table 7.1: Windows Menu

Cut	Cut the selection.	Cut selection
Copy	Copy the selection.	Copy the selection
Paste	Insert clipboard contents.	Insert clipboard contents
Undo	Copy graph to clipboard.	Undo last action
Copy Graph	Print active document.	Copy the graph for the active screen to the clipboard
Copy Setting Group	Copy values from one Setting Group to another.	Brings up the Copy Inputs dialog box
Show/Hide LHS Tree	Prints Graphs or the setting summary, depending on which seen is selected	
Print	Display program information.	Displays the Offliner version
About	Iree view will be hidden	

Offliner
Keyboard Shortcuts

The following table lists the keyboard shortcuts that Offliner provides.

Table 7.2: Keyboard Shortcuts

Ctrl+N	Opens up a default setting file of the most recent setting version
Ctrl+O	Open an existing setting file
Ctrl+S	Saves the active setting file
Ctrl+Z	Undo
Ctrl+X	Cut
Ctrl+C	Copy
Ctrl+V	Paste
Ctrl+F4	Closes the active Offliner setting document
Ctrl+F6	Switches to the next open Offliner setting file, if more than one setting file is being edited
F6	Toggles between the LHS Tree view and HRS screen
F10, Alt	Enables menu keyboard short-cuts
F1	Displays the user manual

Graphing

 Protection Functions
Handling Backward Compatibility

Grid On/Grid Off

The graph can be viewed with the grid on or off by clicking the Grid On or Grid Off button. A right-click on the trace of the curve gives the user the x and y coordinates.

Refresh

This button will manually refresh the graph if it has been zoomed.

Print Graph

To print a particular graph, click the Print Graph button.

Zoom on Graphs

Graphs can be zoomed to bring portions of the traces into clearer display. Leftclick on any graph and drag to form a small box around the graph area. When the user releases the mouse, the trace assumes a new zoom position determined by the area of the zoom coordinates.

To undo the zoom on the graph, click the Refresh button.

Displaying Co-ordinates

At any time the user may right-click on the graph to display the co-ordinates of the point the user selected.

Offliner Settings displays the version number in the second pane on the bottom status bar. The settings version is a whole number (v1, v2, v3, v4, etc.).

The Offliner Settings is backward compatible; open and edit older settings files and convert older settings files to a newer version. Offliner settings handles forward conversion only - it converts an older setting file to a newer setting file.

Converting a Settings File

1. Open the setting file to convert.
2. In the File menu, select Convert to Newer... and then select the version x (where x is the newer version). A dialog box pops up prompting Offliner for a new file name. Use either the same file name or enter a new file name. The conversion process inserts default values for any newly added devices in the new setting file. When the conversion is complete, Offliner Settings displays the new file.
3. When the new file has been opened, it must be re-saved in order for the conversion to complete successfully.

> After converting to a new File Version, the newly converted file must be opened and re-saved in order for the conversion to complete properly.

Sending a New Setting File to the Relay

1. Make sure the settings version and the serial number of the relay in the setting file match. The relay will reject the setting file if either the serial number or the settings version do not match.

A "serial number discrepancy" message may appear. This is to ensure that the user is aware of the exact relay in which settings are to be loaded. If this happens, check the relay serial number using the terminal mode ID menu item. Type this serial number into the F-PRO 298 Serial No. box in the Identification tab display area of Offliner Settings. Alternately the user may check the Ignore Serial Number check box to bypass serial number supervision.
2. Check the serial number and the settings version of the relay. The Device Serial Number and Required Settings Version on the Identification screen indicate the serial number and the settings version of the relay.

Tree View Introduction

The following sections describe the tree view, which provide access to the various setting screens. This section will not describe individual settings, but will provide a general description of where to find the individual settings. For a detailed description of the individual settings see Chapter 5.

Figure 7.3: Relay Identification
In the LHS Menu Tree there are a series of menu headings that may have sub menus associated with them. Clicking on an item in the left hand side tree view will display its corresponding menu in the RHS view. Similarly, the user can use the arrow keys to scroll through the menu tree.

The serial number of the relay must match the one in the setting file, or the setting will be rejected by the relay. This feature ensures that the correct setting file is applied to the right relay.

The user can choose to ignore the serial number enforcement in the identification screen. The relay only checks for proper relay type and setting version if the ignore serial number has been chosen.

The first screen presents all the menu items in the left menu tree. Access the menu items by clicking the tabs at the top of the screen or the item on the left menu tree.

Table 7.3: Identification

Identification		
Settings Version	Indicates the settings version number, fixed.	
Ignore Serial Number	Bypass serial number check, if enabled.	
Serial Number	Available at back of each relay.	
Unit ID	User-defined up to 20 characters.	
Nominal System Frequency	60 Hz or 50 Hz	
Standard I/O	Indicates standard I/O values, fixed.	
Comments	User-defined up to 78 characters.	
Setting Software		
Setting Name	User-defined up to 20 characters.	
Date Created/Modified	Indicates the last time settings were entered.	
Station		
Station Name	User-defined up to 20 characters.	
Station Number	User-defined up to 20 characters.	
Location	User-defined up to 20 characters.	
Line	User-defined up to 20 characters.	

Important Note

Nominal System Frequency can be set to either 50 Hz or 60 Hz . Ensure setting selection matches that of target the relay.

The serial number of the relay must match the one in the setting file, or the setting will be rejected by the relay. This feature ensures that the correct setting file is applied to the right relay.

Choose to ignore the serial number enforcement in the identification screen by checking the Ignore Serial Number check box. The relay only checks for proper relay type and setting version if the ignore serial number has been chosen, requires relay firmware version 1.0 or greater.

External Inputs

Figure 7.4: External Inputs
External Input Names screen allows the user to define meaningful names for 14 external digital inputs.

Table 7.4: External Input Names

1 to 14	User-defined

Output Contacts

Output Contact Reset

Reset: \quad Unused $=0$;

Figure 7.5: Output Contacts
The Output Contacts are also identified during the setting procedure using meaningful names. The dropout delay time settings are made here.

Table 7.5: Output Contact Names

Outputs 1 to 14	User-defined
Type (per output)	Self Reset or Hand Reset
Dropout Timer (per output)	0.00 to 1.00 s
Output Contact Reset	Any EI, PL, VI or SPC

The Output Contacts screen allows for configuration of each Output Contact's name and reset type. It also allows for configuration of a global Output Contact Reset input which is used to externally reset all latched Output Contacts.

Each Output Contact may be given a unique user-configurable Name.
If the Output Contact is set to the Self Reset type, it will close for the duration that the associated function is High, plus the duration of the configured Timer.
If the Output Contact is set to the Hand Reset type it will close when the associated function goes High and will remain closed until the user manually resets it. A latched Output Contact can be reset either by the Front Panel, Relay Con-
trol Panel's Utilites $>$ Outputs Output Contact clear function or by the Output Contact Reset setting.

Control Commands

Each control command can be configured with a user-defined name. There are 4 Double-Point Control and 12 Single-Point Control commands provided. See "Control Commands" on page 9-4 for more details.

Control Command Names

DPC1	DPC 1		SPC5
	SPC 5		
DPC2	DPC 2	SPC6	SPC 6
DPC3	DPC 3	SPC7	SPC 7
DPC4	DPC 4	SPC8	SPC 8
SPC1	SPC 1	SPC9	SPC 9
SPC2	SPC 2	SPC10	SPC 10
SPC3	SPC 3	SPC11	SPC 11
SPC4	SPC 4	SPC12	SPC 12

Figure 7.6: Control Command name configuration

Table 7.6: Control Commands

DPC1-4	User-defined
SPC1-12	User-defined

Virtual Inputs

	Virtual Input Names					
	1	V1	11	V 11	21	V121
	2	V12	12	V112	22	V 122
	3	V13	13	V113	23	V 123
	4	V14	14	V114	24	V124
	5	V15	15	$\mathrm{V}_{1} 15$	25	V 125
	6	V16	16	V116	26	V 126
	7	V17	17	V117	27	V127
	8	V18	18	V118	28	V 128
	9	V19	19	V119	29	V129
	10	V110	20	V 20	30	V130

Figure 7.7: Virtual Inputs

Table 7.7: Virtual Inputs

Virtual Inputs 1 to 30	User-defined

The relay can control its internal functions and connected devices both locally and remotely. Thirty general purpose logic points are accessible via DNP3 and the TUI. The 30 virtual inputs are individually controlled and include a set, reset and pulse function. The latch state is retained during setting changes and relay power down conditions. The 30 virtual inputs conform to DNP3 standards. Use the DNP3 functions such as SBO (select before operate), Direct Operate, or Direct Operate with no acknowledge to control virtual inputs.

Use virtual inputs to:

- control circuit breakers
- enable or disable reclosing
- enable or disable under-frequency load shedding
- change setting groups
- provide interlocking between local/remote supervisory control

Target Reset

The Target Reset screen is used for configuration of each LED Reset Type and an external Target Reset input.

Target

Target LED	Reset Type
Target LED 2	Hand Reset
Target LED 3	Self Reset
Target LED 4	Self Reset
Target LED 5	Self Reset
Target LED 6	Self Reset
Target LED 7	Self Reset
Target LED 8	Self Reset
Target LED 9	Self Reset
Target LED 10	Self Reset
Target LED 11	Self Reset
Target LED 12	Self Reset
Target LED 13	Self Reset
Target LED 14	Self Reset

Target Reset

Reset:

Figure 7.8: Target Reset

Table 7.8: Target Reset Settings

Target Reset Type (LED 1 to 14)	Self Reset, Hand Reset
Target Reset	
Reset	Any EI, VI or PL

Setting Groups

Figure 7.9: Setting Groups

Table 7.9: Setting Groups

Setting Groups 1 to 8	User-defined

System Parameters

Figure 7.10: System Parameters

Table 7.10: System Parameters

System Parameters		
CT Configuration		
Phase CT Sec. current	5 A or 1 A	
SEF CT Sec. current	5 A or 1 A	
Phase CT Ratio	1.0 to 30000.0	
SEF CT Ratio	1.0 to 30000.0	
VT Configuration		
Phase VT Sec. Voltage	40.0 to 160.0 V	
Phase VT Ratio	1.0 to 10000.0	
VT Secondary Connection	Ph-P or Ph-Ph	
Sync Voltage Input	40.0 to 160.0 V	
Sync VT Sec. Voltage	1.0 to 10000.0	
Sync VT Ratio		
General	0.0 to 2.9 V	
Minimum Voltage Threshold	0.00 to 1.00 A	
Minimum Current Threshold		

SCADA

 Communication

Figure 7.11: SCADA Communication

The relay has configurable SCADA communication parameters for both Serial and Ethernet（TCP and UDP）．For DNP3 Level 2 （TCP）up to 3 independent Masters are supported．

DNP
 Configuration－ Point Map

Group	Hame	Mapped To Point List
	Binary Inputs	
1，2	External Input 1	x
1，2	External Input 2	8
1，2	External Input 3	8
1，2	External Input 4	8
1，2	External Input 5	8
1，2	External Input 6	8
1，2	External Input 7	8
1，2	External Input 8	8
1，2	External Input 9	8
1，2	External Input 10	X
1,2	External Input 11	8
1，2	External Input 12	区
1，2	External Input 13	8
1，2	External Input 14	8
1，2	Virtual Input 1	区
1，2	Virtual Input 2	囚

Figure 7．12：Point Map
The relay has configurable DNP point mapping．On the Point Map screen，any of the configurable points may be added or removed from the Point List by clicking（or using the cursor keys and space bar on the keyboard）on the asso－ ciated check box．A green＇ X ＇denotes that the item will be mapped to the Point List．

The list contains separate sections for Binary Inputs，Binary Outputs，and An－ alog Inputs．The list is scrollable by using the scroll control on the right hand side．

DNP

Configuration－ Class Data

Figure 7．13：Class Data
Class data for each DNP point can be assigned on the Class Data screen．Only Points which were mapped in the Point Map screen will appear here．Sections for Binary Inputs and Analog Inputs appear here；Binary Outputs cannot be as－
signed a Class. The list is scrollable by using the scroll control on the right hand side.

In addition to assigning a Change Event Class to each mapped point, most Analog Inputs can also be assigned a Deadband and Scaling factor.

Disturbance Record

Figure 7.14: Record Length

Table 7.11: Record Length

Fault	
Fault Record Length	1 to 10 seconds
Prefault Time	0.10 to 0.50 seconds

SCADA
 Settings
 Summary

Figure 7.15: SCADA Settings Summary
This screen provides a summary of the current SCADA settings as set in the working setting file. This includes SCADA Communication parameters and (if
the SCADA mode is set to DNP) Binary Input, Binary Output, and Analog Input information including Deadband and Scaling factors.
This SCADA Summary screen is scrollable and can be printed.

Setting Groups

Figure 7.16: Setting Groups Comments
The relay has 8 setting groups (SG). The user can change all relay setting parameters except the physical connections such as input or output parameters in each setting group.

Protection, Monitoring and Control Functions

The Protection, Monitoring and Control Function sections provide all of the settings for the individual protection functions. The functions are sub-categorized by type (Voltage, Current, Frequency, Power etc.) to provide easy navigation.

Figure 7.17: Protection Functions
For a detailed descriptions of each function see "Protection, Recording and Logging Functions" on page 5-1.

ProLogic

Figure 7.18: ProLogic
Apply ProLogic to multiple inputs to create an output based on qualified inputs. ProLogic enables up to 20 ProLogic control statements and programs
those logics to output contacts. The user can name the function being created and set a pickup and dropout delay. Start with input A by selecting any of the relay functions using the list for up to 5 possible inputs. Put these inputs into AND, NAND, OR, NOR, XOR, NXOR and LATCH logics by clicking on the gate. Invert the input by clicking on the input line.
The output of ProLogic 1 can be nested into ProLogic 2 and so forth. If described, the user can illuminate the front target LED on operation of this function by enabling this feature. The operation of the ProLogic statements are recorded in the events logs.

Input Matrix

Figure 7.19: Input Matrix
The Input Matrix is used to assign External Inputs to block individual functions from operating.

Output Matrix

Figure 7.20: Relay Output Matrix

Figure 7.21: LED Output Matrix
The Relay Output and LED Output matrices determines which function initiates which output relay and LED. All output relays have an individual user-selectable stretch time, except those outputs identified as communication initiation outputs. They can have their time delay characteristics changed. Functions also initiate recording as required.

For a particular function to operate correctly, it must be enabled and must also have its logic output assigned to at least one output contact if it is involved in a tripping function.

Print the entire output matrix by selecting Print under the File menu. This printout is produced on 2 pages.

Settings Summary

Figure 7.22: Settings Summary
Select Settings Summary to view and print the relay settings in text form, for details see "IED Settings and Ranges" in Appendix B.

7.2 RecordGraph Software

Introduction

RecordGraph is a tool that is used to display and analyze records from ERL relays and recorders. Use it to graphically view the data recorded during faults and swings. RecordGraph provides many powerful analysis tools including:

- Timeline view
- Overlay view
- Phasor view
- Symmetrical Component view
- Harmonic view
- Sub-Harmonic view

Figure 7.23: RecordGraph

Launching RecordGraph from Relay Control Panel

1. Go to the Records screen in Relay Control Panel.
2. Select one or more remote records on the relay. Press the Get from Relay Button to retrieve the records from the relay and to store them locally. Select one or more local records and press the Graph button to launch the record(s) in RecordGraph.
OR
Double-click on a remote record to directly graph it in RecordGraph

For further instructions on how to use the software, refer to the RecordGraph Manual.

7.3 RecordBase View Software

Introduction

RecordBase View is a Windows-based software tool for displaying and managing records from ERL relays and recorders. RecordBase View features include:

- Record displays and analysis
- Storage and management of records in database
- Record summaries including event lists and user annotation
- COMTRADE, PTI and Excel export
- Windows Explorer integration
- Compatibility with RecordBase Server database

Figure 7.24: RecordBase View

For further instructions on how to use the software, refer to the RecordBase View User Manual.

7.4 RecordBase Central Station Software

The RecordBase Central Station software provides automated collection, storage and network-wide access to fault and disturbance data produced by supported ERL recorders and relays. RecordBase ensures the recording data is automatically brought to a secure central location and is made available to staff throughout your company for display and analysis.

The RecordBase Central Station software is available for purchase. For more information, visit the ERLPhase website: www.erlphase.com

Figure 7.25: RecordBase System Overview

For further instructions on how to use the software, refer to the RecordBase Central Station User Manual.

8 Acceptance/Protection Function Test Guide

8.1 Introduction

The acceptance test section is a guide for testing any and all protection elements in the relay. These tests should be performed upon first delivery of the relay, prior to applying in-service settings. Once in-service settings are applied, ERL recommends that the user test enabled functions to ensure the designed application is fulfilled.

This section deals with the Acceptance Testing and the F-PRO 298 Acceptance Test Procedure.

First, the acceptance testing describes the test equipment requirements, calibration methods, testing the external inputs and testing the output relay contacts.

Next, a step-by-step test procedure for testing all the relay devices is outlined.

8.2 Acceptance Testing

ERL relays are fully tested before leaving the factory. A visual inspection of the relay and its packaging is recommended on receipt to ensure the relay was not damaged during shipping.

The electronics in the relay contain static sensitive devices and are not user-serviceable. If the front of the relay is opened for any reason exposing the electronics, take extreme care to ensure that the user and the relay are solidly grounded.

Generally an analog metering check, as well as testing the I/O (External Inputs and Output Contacts) is sufficient to ensure the functionality of the relay. Further tests can be performed on delivery and acceptance of the purchaser's option according to the published relay specifications in "IED Settings and Ranges" in Appendix B.

Test Equipment Requirements

- 3 ac voltage sources (variable frequency capability)
- 3 ac current sources
- 1 ohmmeter
- 1-300 Vdc test supply

Set nominal CT secondary current to either 5 A or 1 A, and nominal system frequency to either 60 Hz or 50 Hz . This example uses $5 \mathrm{~A} /$ 60 Hz .

Calibration

The relay is calibrated before it leaves the factory; but if component changes are made within the relay, the user may need to do a re-calibration.

Before beginning a new calibration, establish the accuracy of the equipment being used.

To perform a calibration, the user must be logged into the relay using Relay Control Panel at the change/Service access level to the front USB/Ethernet Port.

1. Proceed to the Utilities $>$ Analog Input Calibration.tab The Analog Input Calibration screen lists all of the F-PRO analog input channels.
2. Select the channel to calibrate with your mouse (you may select and calibrate multiple channels at once as long as they are the same qualities).
3. Enter the exact Magnitude of the Applied Signal you are applying your test source.
4. Execute the Calibrate Offset and Gain button.

Figure 8.1: Enter actual applied signal level

Figure 8.2: Calibration error - out of range
If the applied test signal is not reasonable, an error will be displayed and the calibration will not be applied. For example, the figure above, the displayed calibration error message indicates that we tried to calibrate a 63.5 V level with no voltage applied, which is not reasonable.

Testing the External Inputs

Testing the Output Relay Contacts

To test the external inputs connect the relay using Relay Control Panel, Metering $>$ External Inputs. This screen displays the status of the Input and Output Contacts. If the relay is 110 V dc variant place a voltage of 110 V dc nominal, (135 V dc maximum), to each of the external inputs in turn causes the input to change from Low to High status. These inputs are polarity sensitive and this screen has a 0.5 second update rate.

Access the F-PRO service level in Relay Control Panel. Open the Utilities $>$ Outputs tab screen. To toggle outputs you first need to enter Test Mode by selecting the Relay in Test Mode check box. When you check the box, a message will appear prompting you to confirm that you really want to enter this mode. Once you enter Test Mode, the functional green LED on the front of the F-PRO will blink and it will remain blinking until you exit Test Mode. The protection functions cannot access the output contacts in Test Mode; they are controllable only by the user via Relay Control Panel. To toggle a particular output, select it from the drop down list and then click on the Closed button. You can verify the contact is closed with an ohmmeter. The contact will remain closed until you either click the Open button or exit Test Mode.

9 IEC 61850 Implementation Overview

9.1 Introduction

The IEC 61850 standard defines a suite of protocols that permit substation equipment from different manufacturers to communicate with each other. ERL is dedicated to developing IEC 61850-based devices that can be used as part of an open and versatile communications network for power system automation.
The IEC 61850 defines an Ethernet-based protocol used in power systems for data communication. Power systems implement a number of devices for protection, measurement, detection, alarms, and monitoring. System implementation is often slowed down by the fact that the devices produced by different manufacturers are incompatible, since they do not support the same communication protocols. The problems associated with this incompatibility are quite serious, and result in increased costs for protocol integration and system maintenance.

The IEC 61850 is a broad ranging standard which encompasses the entire scope of power system automation, from the highest level of substation design to the lowest level of the communication protocol implementation on IEDs. The IEC 61850 Standard also defines a standard Engineering Process which is an iterative process which allows for the implementation and management of power system automation.
Some key concepts which are discussed further in the following sections are:

- Substation Configuration Language (see Section 9.2)
- The Engineering Process (see Section 9.3)
- Edition 2.0 Implementation (see Section)

Parts of the Standard

The IEC 61850 Standard is comprised of many parts. The parts of the standard which are most relevant to the implementation in this device are:

- IEC 61850-6 Edition 2.0: Configuration description language for communication in electrical substations related to IEDs
- IEC 61850-7-2 Edition 2.0: Basic information and communication structure - Abstract communication service interface (ACSI)
- IEC 61850-7-3 Edition 2.0: Basic communication structure-Common data classes
- IEC 61850-7-4 Edition 2.0: Basic communication structure - Compatible logical node classes and data object classes

9.2 The Substation Configuration Language (SCL)

The Substation Configuration Language (SCL) is an XML based language which provides the basis for interoperable data exchange between IEDs from different vendors and between configuration tools. The SCL file structure is comprised of five main parts:

- Header - defines file information history
- Communication - defines access points and network configurations
- Substation - defines the substation equipment and provides coordinates for locating equipment on a Single Line Diagram
- IED - provides the definition of the IED(s) including the Services, Logical Devices, Logical Nodes, DataSets, Report Control Blocks, GOOSE Control Blocks and Sampled Value Control Blocks
- DataType Templates - contains the templates which define common data used within the data model

There are multiple types of SCL files which are used for different applications within the Engineering Process. Each type of SCL file is constructed using the sections defined above, but not all SCL file types contain all five sections (for example, the CID file type does not include a Substation section).
The SCL File types are:

- SSD - System Specification Description.

Data exchange from a system specification tool to the system configuration tool.

- SED - System Exchange Description.

Data exchange between system configuration tools of different projects.

- SCD - System Configuration Description.

Data exchange from the system configuration tool to IED configuration tools.

- ICD - IED Configuration Description. Data exchange from the IED configuration tool to the system configuration tool. Defines the IEDs capabilities and Data Model.
- IID - Instantiated IED Description.

Data exchange from the IED configuration tool to the system configuration tool which contains add-on and/or modified values.

- CID - Configured IED Description.

Data exchange from the IED configuration tool to the IED.
ERL 61850 IED Configurator supports all of the SCL File types which are directly related to IED configuration (SCD, ICD, IID and CID).

9.3 The Engineering Process

The IEC 61850 standard defines an Engineering Process which is used to manage and implement substation automation. The basic Engineering Process is shown in the diagrams below. For further details, refer to IEC 61850-6 Edition 2.0.

Figure 9.3: The Engineering Process

Figure 9.4: Iterations between IED Configuration Tool and System Configuration tool
ERL 61850 IED Configurator supports import and export of CID, ICD, IID and SCD, thus making it compatible with the Engineering Process. Refer to the ERL 61850 IED Configurator user manual for more details.

Note: Importing SCD files which contain mapping to ERL Devices which use IEC 61850 Edition 1.0 is not fully supported and is not recommended. ERL devices which support IEC 61850 Edition 2.0 fully support the SCD import feature and thus are compatible with System Configuration Tools as part of the Engineering Process.

9.4 Control Commands

The F-PRO 298 provides both Single Point (SPC) and Double Point (DPC) Control Commands for control via a 61850 MMS Client. There are 12 Single Point Control Commands provided (six are latching, six are pulsing) and 4 Double Point Control Commands (pulsing). Each Control Command has a user configurable channel name.

The F-PRO 298 implementation provides support for Local and Remote modes. It also supports a Security option which limits configuration of the Local and Remote modes to Change and Service users.

These Control Commands are available as ProLogic inputs (DPC and SPC) as well as for mapping directly from the Output Matrix and LED Matrix (SPC only).

Configuration of Control Command Names

Configuration of Mode and Security

Each of the 16 Control Command has a user configurable channel name. This Configuration is available in F-PRO Offliner (see "Control Commands" on page 7-12). The configured name will be reflected on the metering, events and recording.

The Control Commands may be operated in three modes: Off, Local and Remote. These three modes are configurable via the Utilities > Control window in RCP, as shown below, or via the front panel user interface.

Figure 9.5: Control Window
When the Mode setting is changed, this mode change is reflected in the Event log and the current Mode status is available as a ProLogic input. This ProLogic may be used to create Local or Remote control schemes:

ProLogic 1 [CB Close Rmt]

Figure 9.6: ProLogic Remote Control example
The Control Mode is also available for mapping to a status LED and is also shown in Events and Records. It is not available as a metering point.
The Security setting allows for limiting configuration of the Mode setting based on security access level. The Security setting may only be modified by the Service access level.

When the Security is set to Off, then all three access levels (View, Change and Service) may modify the Mode setting. When the Security is set to On, only the Change and Service access levels may modify the Mode setting.

Latching and Pulsing

There are two methods of activation for the Control Commands, Pulse and Latch.

SPC 1-6 Controls are set as Pulsing commands. This means when the Control Command is executed, all of the logic downstream from the SPC (PL, OC, LED, Event etc.) will transition to the "True" state for a period of 1 second and then will transition back to "False". However, in the current implementation, the Metering point and IEC 61850 Data attribute associated with this SPC will remain True until the 61850 client sets the SPC to False via a control command execution.
DPC 1-4 Controls are also set as Pulsing commands. This means when the Control Command is executed, the logic downstream from the DPC (PL, Events etc.) will transition to the On state for a period of 1 second and then will transition back to Off. However, in the current implementation, the Metering point and IEC 61850 Data attribute associated with this DPC will remain On until the 61850 client sets the DPC to Off via a control command execution.

In the current implementation, for the Pulse command points (SPC 1-6, DPC 1-4), the associated Metering channel and IEC 61850 Data Attribute will remain latched in the True state after a command execution. The state must manually be reset using a command execution to return the state to False.

SPC 7-12 Controls are set as Latching commands. This means when the Control Command is executed, the SPC point will remain in it's new state until a new Control Command is executed.

9.5 IEC 61850 Edition 2.0 Implementation

The F-PRO 298, starting with firmware version 1.5, uses the second edition of the 61850 Standard. Edition 2.0 of the standard provides many new functionalities. The major changes which have been implemented in the F-PRO 298 from Edition 2.0 of the standard are described below.

Test Features

IEC 61850 Edition 2.0 introduced two new test features: Simulation and Mode Control. Simulation is an IED level test feature which allows the IED to subscribe to simulated GOOSE messages from test-set devices. The Mode Control is an LD level test feature (for testing LDs independently) which allows the LD to process or ignore incoming "test" data. These two features are described in detail below.

Simulation

Edition 2.0 introduced a new Simulation function. Simulation allows for 61850 publisher devices to publish "simulated" GOOSE messages, and for 61850 subscriber devices to subscribe to these "simulated" GOOSE. The devices which publish simulated GOOSE are typically test-set devices used for testing and commissioning. A simulated GOOSE means a GOOSE message with the "Simulation/Test" flag set to True. The F-PRO 298 has the ability to subscribe to simulated GOOSE, but does not publish any simulated messages.

Figure 9.7 shows the basic flow of how Simulation subscription works for GOOSE subscription.

Setting the IED into Simulation mode allows for the IED to subscribe to both real and simulated GOOSE messages simultaneously. The simulation mode is controlled by the SYS/LPHD1.Sim attribute. If the LPHD1.Sim attribute is set to True via a control command, then the IED may begin to subscribe to Simulated GOOSE messages.
When the IED is in Simulation mode (LPHD1.Sim = True), then the IED will continue to subscribe to real GOOSE (see diagram 2 in Figure 9.7). However, once a simulated GOOS has been received, the IED will ignore the real GOOSE message if a duplicate real and simulated GOOSE exist simultaneously (see diagram 3 in Figure 9.7). The simulation mode works on a per-GOOSE subscription basis.

Figure 9.7: Simulated GOOSE processing
For example, imagine an F-PRO 298 is subscribing to GOOSE A and GOOSE B simultaneously (see diagram 1 in Figure 9.7) and then the IED is then set into simulation mode (see diagram 2). The IED will continue to subscribe to the real GOOSE messages as no simulated messages have been received yet. Next, a test-set publisher begins to publish GOOSE A (Simulation = True) and while the real GOOSE A and GOOSE B are still being published on the network (see diagram 3). The IED will successfully subscribe to GOOSE A (Simulation = True) and GOOSE B, but GOOSE A will be ignored. If the test-set stops publishing GOOSE A (Simulation = True) the IED will not return to subscribing to the real GOOSE A until the simulation mode is manually turned off (see diagram 4).

In order to monitor the simulation state of the device, monitor the LGOS.Sim.StVal attribute for each GOOSE subscription (see "Subscription Supervision via LGOS" on page 9-10 for more details). LGOS.Sim.StVal = True is an indication that only simulated GOOSE will be accepted for this particular GOOSE subscription. Once the LPHD1.Sim is set back to FALSE, all LGOS.Sim.StVal attributes will change back to FALSE.

Mode Control

The use of the Mod data object was expanded in Edition 2.0 (appended by TISSUE \#671) to included the following Modes:

- On
- Blocked
- Test
- Test/Blocked
- Off

The F-PRO 298 implementation currently supports the use of modes On, Test and Test/Blocked. Control the mode via a control command to change the value of the LLN0.Mod data object. The LLN0.Mod may only be controlled for subscription Logical Devices on the F-PRO 298.

The LLN0.Mod value determines how incoming data is processed and how data quality output is published. It also determines how control commands are processed. For example, a subscription LD will only process incoming data with q.test $=$ True if the LLN0.Mod is also set to Test or Test/Blocked.

The status of the LLN0.Mod object is reflected in the Beh object for all LNs within the LD. If any LD LLN0.Mod is set to Test or Test/Blocked, the front panel "Test Mode" LED will be turned on.

For further details regarding the behavior different modes, refer to IEC 61850-7-4 Annex A (appended by TISSUE \#671).

Table 9.12: Mode Implementation on the F-PRO 298 (based on Table A. 2 in IEC 61850-7-4 (Edition 2) Appended by TISSUE \#671)

	Mode		
	On	Test	Test/Blocked
Output to process via a non- $\mathbf{6 1 8 5 0}$ link	Yes	Yes	No
Output of FC, ST, MX (issued independently from Beh)	Value is relevant. q is relevant.	Value is relevant. q.test=true	Value is relevant. q.test=true
Response to Normal Command from Client	Positive Acknowledge- ment	Negative Acknowledge- ment	Negative Acknowledge- ment
Response to TEST Command from Client	Negative Acknowledge- ment	Positive Acknowledge- ment	Positive Acknowledge- ment
Incoming Data with Validity = Good and Test $=$ False and operatorBlocked $=$ false	Process as Valid	Process as Valid	Process as Valid
Incoming Data with Validity = Good and Test = True and operatorBlocked = false	Process as Invalid	Process as Valid	Process as Valid

Subscription Supervision via LGOS

A new logical nodes, LGOS has been added in Edition 2.0 to provide the ability to supervise GOOSE subscription statuses. The LGOS LN is used to monitor GOOSE subscriptions.

One LGOS LN is created for each GOOSE Control Block which the IED subscribes to. The data objects of the LGOS LN are described in the table below:

Table 9.13: LGOS LN

Data Object	Description
NdsCom	Subscription needs commissioning
St	Status of the subscription (True = active, False = not active). If LGOS.St = False, this means that this GOOSE has not been received for 2x Time Allowed to Live.
SimSt	Status showing if simulated messages are received and accepted (see "Simulation" on page 9-7)
LastStNum	Last state number received
ConfRevNum	Expected configuration revision number
GoCBRef	Reference to the subscribed GOOSE control block

Subscription Supervision in the Event Log

The LGOS logical nodes are used to indicate GOOSE Communication Alarms in the Event Log. When the LGOS.St attribute transitions states, an event is logged into the TESLA event log with the indexed logical node name. This indexed logical node may be used to troubleshoot communication issues.

Figure 9.8: Event Log Subscription Supervision

Subscription to IdName

There are two Logical Device naming methods (LDName), used for object references, described in IEC 61850-6 Edition 2.0. These methods are:

- Product-related naming
- Function-related naming

In product-related naming, the LDName is comprised of the IED name and the LDevice inst attribute. ERL IEDs only use product-related naming for Logical Device naming. For example, for an F-PRO 298 with the IED name "MyLPRO", the LDName for the Protection LD would be:
LDName = IED name/LDevice inst = MyLPRO/Protection

In function-related naming, the LDName is derived from the LDevice ldName attribute. For IEDs to support the use of $l d N a m e$, they must support the free setting of the Logical Device names. ERL IEDs do not support free setting of the Logical Device names, and so do not use the ldName attribute. However, Edition 2.0 ERL IEDs do support subscribing to data from other vendor's IEDs which use the function-related naming via the ldName attribute.
Data from an IED which uses the ldName attribute may be mapped to the ERL Edition 2.0 IED for subscription. The ldName attribute shows in the ldName column on the GOOSE Subscription screen in ERL 61850 IED Configurator.

Figure 9.9: Mapping from IED which uses IdName attribute
Note: Edition 1.0 does not support the IdName attribute, so Edition 1.0 IEDs cannot subscribe to Edition 2.0 IEDs which use the IdName attribute. See "Mapping Edition 2.0 Data to an Edition 1.0 IED" on page 9-13 for other a summary of Edition 2.0 to 1.0 mapping incompatibilities.

Subscription to Fixed-Length GOOSE

IED Name Length

Common Data Classes

In IEC 61850 Edition 2.0, fixed-length encoded GOOSE messages were introduced. This is an optimized version of GOOSE encoding which uses a fixed length offset for each field of the GOOSE packet. If a GOOSE Control Block has the fixedOffs attribute set to True, this indicates that the GOOSE message uses fixed-length encoding.

ERL IEDs do not support publishing the fixed-length encoded GOOSE messages (fixedOffs attribute is always set to False). However, ERL IEDs can subscribe to GOOSE messages from other vendors which use fixed-length encoded GOOSE messages.

The fixed-length GOOSE subscription is backwards compatible, meaning that even ERL devices which use Edition 1.0 of the standard can subscribe to fixedlength GOOSE messages.

Edition 2.0 of the IEC 61850 standard allows for longer IED names. The maximum IED name length allowed according to the standard is 64 characters. However, this is limited by the total maximum allowed length for LDName references which is also limited 64 characters. The LDName is defined as $I E D$ name/LDevice inst (see "Subscription to ldName" on page 9-11). The total IED name + LDevice inst character count may not exceed 64 characters. This is handled automatically in ERL 61850 IED Configurator. The software ensures that IED name length does cause the maximum length for the LDName to be exceeded. For example, if the longest LDevice inst name is 10 characters long, then IED name length is limited to 54 characters, so that IED name + LDevice inst does not exceed 64 characters.

In Edition 2.0 of the IEC 61850 Standard some new Common Data Classes (CDC) were added and others were updated. The only CDC change in Edition 2.0 which affects the F-PRO 298 implementation is the LLN0.Beh data object was changed from CDC Type INS to ENS. The F-PRO 298 uses the ENS CDC type for LLN0.Beh as required by Edition 2.0.

Edition 1.0 Compatibility

In general, Edition 1.0 and Edition 2.0 devices are compatible with each other for GOOSE mapping. However, there are some backward compatibility issues which the user should be aware of before attempting mapping between Edition 1.0 and Edition 2.0 devices.

Mapping Edition 1.0 Data to an Edition 2.0 IED

There are no compatibility issues when mapping data from an Edition 1.0 ERL IED to an Edition 2.0 ERL IED. The Edition 2.0 of the IEC 61850 Standard is designed to handle this forward-compatibility case.

Mapping Edition 2.0 Data to an Edition 1.0 IED

Edition 2.0 of the IEC 61850 introduced some backward-compatibility limitations when mapping to an Edition 1.0 IED. The user should be aware of these limitations before configuring mapping Edition 2.0 data to an Edition 1.0 IED.

In order to map data from an Edition 2.0 IED to an Edition 1 IED, the following restrictions must be followed:

- The IED Name on the Edition 2.0 IED (publisher) must be limited such that IED Name + Longest LD Inst does not exceed 32 characters. This restriction is not enforced by ERL IEC 61850 Configurator, it is the responsibility of the user to ensure name length on the Edition 2.0 IED is not too long.
- The Edition 2.0 publisher cannot use function-related naming (i.e. ldName attribute). Edition 1.0 does not support the ldName attribute. If the Edition 2.0 publisher uses the ldName attribute, then its data may not be mapped to an Edition 1.0 ERL IED. ERL 61850 IED Configurator prevents this mapping when attempted by the user. The F-PRO 298 does not support publishing the ldName attribute, so this condition only applies when mapping with third party vendors who support the ldName attribute.
- In Edition 2.0 of the standard, new CDCs were introduced which may cause backward-compatibility issues. These new CDCs do not apply to the implementation in the F-PRO 298 and therefore this should not cause any issues when mapping between ERL Edition 1.0 and 2.0 devices. However, the user should be aware when mapping from other vendor's IEDs that there may be issues if using data from CDCs which are newly introduced in Edition 2.0.

Appendix A IED Specifications

F-PRO 298 Specifications

Item	Quantity/Specs	Note
General		
Overvoltage Category	Overvoltage Category III	
Pollution Degree	Pollution Degree 2	
Insulation Class	Class I	
Ingress Protection	IP 5X (Front) IP 1X (Rear)	
Nominal Frequency	50 or 60 Hz	
Operate Time	Less than 35ms	Including output relay operation
Power Supply	Nominal Voltage: High Range Supply Option: 110-250 Vdc, 100-240 Vac Low Range Supply Option: 24-48 Vdc Voltage Tolerance: High Range Supply Option: $\pm 20 \%$ for Vdc, $-10 \% /+5 \%$ for Vac Low Range Supply Option: -15\%/+20\% Power Consumption: $\begin{aligned} & <8 \mathrm{VA}(\mathrm{AC}) \\ & <8 \mathrm{~W}(\mathrm{DC}) \end{aligned}$	
Memory	Settings and records are stored in non-volatile memory	Records are stored in a circular buffer
Sampling Rate - Analog and Digital Inputs	32 samples/cycle for recording 8 samples /cycle for protection	Records up to the 8th Harmonic
A/D Resolution	16 bits, 65536 counts full scale	
Operating Temperature	$-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ continuous	LCD contrast impaired for temperatures below $-20^{\circ} \mathrm{C}$ and above $60^{\circ} \mathrm{C}$
Protection Functions		
27/59DT (1 to 6), 27/59IT (1 to 2), 24DT (1 to 2), 24IT, 47DT (1 to 2), 47IT, 59NDT (1 to 2), 59NIT, 37(1 to 2) $50 / 67$ (1 to 2), $51 / 67$ (1 to 2), $50 \mathrm{~N} / 67 \mathrm{~N}$ (1 to 2), $51 \mathrm{~N} / 67 \mathrm{~N}$ (1 to 2), 46/50, 46/51, 64/50SEF (1 to 2), 64/ 51SEF (1 to 2), 49, 50BF_Int, 50BF_Ext, 50BF_DICBF, 46BC, 81HBL2, 81U/O (1 to 8), 81R (1 to 4), 32(1 to 4), 60VTS, 60CTS, $74 \mathrm{TCS}(1$ to 2$),{ }^{\wedge} 2 \mathrm{t}-\mathrm{CB}, \operatorname{THD}(1$ to 2$)$, 25/27/59, 79 and ProLogic	4 current inputs 4 voltage inputs	

F-PRO 298 Specifications

Item	Quantity/Specs	Note
ProLogic	20 statements per setting group	5 inputs per ProLogic ${ }^{\text {TM }}$ statement
Setting Groups	8 Setting Groups	
Recording		
Transient (Fault)	$32 \mathrm{~s} / \mathrm{c}$ oscillography of all analog and external input channels	User-configurable 1 to 10 seconds Record length and 0.1 to 0.5 seconds pre-fault length
Events	1000 events circular log with 1 ms resolution	A compressed event record can be created 1000 events with manual trigger.
Record Capacity	20 records of a combination of transient and event records	
Inputs \& Outputs		
Analog Voltage Inputs 1 set of 3-phase voltage inputs, 1 voltage input for Vsync	Nominal Voltage - across input channel: $\text { Vn = 63.5 Vrms (Ph-n) or } 110 \mathrm{Vrms} \text { (Ph-Ph) }$ Full Scale/Continuous: 175 Vrms (Ph-n) or 247 Vrms (Ph-Ph) Burden: <0.15VA @ Vn	
Analog Current Inputs 1 set of 3-phase current inputs, 1 single phase current input for SEF (4 current channels)	Phase CTs Nominal Current: $\text { In = } 1 \text { Arms or } 5 \text { Arms }$ Full Scale/Continuous: 4 x In $=4$ Arms or 20 Arms Maximum full-scale rating: 100x In for 1 second symmetrical Burden: <0.1 VA @ 1 Arms, <0.5VA @ 5 Arms	
	SEF CT Nominal Current: $\text { In = } 1 \text { Arms or } 5 \text { Arms }$ Full Scale/Continuous: 2 x In $=2$ Arms or 10 Arms Maximum full-scale rating: $4 x \ln$ for 1 second symmetrical Burden: <1 VA @ 1 Arms, <2VA @ 5 Arms	

F-PRO 298 Specifications

Item	Quantity/Specs	Note
External Inputs	14 isolated inputs Isolation: 2 kV optical isolation Burden: <0.2W @ 110V DC Turn-on Voltage: 24 Vdc nominal $=19 \mathrm{Vdc}$ 48 Vdc nominal $=38 \mathrm{Vdc}$ 110 Vdc nominal $=88 \mathrm{Vdc}$ 220 Vdc nominal $=175 \mathrm{Vdc}$	Optional 24, 48, 110 or 220 Vdc nominal, externally wetted. All inputs can be on continuously. Specified voltages are over full ambient temperature range.
Output Relays (contacts)	14 programmable outputs (13 NO and 1 NC) Make: 30 A as per IEEE C37.90 Carry (all outputs active): 8 A Break: 0.9 A at 125 Vdc resistive 0.35 A at 250 Vdc resistive	Externally wetted
Virtual Inputs	30 Virtual Inputs	
Interface \& Communication		
Front Display	128×64 pixels graphics LCD	
Front Panel Indicators	14 LEDs: 13 programmable, 1 fixed	Fixed: Relay Functional
Front User Interface	USB port	Full Speed USB 2.0, 480 Mbps
Rear User Interface	Port 31A: 100Mbps-T,RJ45/100Mbps-Fx, ST Port 31B: 100Mbps-T,RJ45/100Mbps-Fx, ST (PRP) Port 32: RS-485 (2400bps to 57600bps)	100 Mbps Copper/FO Ethernet port Serial RS485 Port
SCADA Interface	IEC61850 (Ethernet) or DNP3 (RS-485 or Ethernet) or Modbus (RS-485) or IEC 60870-5-103 (RS-485)	Rear port
Time Sync	Port 331: IRIG-B, 1 BNC connector/unit, SNTP	Modulated or unmodulated, jumper selection
Self Checking/Relay Inoperative	RL14: 1CO contact configurable	Closed when relay inoperative
Physical		
Weight	6kg	
Dimensions	E8 case: 177 mm Height x 207 mm Width x 225mm Depth	
Mounting	Horizontal Rack Mount E8 case: 159 mm Height $\times 201.5 \mathrm{~mm}$ Width	
Time Synchronization		

F-PRO 298 Specifications

Item	Quantity/Specs	Note
External Time Source	Synchronized using IRIG-B input (modulated or unmodulated) 1PPM SNTP	In the absence of an external time source, the relay maintains time with a maximum 20ppm at a constant temperature of 25 C . The relay can detect loss of re-establishment of external time source and automatically switch between internal and external time.
Overall F-PRO Accuracies		
Current	$\pm 2.5 \%$ of inputs from 0.1 to $1.0 \times$ nominal current (In)	
	$\pm 1.0 \%$ of inputs from 1.0 to $4.0 \times$ nominal current (In)	
Voltage	$\pm 1.0 \%$ of inputs of nominal voltage (V)	
Timers	$\pm 2.5 \%$ of set value plus 1.00 to 1.50 cycles of inherent delay	
Inverse Overcurrent Timers	$\pm 2.5 \%$ or ± 1 cycle of selected curve	
Definite Overcurrent Timers	$\pm 2.5 \%$ or ± 1 cycle non-directional	
	$\pm 2.5 \%$ or ± 1.5 cycle directional	

Type Tests

Test	Description		Test Level
	Type Test	Test Points	
Electromagnetic Compatibility			
IEC 60255-26:2013CI.No.7.2.3	Electrostatic discharge	Enclosure air	+/-8 kV
		Enclosure contact	+/-6 kV
IEC 60255-26:2013 CI.No.7.2.4	Radiated Interference (Electromagnetic field immunity)	Enclosure ports	$10 \mathrm{~V} / \mathrm{m}: 80-1000 \mathrm{MHz}$ \& 1.4 GHz-2.7 GHz
IEC 60255-26:2013 CI.No.7.2.5	Electrical Fast Transient	AC/DC power ports	+/-4 kV
		AC voltage \& current ports	
		External I/P \& O/P ports	
IEC 60255-26:2013 CI.No.7.2.6	Slow Damped Oscillatory / High Frequency Disturbance / 1 MHz Burst Disturbance	AC/DC power ports	$\begin{aligned} & \text { +/- } 2.5 \mathrm{kV}(\mathrm{CM}) \\ & +/-1 \mathrm{kV} \text { (DM) } \end{aligned}$
		AC voltage \& current ports	
		External I/P \& O/P ports	
$\begin{aligned} & \text { IEC 60255-27:2013 } \\ & \text { CI.No.10.6.4.4 } \end{aligned}$	Insulation Resistance Test	AC/DC power ports	>100M ${ }^{\text {@ }} 500 \mathrm{~V} / \mathrm{min}$
		AC voltage \& current ports	
		External I/P \& O/P ports	
```IEC 60255-21-1, class 1 Frequency: (10- 150)Hz```	Vibration Response \& Endurance Test		Displacement:0.035mm(peak)   Acceleration: $0.5 \mathrm{~g} \& 1 \mathrm{~g}$   Sweep rate: 10 ctave/min   No. of Axis:3(X,Y \& Z)   No. of Sweep Cycles:1/axis \& 20/axis
IEC 60255-21-2, class 1	Shock Response \& Endurance Test		Acceleration: $5 \mathrm{~g} \& 15 \mathrm{~g}$   Pulse Width:11ms   Pulse Sweep: $1 / 2$ sine wave   No. of Shocks:3/direction   No. of Directions:2/axis   No. of Axis:3(X,Y \& Z)   Total No. of Shocks:18 + 18
IEC 60255-21-3, class 1 Frequency: $(5-35) \mathrm{Hz}$	Seismic Test		For X-axis:   Displacement:3.5mm(peak)   Acceleration: 1.0 g   Sweep rate: 1octave/min   For Y-axis:   Displacement:1.5mm(peak)   Acceleration: 0.5 gn   Sweep rate:1 octave/min

## Type Tests

Test	Description		Test Level
	Type Test	Test Points	
IEC 60255-21-2, class 1	Bump Test		Acceleration: 10 g   Pulse Width: 16 ms   Pulse Shape: $1 / 2$ sine wave   No. of Bumps: 1000/direction   No. of Directions: 2/axis   No. of Axis: 3 (X, Y \& Z)   Total No. of Bumps: 6000
Safety			
$\begin{aligned} & \text { IEC 60255-27:2013 } \\ & \text { CI.No.10.6.4.2 } \end{aligned}$	Impulse Voltage	AC/DC power ports AC voltage \& current ports External I/P \& O/P ports	+/- 5 kV
$\begin{aligned} & \text { IEC 60255-27:2013 } \\ & \text { CI.No.10.6.4.3 } \end{aligned}$	AC Dielectric Voltage	AC/DC power ports	$2 \mathrm{kV} / \mathrm{min}$
		AC voltage \& current ports	
		External I/P \& O/P ports	
Environmental Tests			
IEC 60068-2-1	Cold test - operational	Enclosure	$-25^{\circ} \mathrm{C}$ for 16 hr
IEC 60068-2-1	Cold test - storage	Enclosure	$-40^{\circ} \mathrm{C}$ for 16 hr
IEC 60068-2-2	Dry heat test - operational	Enclosure	$+55^{\circ} \mathrm{C}$ for 16 hr
IEC 60068-2-2	Dry heat test - storage	Enclosure	$+70^{\circ} \mathrm{C}$ for 16 hr
IEC 60068-2-14	Change of temperature	Enclosure	$25^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$ for 5 cycles
IEC 60068-2-30	Cyclic temperature	Enclosure	$+55^{\circ} \mathrm{C}$ for 5 cycles
IEC 60068-2-78	Damp heat - steady state	Enclosure	$+40^{\circ} \mathrm{C}$ for 240 hrs

## A. 1 IDMTL Element Operating Time Curves



Figure A.10: IEC Very Inverse


Figure A.11: IEC Standard Inverse 3


Figure A.12: IEC Standard Inverse 1


Figure A.13: IEC Long Inverse


Figure A.14: IEC Extremely Inverse


Figure A. 15: IEEE Moderately Inverse


Figure A.16: IEEE Very Inverse


Figure A.17: IEEE Extremely Inverse

## Appendix B IED Settings and Ranges

## B. 1 Settings and Ranges

The Offliner software provides a means for the user to view and print a compact summary of the settings defined in each Setting Group, for a given device. The user can view the summary by selecting the Settings Summary option (last item) under each Setting Group listed in the Offliner application.

The summary includes general data from the Relay Identification screen, as well as all the user-defined names of inputs (e.g. current, voltage, virtual) and control outputs, and Group Logic definitions. It also includes all the user-defined settings along with their respective units and permissible value range.
The following pages illustrate the Settings Summary for Settings Group 1.

F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Relay Identification			
Settings Version	5		
Ignore Serial Number	Yes		
Serial Number	FPRO-298-XX0000000		
Relay ID	RelayID		
Nominal System Frequency	50 Hz		
Standard I/O	14 External Inputs and   14 Output Contacts		
Comments	Comments		
Setting Name	Settings Name		
Date Created/Modified	2020-01-02 11:25:34		
Station Name	Station Name		
Location	Location		
Bay Name	Bay Name		
External Input Names			
El 1	El 1		
El 2	El 2		
El 3	El 3		
El 4	El 4		
El 5	El 5		
El 6	El 6		
El 7	El 7		


Name	Symbol/Value	Unit	Range
El 8	El 8		
El 9	El 9		
El 10	El 10		
El 11	El 11		
El 12	El 12		
El 13	El 13		
El 14	El 14		

Output Contact Names

Output 1	RL 1			
Output 2	RL 2			
Output 3	RL 3			
Output 4	RL 4			
Output 5	RL 5			
Output 6	RL 6			
Output 7	RL 7			
Output 8	RL 8			
Output 9	RL 9			
Output 10	RL 10			
Output 11	RL 11			
Output 12	RL 12			
Output 13	RL 13			
Output 14	RL 14			
Ouput Contar\|				

Output Contact Dropout Timers

Output1 ( RL 1 )	0.10	s	0.00 to 1.00
Output2 ( RL 2 )	0.10	s	0.00 to 1.00
Output3 ( RL 3 )	0.10	s	0.00 to 1.00
Output4 ( RL 4 )	0.10	s	0.00 to 1.00
Output5 ( RL 5 )	0.10	s	0.00 to 1.00
Output6 ( RL 6 )	0.10	s	0.00 to 1.00
Output7 ( RL 7 )	0.10	s	0.00 to 1.00
Output8 ( RL 8 )	0.10	s	0.00 to 1.00
Output9 ( RL 9 )	0.10	s	0.00 to 1.00
Output10 (RL 10 )	0.10	s	0.00 to 1.00
Output11 (RL 11 )	0.10	0.00 to 1.00	


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Output12 (RL 12 )	0.10	s	0.00 to 1.00
Output13 (RL13)	0.10	s	0.00 to 1.00
Output14 (RL14)	0.10	s	0.00 to 1.00
Output Contact Reset Types			
Output 1	Self Reset		Self Reset or Hand Reset
Output 2	Self Reset		Self Reset or Hand Reset
Output 3	Self Reset		Self Reset or Hand Reset
Output 4	Self Reset		Self Reset or Hand Reset
Output 5	Self Reset		Self Reset or Hand Reset
Output 6	Self Reset		Self Reset or Hand Reset
Output 7	Self Reset		Self Reset or Hand Reset
Output 8	Self Reset		Self Reset or Hand Reset
Output 9	Self Reset		Self Reset or Hand Reset
Output 10	Self Reset		Self Reset or Hand Reset
Output 11	Self Reset		Self Reset or Hand Reset
Output 12	Self Reset		Self Reset or Hand Reset
Output 13	Self Reset		Self Reset or Hand Reset
Output 14	Self Reset		Self Reset or Hand Reset
Output Contact Reset			
Reset	<Unused =0>		
Control Command Names			
DPC 1	DPC 1		
DPC 2	DPC 2		
DPC 3	DPC 3		
DPC 4	DPC 4		
SPC 1	SPC 1		


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
SPC 2	SPC 2		
SPC 3	SPC 3		
SPC 4	SPC 4		
SPC 5	SPC 5		
SPC 6	SPC 6		
SPC 7	SPC 7		
SPC 8	SPC 8		
SPC 9	SPC 9		
SPC 10	SPC 10		
SPC 11	SPC 11		
SPC 12	SPC 12		
Virtual Input Names			
VI 1	VI 1		
VI 2	VI 2		
VI 3	VI 3		
VI 4	VI 4		
VI 5	VI 5		
VI 6	VI 6		
VI 7	VI 7		
VI 8	VI 8		
VI 9	VI 9		
VI 10	VI 10		
VI 11	VI 11		
VI 12	VI 12		
VI 13	VI 13		
VI 14	VI 14		
VI 15	VI 15		
VI 16	VI 16		
VI 17	VI 17		
VI 18	VI 18		
VI 19	VI 19		
VI 20	VI 20		
VI 21	VI 21		
VI 22	VI 22		


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
VI 23	VI 23		
VI 24	VI 24		
VI 25	VI 25		
VI 26	VI 26		
VI 27	VI 27		
VI 28	VI 28		
VI 29	VI 29		
VI 30	VI 30		
Target			
Target LED 2	Self Reset		Self Reset or Hand Reset
Target LED 3	Self Reset		Self Reset or Hand Reset
Target LED 4	Self Reset		Self Reset or Hand Reset
Target LED 5	Self Reset		Self Reset or Hand Reset
Target LED 6	Self Reset		Self Reset or Hand Reset
Target LED 7	Self Reset		Self Reset or Hand Reset
Target LED 8	Self Reset		Self Reset or Hand Reset
Target LED 9	Self Reset		Self Reset or Hand Reset
Target LED 10	Self Reset		Self Reset or Hand Reset
Target LED 11	Self Reset		Self Reset or Hand Reset
Target LED 12	Self Reset		Self Reset or Hand Reset
Target LED 13	Self Reset		Self Reset or Hand Reset
Target LED 14	Self Reset		Self Reset or Hand Reset
Target Reset			
Reset	<Unused =0>		
Setting Group Names			
Setting Group 1	SG 1		


Name	Symbol/Value	Unit	Range
Setting Group 2	SG 2		
Setting Group 3	SG 3		
Setting Group 4	SG 4		
Setting Group 5	SG 5		
Setting Group 6	SG 6		
Setting Group 7	SG 7		
Setting Group 8	SG 8		
System Parameters			
CT Configuration			
Phase CT Sec	1A		
SEF CT Sec. Current	1A		
Phase CT Ratio	100.0		1.0 to 30000.0
SEF CT Ratio	100.0		1.0 to 30000.0
VT Configuration			
Phase VT Sec. voltage	63.5	V	40.0 to 160.0
Phase VT Ratio	100		1.0 to 10000.0
Phase CT Sec. Conn	Ph-N		
Sync Voltage Input	A-Ph		
Sync CT Sec. voltage	63.5	V	40.0 to 160.0
Sync VT Ratio	100.0		1.0 to 10000.0
General			
Minimum Voltage Threshold	0.3	V	0.0 to 2.9
Minimum Current Threshold	0.04	A	0.00 to 0.20
Disturbance Record			
Record Length	1	s	1 to 10
Pre Trigger	0.25	s	0.10 to 0.50
Setting Group 1 [SG 1]			
Setting Group Comments: No Comments			
Protection Summary			
Fault Locator	Disabled		
27/59DT-1	Disabled		
27/59DT-2	Disabled		
27/59DT-3	Disabled		


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
27/59DT-4	Disabled		
27/59DT-5	Disabled		
27/59DT-6	Disabled		
27/591T-1	Disabled		
27/591T-2	Disabled		
24DT-1	Disabled		
24DT-2	Disabled		
241 T	Disabled		
47DT-1	Disabled		
47DT-2	Disabled		
471T	Disabled		
59NDT-1	Disabled		
59NDT-2	Disabled		
59NIT	Disabled		
37-1	Disabled		
37-2	Disabled		
50/67-1	Disabled		
50/67-2	Disabled		
51/67-1	Disabled		
51/67-2	Disabled		
$50 \mathrm{~N} / 67 \mathrm{~N}-1$	Disabled		
50N/67N-2	Disabled		
51N/67N-1	Disabled		
51N/67N-2	Disabled		
46/50	Disabled		
46/51	Disabled		
64/50SEF-1	Disabled		
64/50SEF-2	Disabled		
64/51SEF-1	Disabled		
64/51SEF-2	Disabled		
49	Disabled		
50BF_INT	Disabled		
50BF_EXT	Disabled		
DI_CBF	Disabled		


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
46BC	Disabled		
81HBL2	Disabled		
51LR	Disabled		
81U/O-1	Disabled		
81U/O-2	Disabled		
81U/O-3	Disabled		
81U/O-4	Disabled		
81U/O-5	Disabled		
81U/O-6	Disabled		
81U/0-7	Disabled		
81U/0-8	Disabled		
81R-1	Disabled		
81R-2	Disabled		
81R-3	Disabled		
81R-4	Disabled		
32-1	Disabled		
32-2	Disabled		
32-3	Disabled		
32-4	Disabled		
Fault Locator			
Fault Locator	Disabled		
Line Parameters			
Line to Line Voltage	11.00	$\begin{aligned} & \text { kV(Pri- } \\ & \text { mary) } \end{aligned}$	
Line Length	100.00	km	0.50 to 2000.00
Positive Sequence Impedance	10.00	Ohm	0.05 to 330.00
Positive Sequence Angle	80.0	deg	5.0 to 89.0
Zero Sequence Impedance	30.00	Ohm	0.05 to 1500.00
Zero Sequence Angle	80.0	deg	5.0 to 89.0
27/59DT - Phase Definite Time Under/Over Voltage			
27/59DT-1	Disabled		
Function Selection	UV		
Output Gate	AND		
Pickup V	51.0	V	3.0 to 250.0


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Hysteresis	1	\%	1 to 80
Pick DTL Delay	0.20	s	0.00 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
VTS Blocking	Disable		
27/59DT-2	Disabled		
Function Selection	UV		
Output Gate	AND		
Pickup V	51.0	V	3.0 to 250.0
Hysteresis	1	\%	1 to 80
Pick DTL Delay	0.20	s	0.00 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
VTS Blocking	Disable		
27/59DT-3	Disabled		
Function Selection	UV		
Output Gate	AND		
Pickup V	51.0	V	3.0 to 250.0
Hysteresis	1	\%	1 to 80
Pick DTL Delay	0.20	s	0.00 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
VTS Blocking	Disable		
27/59DT-4	Disabled		
Function Selection	UV		
Output Gate	AND		
Pickup V	51.0	V	3.0 to 250.0
Hysteresis	1	\%	1 to 80
Pick DTL Delay	0.20	s	0.00 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
VTS Blocking	Disable		
27/59DT-5	Disabled		
Function Selection	UV		
Output Gate	AND		
Pickup V	51.0	V	3.0 to 250.0
Hysteresis	1	\%	1 to 80
Pick DTL Delay	0.20	s	0.00 to 999.99


Name	Symbol/Value	Unit	Range
Reset DTL Delay	0.00	s	0.00 to 999.99
VTS Blocking	Disable		
27/59DT-6	Disabled		
Function Selection	UV		
Output Gate	AND		
Pickup V	51.0	V	3.0 to 250.0
Hysteresis	1	\%	1 to 80
Pick DTL Delay	0.20	s	0.00 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
VTS Blocking	Disable		
27/591T - Phase Inverse Time Under/Over Voltage			
27/591T-1	Disabled		
Function Selection	UV		
Output Gate	AND		
Pickup V	55.0	V	3.0 to 250.0
Hysteresis	1	\%	1 to 80
Curve Type	IEC Standard In		
TMS	1.00	-	0.01 to 10.00
Pick DTL Delay	10.00	s	0.00 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
A	1.0	-	0.1 to 50.0
B	0.0	-	0.0 to 10.0
p	1.0	-	0.1 to 10.0
VTS Blocking	Disable		
27/59IT-2	Disabled		
Function Selection	UV		
Output Gate	AND		
Pickup V	55.0	V	3.0 to 250.0
Hysteresis	1	\%	1 to 80
Curve Type	IEC Standard In		
TMS	1.00	-	0.01 to 10.00
Pick DTL Delay	10.00	s	0.00 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
A	1.0	-	0.1 to 50.0


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
B	0.0	-	0.0 to 10.0
p	1.0	-	0.1 to 10.0
VTS Blocking	Disable		
47DT - Negative Sequence Definite Time Over Voltage			
47DT-1	Disabled		
Pickup V2	30.0	V	1.0 to 150.0
Hysteresis	1	\%	1 to 80
Pick DTL Delay	0.20	s	0.02 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
VTS Blocking	Disable		
47DT-2	Disabled		
Pickup V2	30.0	V	1.0 to 150.0
Hysteresis	1	\%	1 to 80
Pick DTL Delay	0.20	s	0.02 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
VTS Blocking	Disable		
47IT - Negative Sequence Inverse Time Over Voltage			
471 T	Disabled		
Pickup V2	25.0	V	1.0 to 150.0
Hysteresis	1	\%	1 to 80
Curve Type	IEC Standard In		
TMS	1.00	-	0.01 to 10.00
Pick DTL Delay	10.00	s	0.02 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
A	1.0	-	0.1 to 50.0
B	0.0	-	0.0 to 10.0
p	1.0	-	0.1 to 10.0
VTS Blocking	Disable		
59NDT - Derived Residual Definite Time Over Voltage			
59NDT-1	Disabled		
Pickup VN	10.0	V	1.0 to 250.0
Hysteresis	1	\%	1 to 80
Pick DTL Delay	0.20	s	0.00 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
VTS Blocking	Disable		
59NDT-2	Disabled		
Pickup VN	10.0	V	1.0 to 250.0
Hysteresis	1	\%	1 to 80
Pick DTL Delay	0.20	s	0.00 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
VTS Blocking	Disable		
59NIT - Derived Residual Inverse Time Over Voltage			
59NIT	Disabled		
Pickup VN	7.0	V	1.0 to 250.0
Hysteresis	1	\%	1 to 80
Curve Type	IEC Standard In		
TMS	1.00	-	0.01 to 10.00
Pick DTL Delay	10.00	s	0.00 to 999.99
Reset DTL Delay	0.00	s	0.00 to 999.99
A	1.0	-	0.1 to 50.0
B	0.0	-	0.0 to 10.0
p	1.0	-	0.1 to 10.0
VTS Blocking	Disable		
37 - Instantaneous Phase Undercurrent			
37-1	Disabled		
Pickup 1<<	0.10	A	0.05 to 3.20
Pickup Delay	0.00	s	0.00 to 999.99
37-2	Disabled		
Pickup 1<<	0.10	A	0.05 to 3.20
Pickup Delay	0.00	s	0.00 to 999.99
67-Directional element for Phase Overcurrent			
2 out of 3 Logic	Disabled		
VTS Blocking	Disabled		
Polarization Method	Quadrature		
Line Positive Sequence Angle	80.0	deg	5.0 to 89.0
Line Zero Sequence Angle	80.0	deg	5.0 to 89.0
67-Sequence Method			


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Negative Sequence Directional Element	Disabled		
V2 Sensitivity Level	0.50	V	0.50 to 5.00
12 Sensitivity Level	0.04	A	0.02 to 0.20
Zero Sequence Directional Element	Disabled		
3V0 Sensitivity Level	1.00	V	1.00 to 10.00
310 Sensitivity Level	0.04	A	0.04 to 0.40
Positive Sequence Directional Element	Disabled		
V1 Sensitivity Level	1.00	V	1.00 to 10.00
11 Sensitivity Level	0.04	A	0.04 to 0.40
67-Quadrature Method			
Characteristic Angle	45	Deg	-95 to 95
Minimum Voltage	1.00	V	1.00 to 40.00
50/67 - Instantaneous Phase Overcurrent			
50/67-1	Disabled		
Direction Selection	Non-Directional		
Pickup 1>>	10.00	A	0.05 to 25.00
Pickup Delay	0.00	s	0.00 to 999.99
Inrush Block	Disabled		
50/67-2	Disabled		
Direction Selection	Non-Directional		
Pickup 1>>	10.00	A	0.05 to 25.00
Pickup Delay	0.00	s	0.00 to 999.99
Inrush Block	Disabled		
51/67-IDMTL Phase Overcurrent			
51/67-1	Disabled		
Direction Selection	Non-Directional		
Pickup I>	1.20	A	0.05 to 10.00
Curve Type	IEC standard inv		
TMS	1.00	-	0.01 to 10.00
Pickup DTL Delay	10.00	s	0.00 to 999.99
Reset Delay	DTL		
Reset DTL Delay	0.0	s	0.0 to 999.9


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
A	0.1400	-	-
B	0.0000	-	-
p	0.02	-	-
Reset Delay(TR)	13.50	-	0.10 to 150.00
Inrush Block	Disabled		
51/67-2	Disabled		
Direction Selection	Non-Directional		
Pickup I>	1.20	A	0.05 to 10.00
Curve Type	IEC standard in		
TMS	1.00	-	0.01 to 10.00
Pickup DTL Delay	10.00	s	0.00 to 999.99
Reset Delay	DTL		
Reset DTL Delay	0.0	s	0.0 to 999.9
A	0.1400	-	-
B	0.0000	-	-
p	0.02	-	-
Reset Delay(TR)	13.50	-	0.10 to 150.00
Inrush Block	Disabled		
67N-Directional element for Neutral Overcurrent			
Characteristic Angle	-45	Deg	-95 to 95
Polarization Method	Neg Sequence		
V2/3V0 Sensitivity Level	0.50	V	0.50 to 5.00
I2/310 Sensitivity Level	0.04	A	0.02 to 0.20
VTS Blocking	Disabled		
50/67N - Derived Instantaneous Neutral Overcurrent			
50N/67N-1	Disabled		
Pickup IN>>	1.00	A	0.05 to 25.00
Pickup Delay	0.00	s	0.00 to 999.99
Inrush Block	Disabled		
Inhibit Trip	Disabled		
Inhibit Setting	4.00		4.00 to 10.00
50N/67N-2	Disabled		
Pickup IN>>	1.00	A	0.05 to 25.00
Pickup Delay	0.00	s	0.00 to 999.99


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Inrush Block	Disabled		
Inhibit Trip	Disabled		
Inhibit Setting	4.00		4.00 to 10.00
51/67N - Derived IDMTL Neutral Overcurrent			
$51 \mathrm{~N} / 67 \mathrm{~N}-1$	Disabled		
Direction Selection	Non-Directional		
Pickup IN>	0.20	A	0.05 to 10.00
Curve Type	IEC standard in		
TMS	1.00	-	0.01 to 10.00
Pickup DTL Delay	10.00	s	0.00 to 999.99
Reset Delay	DTL		
Reset DTL Delay	0.0	s	0.0 to 999.9
A	0.1400	-	-
B	0.0000	-	-
p	0.02	-	-
Reset Delay(TR)	13.50	-	0.10 to 150.00
Inrush Block	Disabled		
Inhibit Trip	Disabled		
Inhibit Setting	4.00		4.00 to 10.00
51N/67N-2	Disabled		
Direction Selection	Non-Directional		
Pickup IN>	0.20	A	0.05 to 10.00
Curve Type	IEC standard in		
TMS	1.00	-	0.01 to 10.00
Pickup DTL Delay	10.00	s	0.00 to 999.99
Reset Delay	DTL		
Reset DTL Delay	0.0	s	0.0 to 999.9
A	0.1400	-	-
B	0.0000	-	-
p	0.02	-	-
Reset Delay(TR)	13.50	-	0.10 to 150.00
Inrush Block	Disabled		
Inhibit Trip	Disabled		
Inhibit Setting	4.00		4.00 to 10.00


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
46/50 - Instantaneous Negative Sequence Overcurrent			
46/50	Disabled		
Pickup 12>>	0.25	A	0.05 to 25.00
Pickup Delay	0.00	S	0.00 to 999.99
46/51 - IDMTL Negative Sequence Overcurrent			
46/51	Disabled		
Pickup 12>	0.25	A	0.05 to 10.00
Curve Type	IEC standard in		
TMS	1.00	-	0.01 to 10.00
Pickup DTL Delay	10.00	S	0.00 to 999.99
Reset Delay	DTL		
Reset DTL Delay	0.0	S	0.0 to 999.9
A	0.1400	-	-
B	0.0000	-	-
$p$	0.02	-	-
Reset Delay(TR)	13.50	-	0.10 to 150.00
67SEF - Directional element for SEF			
Characteristic Angle	-15	Deg	-95 to 95
Polarization Method	Neg Sequence		
V2/3V0 Sensitivity Level	0.50	V	0.50 to 5.00
ISEF Sensitivity Level	0.04	A	0.02 to 0.20
VTS Blocking	Disabled		
64/50SEF - Instantaneous SEF/REF			
64/50SEF-1	Disabled		
Measurement Input	Fundamental		
Pickup ISEF>>	0.200	A	0.005 to 3.000
Pickup Delay	0.00	S	0.00 to 999.99
Current Compensation	0.000	A	0.000 to 0.500
64/50SEF-1	Disabled		
Measurement Input	Fundamental		
Pickup ISEF>>	0.200	A	0.005 to 3.000
Pickup Delay	0.00	S	0.00 to 999.99
Current Compensation	0.000	A	0.000 to 0.500
64/51SEF - Inverse Time Sensitive / Restricted Earth Fault			


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
64/51SEF-1	Disabled		
Direction Selection	Non-Directional		
Measurement Input	Fundamental		
Pickup ISEF>	0.200	A	0.005 to 3.000
Curve Type	IEC standard in		
TMS	1.00	-	0.01 to 10.00
Pickup DTL Delay	10.00	s	0.00 to 999.99
Reset Delay	DTL		
Reset DTL Delay	0.0	s	0.0 to 999.9
A	0.1400	-	-
B	0.0000	-	-
p	0.02	-	-
Current Compensation	0.000	A	0.000 to 0.500
64/51SEF-2	Disabled		
Direction Selection	Non-Directional		
Measurement Input	Fundamental		
Pickup ISEF>	0.200	A	0.005 to 3.000
Curve Type	IEC standard in		
TMS	1.00	-	0.01 to 10.00
Pickup DTL Delay	10.00	s	0.00 to 999.99
Reset Delay	DTL		
Reset DTL Delay	0.0	s	0.0 to 999.9
A	0.1400	-	-
B	0.0000	-	-
p	0.02	-	-
Current Compensation	0.000	A	0.000 to 0.500
49 - Thermal Overload			
49	Disabled		
Thermal Overload	1.05	A	0.20 to 2.00
Time Constant	10.00	min	0.50 to 100.00
Neg. Seq. Weighing Factor	0.00	-	0.00 to 10.00
Thermal OL Alarm	Disabled		
Alarm \% Th	80	\%	50 to 100
Circuit Breaker Failure			


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
50BF-Int	Disabled		
50BF-Ext	Disabled		
Pickup 1>>	0.20	A	0.05 to 2.00
Pickup Delay 1	0.20	s	0.00 to 999.99
Pickup Delay 2	0.40	s	0.00 to 999.99
DI_CBF	Disabled		
Pickup Delay 1	0.20	s	0.00 to 999.99
Pickup Delay 2	0.40	s	0.00 to 999.99
46BC - Broken Conductor			
46BC	Disabled		
Pickup I2/11>	30.00	\%	20.00 to 100.00
Pickup Delay	10.00	s	0.02 to 999.99
81HBL2 - Inrush			
81HBL2	Disabled		
Cross Blocking	Enabled		
Pickup I2nd>	15	\%	5 to 50
81U/O - Under/Over Frequency			
81U/O-1	Disabled		
Function Selection	UF		
Pickup F	49.0	Hz	40.0 to 50.0
Hysteresis	0.05	Hz	0.05 to 2
Pickup Delay	2.00	s	0.05 to 999.99
VTS Blocking	Disable		
81U/O-2	Disabled		
Function Selection	UF		
Pickup F	49.0	Hz	40.0 to 50.0
Hysteresis	0.05	HZ	0.05 to 2
Pickup Delay	2.00	s	0.05 to 999.99
VTS Blocking	Disable		
81U/O-3	Disabled		
Function Selection	UF		
Pickup F	49.0	Hz	40.0 to 50.0
Hysteresis	0.05	HZ	0.05 to 2
Pickup Delay	2.00	s	0.05 to 999.99


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
VTS Blocking	Disable		
81U/O-4	Disabled		
Function Selection	UF		
Pickup F	49.0	Hz	40.0 to 50.0
Hysteresis	0.05	HZ	0.05 to 2
Pickup Delay	2.00	s	0.05 to 999.99
VTS Blocking	Disable		
81U/O-5	Disabled		
Function Selection	UF		
Pickup F	49.0	Hz	40.0 to 50.0
Hysteresis	0.05	HZ	0.05 to 2
Pickup Delay	2.00	s	0.05 to 999.99
VTS Blocking	Disable		
81U/0-6	Disabled		
Function Selection	UF		
Pickup F	49.0	Hz	40.0 to 50.0
Hysteresis	0.05	HZ	0.05 to 2
Pickup Delay	2.00	s	0.05 to 999.99
VTS Blocking	Disable		
81U/O-7	Disabled		
Function Selection	UF		
Pickup F	49.0	Hz	40.0 to 50.0
Hysteresis	0.05	HZ	0.05 to 2
Pickup Delay	2.00	s	0.05 to 999.99
VTS Blocking	Disable		
81U/O-8	Disabled		
Function Selection	UF		
Pickup F	49.0	Hz	40.0 to 50.0
Hysteresis	0.05	HZ	0.05 to 2
Pickup Delay	2.00	s	0.05 to 999.99
VTS Blocking	Disable		
81R - Rate of Change of Frequency			
81R-1	Disabled		
Pickup df/dt	-0.5	Hz/s	-10.0 to 10.0


Name	Symbol/Value	Unit	Range
Hysteresis	1	\%	1 to 80
Pickup Delay	1.00	s	0.20 to 999.99
VTS Blocking	Disable		
81R-2	Disabled		
Pickup df/dt	-0.5	Hz/s	-10.0 to 10.0
Hysteresis	1	\%	1 to 80
Pickup Delay	1.00	s	0.20 to 999.99
VTS Blocking	Disable		
81R-3	Disabled		
Pickup df/dt	-0.5	Hz/s	-10.0 to 10.0
Hysteresis	1	\%	1 to 80
Pickup Delay	1.00	s	0.20 to 999.99
VTS Blocking	Disable		
81R-4	Disabled		
Pickup df/dt	-0.5	Hz/s	-10.0 to 10.0
Hysteresis	1	\%	1 to 80
Pickup Delay	1.00	s	0.20 to 999.99
VTS Blocking	Disable		
32 - Directional Power Protection			
32-1	Disabled		
Power Mode	Real		
Measurement Mode	3-Phase		
Operate Level	High		
Power Pickup	1.000	pu	-3.000 to 3.000
Pickup Delay	0.00	s	0.00 to 999.99
Polarity	Disabled		
32-2	Disabled		
Power Mode	Real		
Measurement Mode	3-Phase		
Operate Level	High		
Power Pickup	1.000	pu	-3.000 to 3.000
Pickup Delay	0.00	s	0.00 to 999.99
Polarity	Disabled		
32-3	Disabled		


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Power Mode	Real		
Measurement Mode	3-Phase		
Operate Level	High		
Power Pickup	1.000	pu	-3.000 to 3.000
Pickup Delay	0.00	s	0.00 to 999.99
Polarity	Disabled		
32-4	Disabled		
Power Mode	Real		
Measurement Mode	3-Phase		
Operate Level	High		
Power Pickup	1.000	pu	-3.000 to 3.000
Pickup Delay	0.00	s	0.00 to 999.99
Polarity	Disabled		
Monitoring Summary			
60VTS	Disabled		
60CTS	Disabled		
74TCS-1	Disabled		
74TCS-2	Disabled		
1^2t-CB	Disabled		
THD-1	Disabled		
THD-2	Disabled		
UV	Disabled		
OV	Disabled		
UF	Disabled		
OF	Disabled		
El	Disabled		
AR Counter	Disabled		
60VTS - VT Supervision			
60VTS	Disabled		
11 Blocking	1.5	A	0.1 to 10.0
310 Blocking	0.2	A	0.1 to 10.0
Negative Sequence Monitoring	Disabled		
Vnps	10.0	V	7.0 to 110.0
Inps	0.10	A	0.05 to 1.00


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
60CTS - CT Supervision			
60CTS	Disabled		
Vnps Pickup	20.00	V	7.00 to 110.00
Inps Pickup	0.10	A	0.05 to 1.00
Pickup Delay	10.00	s	0.03 to 999.99
74TCS - Trip Circuit Supervision			
74TCS-1[TCS 1]	Disabled		
Dropoff Delay	0.40	s	0.00 to 9.99
74TCS-2[TCS 2]	Disabled		
Dropoff Delay	0.40	s	0.00 to 9.99
I^2t-CB Condition			
$1 \wedge 2 \mathrm{t}-\mathrm{CB}$	Disabled		
1^2t Limit	0.1	kA^2s	0.1 to 99999.9
THD - Total Harmonic Distortion			
THD-1	Disabled		
Pickup THD-V	3	\%	1 to 100
Pickup Delay	5.00	s	0.00 to 999.99
VTS Blocking	Disable		
THD-2	Disabled		
Pickup THD-V	3	\%	1 to 100
Pickup Delay	5.00	s	0.00 to 999.99
VTS Blocking	Disable		
UV - Undervoltage Count Alarm			
UV	Disabled		
Pickup V	40.0	V	1.0 to 220.0
UV Count	100		1 to 1000
Count Accumulation Period	1	days	1 to 31
OV - Overvoltage Count Alarm			
OV	Disabled		
Pickup V	70.0	V	1.0 to 220.0
UV Count	100		1 to 1000
Count Accumulation Period	1	days	1 to 31
UF - Underfrequency Count Alarm			
UF	Disabled		


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Pickup F	49.90	Hz	50.00 to 60.00
UF Count	100		1 to 1000
Count Accumulation Period	1	days	1 to 31
OF - Overfrequency Count Alarm			
OF	Disabled		
Pickup F	50.10	Hz	50.00 to 60.00
OF Count	100		1 to 1000
Count Accumulation Period	1	days	1 to 31
EI - External Input Count Alarm			
El	Disabled		
Pickup Delay	0.10	s	0.00 to 99.99
El Count	100		1 to 1000
Count Accumulation Period	1	days	1 to 31
Reclosure Count Alarm			
AR	Disabled		
Reclosure Cumm Count	100		0 to 999
Control Summary			
25/27/59	Disabled		
Dead Main Live Sync (DMLS)	Disabled		
Live Main Dead Sync (LMDS)	Disabled		
Dead Main Dead Sync (DMDS)	Disabled		
79	Disabled		
25/27/59 - Check Synchronization			
25/27/59	Disabled		
Maximum Voltage	70.0	V	60.0 to 138.0
Minimum Voltage	40.0	V	40.0 to 69.9
Voltage Difference	5.0	V	1.0 to 20.0
Angle Difference	20.0	deg	1.0 to 50.0
Pickup Delay	0.10	s	0.00 to 10.00
Frequency Difference	Disabled		
Frequency Difference	0.010	Hz	0.010 to 2.000
Dead Main Live Sync (DMLS)	Disabled		
Live Main Dead Sync (LMDS)	Disabled		
Dead Main Dead Sync (DMDS)	Disabled		


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
79-Recloser			
79	Disabled		
Number Of Shots	1		1 to 4
First Reclose - T1	1.00	s	0.10 to 999.99
Second Reclose - T2	5.00	s	1.00 to 999.99
Third Reclose - T3	10.00	s	1.00 to 999.99
Fourth Reclose - T4	20.00	s	1.00 to 999.99
Close Time - Tp	0.20	s	0.01 to 1.00
Reclaim Time - Td	25.00	s	0.00 to 999.99
Initiate Reset - TDI	1.00	s	0.00 to 999.99
Block Reset - TDB	0.50	s	0.00 to 999.99
PL 1 [ProLogic 1]			
ProLogic 1	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
PL 2 [ProLogic 2]			
ProLogic 2	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	SymboI/Value	Unit	Range
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		

PL 3 [ProLogic 3]

ProLogic 3	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4	<Unused = 0>		
Input D			
Operator 5	<Unused = 0>		
Input E			
PL [ProLogi 4]			

PL 4 [ProLogic 4]

ProLogic 4	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
PL 5 ProLegic 5			

## PL 5 [ProLogic 5]

F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
ProLogic 5	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
PL 6 [ProLogic 6]			
ProLogic 6	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
PL 7 [ProLogic 7]			
ProLogic 7	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		

PL 8 [ProLogic 8]

ProLogic 8	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4	<Unused = 0>		
Input D			
Operator 5	<Unused = 0>		
Input E			
PL [ProLogic			

PL 9 [ProLogic 9]

ProLogic 9	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Input E	<Unused = 0>		
PL 10 [ProLogic 10]			
ProLogic 10	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
PL 11 [ProLogic 11]			
ProLogic 11	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
PL 12 [ProLogic 12]			
ProLogic 12	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	SymboI/Value	Unit	Range
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
PL			

PL 13 [ProLogic 13]

ProLogic 13	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4	<Unused = 0>		
Input D			
Operator 5	<Unused = 0>		
Input E			
PL 14 [ProLegic 14]			

PL 14 [ProLogic 14]

ProLogic 14	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
PL 15 [ProLogic 15]			
ProLogic 15	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		

PL 16 [ProLogic 16]

ProLogic 16	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4	<Unused = 0>		
Input D			
Operator 5	<Unused = 0>		
Input E			

PL 17 [ProLogic 17]

ProLogic 17	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
PL 18 [ProLogic 18]			
ProLogic 18	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		

PL 19 [ProLogic 19]

ProLogic 19	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
PL 20 [ProLogic 20]			
ProLogic 20	Disabled		
Pickup Delay-Tp	0.00	s	0.00 to 999.00
Dropout Delay-Td	0.00	s	0.00 to 999.00
Operator 1			
Input A	<Unused = 0>		
Operator 2			
Input B	<Unused = 0>		
Operator 3			
Input C	<Unused = 0>		
Operator 4			
Input D	<Unused = 0>		
Operator 5			
Input E	<Unused = 0>		
Relay Reset			
Reset Type [RL 1]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 2]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 3]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 4]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 5]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 6]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 7]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00


F-PRO Settings Summary - Setting Group 1 [SG 1]			
Name	Symbol/Value	Unit	Range
Reset Type [RL 8]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 9]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 10]	Self Reset	s	0.00 to 1.00
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 11]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 12]	Self Reset		
Dropout Timer	0.10	s	0.00 to 1.00
Reset Type [RL 13]	Self Reset		
Dropout Timer	0.10	Self Reset	0.00 to 1.00
Reset Type [RL 14]	0.10		
Dropout Timer			

## Appendix C Hardware Description

Fascia Board (FB):

## Mother Board (MB):

## CPU Board (CPUB):

The relay is designed and manufactured with high quality features and recording components for a complete feeder protection package. The following information describes the main hardware components of the relay

The FB contains LED's and It also has 7 keys (The keypad is used to navigate the menus on the display to control relay operation by a local user).

The mother board contains graphical LCD, USB interface and the interface connectors to interface to all the boards.

The CPUB has System on Module and it contains high speed dual core processor which performs the entire relay operation. The CPUB is interfaced to Mother Board, which manages the protection features of the relay. The dual core processor manages the user interface and system control features of the relay and RTC backup battery.

The CPUB provides the following functionality:

- DSP processor subsystem manages the protection features of the relay with the floating point arithmetic to provide fast capture and manipulation of data.
- ARM processor subsystem performs the post processing activity like disturbance recording, logging fault \& event, communication protocol support, LCD HMI and PC interface activity.
- NOR and NAND Flash memory supports field software upgrades.
- Settings and records are stored in non-volatile memory.
- Runs on a Real Time Operating System (RTOS).
- Provides Ethernet ports, RS-485 port and USB interface.
- Time synchronism co-processor with modulated and un-modulated IRIG$B$ (input selection through jumper).
- High speed inbuilt link is provided between the DSP and ARM processor subsystems.
- Sophisticated fault detection.


## Analog Input Board (AIB):

## Power Supply

 Board (PSB):
## Digital Input Board (DIB):

Digital Output Board (DOB):

AIB has 8 channel analog inputs ( 5 current transformer inputs and 3 voltage transformer inputs). It provides the analog to digital conversion of ac analog current \& voltage inputs. The sampling rate is fixed at 32 samples/cycle. Each channel is simultaneously sampled using 16 -bit analog to digital converters. The digitized data is sent to the CPUB for processing of protection algorithms.

SMPS provides the power supply for the entire unit. The switching frequency is 132 kHz and it reduces the transformer size with no noticeable impact on EMI, accurate programmable current limit, fully integrated soft-start for minimum start-up stress. The two power supply operating ranges are $20-60 \mathrm{Vdc}$ and $80-300 \mathrm{Vdc}, 100-240 \mathrm{Vac},+/-10 \%, 50 / 60 \mathrm{~Hz}$. This wide operating range provides easier installation by eliminating power supply ordering options. It also 4 digital input channels (Inputs are optically isolated, externally wetted and ordering option with the voltage level of $24 / 48 / 110 / 220 \mathrm{Vdc}$ selection), 3 normally open contact outputs, 1 form A contact output for relaying, alarms \& control. This board is interfaced to the mother board.

This board contains 10 digital input channels (Inputs are optically isolated, externally wetted and ordering option with the voltage level of $24 / 48 / 110 / 220$ Vdc selection). This board is interfaced to the mother board.

This board contains 10 normally open contact outputs for relaying, alarms \& control, This board is interfaced to the mother board.

## Appendix D Event Messages

The following is a list of event messages that are created in the relay for events including trips, alarms, external input assertions, and internal events such as setting changes. This list is referred to from multiple places in this manual.

Event	Notes
27DT-1 Picked up	The possible phase information will be:- A- B- C- AB- BC- CA- ABC
27DT-2 Picked up	
27DT-3 Picked up	
27DT-4 Picked up	
27DT-5 Picked up	
27DT-6 Picked up	
27DT-1 Operated	
27DT-2 Operated	
27DT-3 Operated	
27DT-4 Operated	
27DT-5 Operated	
27DT-6 Operated	
27IT-1 Picked up	
27IT-2 Picked up	
27IT-1 Operated	
27IT-2 Operated	
59DT-1: Picked up	
59DT-2 Picked up	
59DT-3 Picked up	
59DT-4 Picked up	
59DT-5 Picked up	
59DT-6 Picked up	
59DT-1 Operated	
59DT-2 Operated	
59DT-3 Operated	
59DT-4 Operated	


Event	Notes
59DT-5 Operated	The possible phase information will be:
59DT-6 Operated	- B
591T-1 Picked up	- - ${ }^{\text {AB }}$
591T-2 Picked up	- BC
591T-1 Operated	- ABC
59IT-2 Operated	
24DT-1 Picked up	
24DT-2 Picked up	
24DT-1 Operated	
24DT-2 Operated	
24IT Picked up	
24IT Operated	
47DT-1 Picked up	
47DT-2 Picked up	
47DT-1 Operated	
47DT-2 Operated	
47IT Picked up	
47IT Operated	
59NDT-1 Picked up	
59NDT-2 Picked up	
59NDT-1 Operated	
59NDT-2 Operated	
59NIT Picked up	
59NIT Operated	


Event	Notes
37-1 Picked up	The possible phase information will be: $\cdot \mathrm{A}$
37-1 Operated	- B
37-2 Picked up	
37-2 Operated	- BC
50/67-1 Picked up	$\begin{aligned} & \cdot \mathrm{CA} \\ & \cdot \\ & \cdot \mathrm{ABC} \end{aligned}$
50/67-2 Picked up	
50/67-1 Operated	
50/67-2 Operated	
51/67-1 Picked up	
51/67-2 Picked up	
51/67-1 Operated	
51/67-2 Operated	
49 Picked up	
49 Operated	
50BF-D1 Operated	
50BF-D2 Operated	
CBF-D1 Operated	
CBF-D2 Operated	
50N/67N-1 Picked up	
50N/67N-2 Picked up	
50N/67N-1 Operated	
50N/67N-2 Operated	
$51 \mathrm{~N} / 67 \mathrm{~N}-1$ Picked up	
$51 \mathrm{~N} / 67 \mathrm{~N}-2$ Picked up	
51N/67N-1 Operated	
51N/67N-2 Operated	
46/50 Picked up	
46/50 Operated	
46/51 Picked up	
46/51 Operated	
64/50SEF-1 Picked up	
64/50SEF-2 Picked up	
64/50SEF-1 Operated	


Event	Notes
64/50SEF-2 Operated	
64/51SEF-1 Picked up	
64/51SEF-2 Picked up	
64/51SEF-1 Operated	
64/51SEF-2 Operated	
49AL Operated	
46BC Operated	
81HBL2 Operated	
81U-1 Picked up	
81U-2 Picked up	
81U-3 Picked up	
81U-4 Picked up	
81U-5 Picked up	
81U-6 Picked up	
81U-7 Picked up	
81U-8 Picked up	
810-1 Picked up	
810-2 Picked up	
810-3 Picked up	
810-4 Picked up	
810-5 Picked up	
810-6 Picked up	
810-7 Picked up	
810-8 Picked up	
81R-1 Picked up	
81R-2 Picked up	
81R-3 Picked up	
81R-4 Picked up	
81R-1 Operated	
81R-2 Operated	
81R-3 Operated	
81R-4 Operated	
32-1 Picked up	


Event	Notes
32-1 Operated	
32-2 Picked up	
32-2 Operated	
32-3 Picked up	
32-3 Operated	
32-4 Picked up	
32-4 Operated	
60VTS Operated	
60CTS Operated	
74TCS-1 Operated	
74TCS-2 Operated	
12t Limit Operated	
THD-1 Operated	
THD-2 Operated	
U/V Count Operated	
O/V Count Operated	
U/F Count Operated	
O/F Count Operated	
El Count Operated	
25 Vsync Operated	
79 IN Operated	
79 OUT Operated	
79 Reclose Operated	Includes Shot Count
79 AR Initiate Operated	
79 Block Operated	
79 Lockout Operated	
Control Mode Off Activated	
Control Mode Local Activated	
Control Mode Remote Activated	
Control Mode Security OFF Activated	
Control Mode Security ON Activated	
SPC n: Command Active	
SPC n: Command Inactive	


Event	Notes
DPC n: OPEN Command Active	
DPC n: OPEN Command Inactive	
DPC n: CLOSE Command Active	
DPC n: CLOSE Command Inactive	

## Appendix E Modbus RTU Communication Protocol

The SCADA port supports IEC 103 and Modicon Modbus protocols. All metering values available through the terminal user interface are also available via the Modbus protocol. Additionally, the Modbus protocol support the reading of the unit time and time of the readings and provides access to trip and alarm events, include fault location information.

A "Hold Readings" function is available to freeze all metering readings into a snapshot (see Force Single Coil function, address 0).

Read Coil Status (Function Code 01)			
Channel	Address	Value	
Hold Readings	1	0 : Readings not held	1: Readings held
Reserved	257	Reserved	Reserved
27DT-1 Picked up	513	0: OFF	1: ON
27DT-2 Picked up	514	0: OFF	1: ON
27DT-3 Picked up	515	0: OFF	1: ON
27DT-4 Picked up	516	0: OFF	1: ON
27DT-5 Picked up	517	0: OFF	1: ON
27DT-6 Picked up	518	0: OFF	1: ON
27DT-1 Operated	519	0: OFF	1: ON
27DT-2 Operated	520	0: OFF	1: ON
27DT-3 Operated	521	0: OFF	1: ON
27DT-4 Operated	522	0: OFF	1: ON
27DT-5 Operated	523	0: OFF	1: ON
27DT-6 Operated	524	0: OFF	1: ON
27IT-1 Picked up	525	0: OFF	1: ON
27IT-2 Picked up	526	0: OFF	1: ON
27IT-1 Operated	527	0: OFF	1: ON
271T-2 Operated	528	0: OFF	1: ON
59DT-1 Picked up	529	0: OFF	1: ON
59DT-2 Picked up	530	0: OFF	1: ON
59DT-3 Picked up	531	0: OFF	1: ON
59DT-4 Picked up	532	0: OFF	1: ON
59DT-5 Picked up	533	0: OFF	1: ON
59DT-6 Picked up	534	0: OFF	1: ON
59DT-1 Operated	535	0: OFF	1: ON
59DT-2 Operated	536	0: OFF	1: ON
59DT-3 Operated	537	0: OFF	1: ON
59DT-4 Operated	538	0: OFF	1: ON
59DT-5 Operated	539	0: OFF	1: ON
59DT-6 Operated	540	0: OFF	1: ON
5917-1 Picked up	541	0: OFF	1: ON
59IT-2 Picked up	542	0: OFF	1: ON
5917-1 Operated	543	0: OFF	1: ON
591T-2 Operated	544	0: OFF	1: ON
24DT-1 Picked up	545	0: OFF	1: ON
24DT-2 Picked up	546	0: OFF	1: ON
24DT-1 Operated	547	0: OFF	1: ON


Read Coil Status (Function Code 01)			
Channel	Address	Value	
24DT-2 Operated	548	0: OFF	1: ON
24IT-1 Picked up	549	0: OFF	1: ON
24IT-1 Operated	550	0: OFF	1: ON
47DT-1 Picked up	551	0: OFF	1: ON
47DT-2 Picked up	552	0: OFF	1: ON
47DT-1 Operated	553	0: OFF	1: ON
47DT-2 Operated	554	0: OFF	1: ON
47IT-1 Picked up	555	0: OFF	1: ON
47IT-1 Operated	556	0: OFF	1: ON
59NDT-1 Picked up	557	0: OFF	1: ON
59NDT-2 Picked up	558	0: OFF	1: ON
59NDT-1 Operated	559	0: OFF	1: ON
59NDT-2 Operated	560	0: OFF	1: ON
59NIT-1 Picked up	561	0: OFF	1: ON
59NIT-1 Operated	562	0: OFF	1: ON
37-1 Picked up	563	0: OFF	1: ON
37-2 Picked up	564	0: OFF	1: ON
37-1 Operated	565	0: OFF	1: ON
37-2 Operated	566	0: OFF	1: ON
50-1 Picked up	567	0: OFF	1: ON
50-2 Picked up	568	0: OFF	1: ON
50-1 Operated	569	0: OFF	1: ON
50-2 Operated	570	0: OFF	1: ON
51-1 Picked up	571	0: OFF	1: ON
51-2 Picked up	572	0: OFF	1: ON
51-1 Operated	573	0: OFF	1: ON
51-2 Operated	574	0: OFF	1: ON
50N-1 Picked up	575	0: OFF	1: ON
50N-2 Picked up	576	0: OFF	1: ON
50N-1 Operated	577	0: OFF	1: ON
50N-2 Operated	578	0: OFF	1: ON
51N-1 Picked up	579	0: OFF	1: ON
51N-2 Picked up	580	0: OFF	1: ON
51N-1 Operated	581	0: OFF	1: ON
51N-2 Operated	582	0: OFF	1: ON
46/50 Picked up	583	0: OFF	1: ON
46/50 Operated	584	0: OFF	1: ON
46/51 Picked up	585	0: OFF	1: ON
46/51 Operated	586	0: OFF	1: ON
64/50SEF-1 Picked up	587	0: OFF	1: ON
64/50SEF-2 Picked up	588	0: OFF	1: ON
64/50SEF-1 Operated	589	0: OFF	1: ON
64/50SEF-2 Operated	590	0: OFF	1: ON
64/51SEF-1 Picked up	591	0: OFF	1: ON
64/51SEF-2 Picked up	592	0: OFF	1: ON
64/51SEF-1 Operated	593	0: OFF	1: ON
64/51SEF-2 Operated	594	0: OFF	1: ON
49 Picked up	595	0: OFF	1: ON
49 Operated	596	0: OFF	1: ON
49AL Operated	597	0: OFF	1: ON
50BF-D1 Operated	598	0: OFF	1: ON


Read Coil Status (Function Code 01)			
Channel	Address	Value	
50BF-D2 Operated	599	0: OFF	1: ON
DI_CBF-D1 Operated	600	0: OFF	1: ON
DI_CBF-D2 Operated	601	0: OFF	1: ON
46BC Operated	602	0: OFF	1: ON
81HBL2 Operated	603	0: OFF	1: ON
81U-1 Picked up	604	0: OFF	1: ON
81U-2 Picked up	605	0: OFF	1: ON
81U-3 Picked up	606	0: OFF	1: ON
81U-4 Picked up	607	0: OFF	1: ON
81U-5 Picked up	608	0: OFF	1: ON
81U-6 Picked up	609	0: OFF	1: ON
81U-7 Picked up	610	0: OFF	1: ON
81U-8 Picked up	611	0: OFF	1: ON
81U-1 Operated	612	0: OFF	1: ON
81U-2 Operated	613	0: OFF	1: ON
81U-3 Operated	614	0: OFF	1: ON
81U-4 Operated	615	0: OFF	1: ON
81U-5 Operated	616	0: OFF	1: ON
81U-6 Operated	617	0: OFF	1: ON
81U-7 Operated	618	0: OFF	1: ON
81U-8 Operated	619	0: OFF	1: ON
810-1 Picked up	620	0: OFF	1: ON
810-2 Picked up	621	0: OFF	1: ON
810-3 Picked up	622	0: OFF	1: ON
810-4 Picked up	623	0: OFF	1: ON
810-5 Picked up	624	0: OFF	1: ON
810-6 Picked up	625	0: OFF	1: ON
810-7 Picked up	626	0: OFF	1: ON
810-8 Picked up	627	0: OFF	1: ON
810-1 Operated	628	0: OFF	1: ON
810-2 Operated	629	0: OFF	1: ON
810-3 Operated	630	0: OFF	1: ON
810-4 Operated	631	0: OFF	1: ON
810-5 Operated	632	0: OFF	1: ON
810-6 Operated	633	0: OFF	1: ON
810-7 Operated	634	0: OFF	1: ON
810-8 Operated	635	0: OFF	1: ON
81R-1 Picked up	636	0: OFF	1: ON
81R-2 Picked up	637	0: OFF	1: ON
81R-3 Picked up	638	0: OFF	1: ON
81R-4 Picked up	639	0: OFF	1: ON
81R-1 Operated	640	0: OFF	1: ON
81R-2 Operated	641	0: OFF	1: ON
81R-3 Operated	642	0: OFF	1: ON
81R-4 Operated	643	0: OFF	1: ON
32-1 Picked up	644	0: OFF	1: ON
32-2 Picked up	645	0: OFF	1: ON
32-3 Picked up	646	0: OFF	1: ON
32-4 Picked up	647	0: OFF	1: ON
32-1 Operated	648	0: OFF	1: ON
32-2 Operated	649	0: OFF	1: ON
32-3 Operated	650	0: OFF	1: ON


Read Coil Status (Function Code 01)			
Channel	Address	Value	
32-4 Operated	651	0: OFF	1: ON
60VTS Operated	652	0: OFF	1: ON
60CTS Operated	653	0: OFF	1: ON
74TCS-1 Operated	654	0: OFF	1: ON
74TCS-2 Operated	655	0: OFF	1: ON
12t Limit Operated	656	0: OFF	1: ON
THD-1 Operated	657	0: OFF	1: ON
THD-2 Operated	658	0: OFF	1: ON
UV Count Operated	659	0: OFF	1: ON
OV Count Operated	660	0: OFF	1: ON
UF Count Operated	661	0: OFF	1: ON
OF Count Operated	662	0: OFF	1: ON
El Count Operated	663	0: OFF	1: ON
79AR_Cumm_Count_Operated	664	0: OFF	1: ON
25/27/29 Operated	665	0: OFF	1: ON
79 IN	666	0: OFF	1: ON
79 OUT	667	0: OFF	1: ON
79 RECLOSE	668	0: OFF	1: ON
79 AR Initiate	669	0: OFF	1: ON
79 Block	670	0: OFF	1: ON
79 LockOut	671	0: OFF	1: ON
ProLogic1	672	0: OFF	1: ON
ProLogic2	673	0: OFF	1: ON
ProLogic3	674	0: OFF	1: ON
ProLogic4	675	0: OFF	1: ON
ProLogic5	676	0: OFF	1: ON
ProLogic6	677	0: OFF	1: ON
ProLogic7	678	0: OFF	1: ON
ProLogic8	679	0: OFF	1: ON
ProLogic9	680	0: OFF	1: ON
ProLogic10	681	0: OFF	1: ON
ProLogic11	682	0: OFF	1: ON
ProLogic12	683	0: OFF	1: ON
ProLogic13	684	0: OFF	1: ON
ProLogic14	685	0: OFF	1: ON
ProLogic15	686	0: OFF	1: ON
ProLogic16	687	0: OFF	1: ON
ProLogic17	688	0: OFF	1: ON
ProLogic18	689	0: OFF	1: ON
81R-1 Operated	640	0: OFF	1: ON
81R-2 Operated	641	0: OFF	1: ON
81R-3 Operated	642	0: OFF	1: ON
81R-4 Operated	643	0: OFF	1: ON
32-1 Picked up	644	0: OFF	1: ON
32-2 Picked up	645	0: OFF	1: ON
32-3 Picked up	646	0: OFF	1: ON
32-4 Picked up	647	0: OFF	1: ON
32-1 Operated	648	0: OFF	1: ON
32-2 Operated	649	0: OFF	1: ON
32-3 Operated	650	0: OFF	1: ON
32-4 Operated	651	0: OFF	1: ON
60VTS Operated	652	0: OFF	1: ON
60CTS Operated	653	0: OFF	1: ON
74TCS-1 Operated	654	0: OFF	1: ON


Read Coil Status (Function Code 01)			
Channel	Address	Value	
74TCS-2 Operated	655	0: OFF	1: ON
12t Limit Operated	656	0: OFF	1: ON
THD-1 Operated	657	0: OFF	1: ON
THD-2 Operated	658	0: OFF	1: ON
UV Count Operated	659	0: OFF	1: ON
OV Count Operated	660	0: OFF	1: ON
UF Count Operated	661	0: OFF	1: ON
OF Count Operated	662	0: OFF	1: ON
El Count Operated	663	0: OFF	1: ON
79AR_Cumm_Count_Operated	664	0: OFF	1: ON
25/27/29 Operated	665	0: OFF	1: ON
79 IN	666	0: OFF	1: ON
79 OUT	667	0: OFF	1: ON
79 RECLOSE	668	0: OFF	1: ON
79 AR Initiate	669	0: OFF	1: ON
79 Block	670	0: OFF	1: ON
79 LockOut	671	0: OFF	1: ON
ProLogic1	672	0: OFF	1: ON
ProLogic2	673	0: OFF	1: ON
ProLogic3	674	0: OFF	1: ON
ProLogic4	675	0: OFF	1: ON
ProLogic5	676	0: OFF	1: ON
ProLogic6	677	0: OFF	1: ON
ProLogic7	678	0: OFF	1: ON
ProLogic8	679	0: OFF	1: ON
ProLogic9	680	0: OFF	1: ON
ProLogic10	681	0: OFF	1: ON
ProLogic11	682	0: OFF	1: ON
ProLogic12	683	0: OFF	1: ON
ProLogic13	684	0: OFF	1: ON
ProLogic14	685	0: OFF	1: ON
ProLogic15	686	0: OFF	1: ON
ProLogic16	687	0: OFF	1: ON
ProLogic17	688	0: OFF	1: ON
ProLogic18	689	0: OFF	1: ON
ProLogic19	690	0: OFF	1: ON
ProLogic20	691	0: OFF	1: ON
Relay O/P1	692	0: OFF	1: ON
Relay O/P2	693	0: OFF	1: ON
Relay O/P3	694	0: OFF	1: ON
Relay O/P4	695	0: OFF	1: ON
Relay O/P5	696	0: OFF	1: ON
Relay O/P6	697	0: OFF	1: ON
Relay O/P7	698	0: OFF	1: ON
Relay O/P8	699	0: OFF	1: ON
Relay O/P9	700	0: OFF	1: ON
Relay O/P10	701	0: OFF	1: ON
Relay O/P11	702	0: OFF	1: ON
Relay O/P12	703	0: OFF	1: ON
Relay O/P13	704	0: OFF	1: ON
Relay O/P14	705	0: OFF	1: ON
Relay O/P1	692	0: OFF	1: ON
Relay O/P2	693	0: OFF	1: ON
Relay O/P3	694	0: OFF	1: ON


Read Coil Status (Function Code 01)			Address		Value	
Channel	695	$0:$ OFF	$1:$ ON			
Relay O/P4	696	$0:$ OFF	$1:$ ON			
Relay O/P5	697	$0:$ OFF	$1:$ ON			
Relay O/P6	698	$0:$ OFF	$1:$ ON			
Relay O/P7	699	$0:$ OFF	$1:$ ON			
Relay O/P8	700	$0:$ OFF	$1:$ ON			
Relay O/P9	701	$0:$ OFF	$1:$ ON			
Relay O/P10	702	$0:$ OFF	$1:$ ON			
Relay O/P11	703	$0:$ OFF	$1:$ ON			
Relay O/P12	704	$0:$ OFF	$1:$ ON			
Relay O/P13	705	$0:$ OFF	$1:$ ON			
Relay O/P14						

In the below table, Scale value should be divided with the metering data obtained from Modbus.

Read Holding Registers (Function Code 03)			
Channel	Address	Units	Scale
VA Magnitude	40257	KV	100
VA Angle	40258	Degrees	1
VB Magnitude	40259	KV	100
VB Angle	40260	Degrees	1
VC Magnitude	40261	KV	100
VC Angle	40262	Degrees	1
VN Magnitude	40263	KV	100
VN Angle	40264	Degrees	1
VAB Magnitude	40265	KV	100
VAB Angle	40266	Degrees	1
VBC Magnitude	40267	KV	100
VBC Angle	40268	Degrees	1
VCA Magnitude	40269	KV	100
VCA Angle	40270	Degrees	1
VSYNC Magnitude	40271	KV	100
VSYNC Angle	40272	Degrees	1
V1 Magnitude	40273	KV	100
V2 Magnitude	40274	KV	100
V0 Magnitude	40275	KV	100
\%V/F	40276	\%	100
\%THD	40277	\%	100
IA Magnitude	40278	A	100
IA Angle	40279	Degrees	1
IB Magnitude	40280	A	100
IB Angle	40281	Degrees	1
IC Magnitude	40282	A	100
IC Angle	40283	Degrees	1
IN Magnitude	40284	A	100
IN Angle	40285	Degrees	1
ISEF Magnitude	40286	A	100
ISEF Angle	40287	Degrees	1
I1 Magnitude	40288	A	100
12 Magnitude	40289	A	100
10 Magnitude	40290	A	100
\%(I2/I1)	40291	\%	100
Real Power	40292	MW	100
Reactive Power	40293	MVAR	100
APH Real Power	40294	MW	100
BPH Real Power	40295	MW	100
CPH Real Power	40296	MW	100
APH Reactive Power	40297	MVAR	100
BPH Reactive Power	40298	MVAR	100
CPH Reactive Power	40299	MVAR	100
Frequency	40300	HZ	10
Power Factor	40301	-	100
Thermal state (\%)	40302	\%	100
$1^{2}$ t Accumulated	40303	$\mathrm{kA}^{2} \mathrm{~s}$	1
$1^{2} t$ for last operation	40304	$\mathrm{kA}^{2} \mathrm{~s}$	1
Bus Voltage	40305	KV	100


Read Holding Registers (Function Code 03)			
Channel	Address	Units	Scale
Line Voltage	40306	KV	100
Bus Angle	40307	Degrees	1
Line Angle	40308	Degrees	1
Bus Frequency	40309	HZ	10
Line Frequency	40310	HZ	10
79 AR COUNT	40311	-	1
79 AR Cumm Count	40312	-	1


Read Discrete Inputs (Function Code 02)			
Channel	Address	Value	
Status I/P 1- Present state	10001	0: OFF	1: ON
Status 1/P 2-Present state	10002	0: OFF	1: ON
Status 1/P 3- Present state	10003	0: OFF	1: ON
Status I/P 4- Present state	10004	0: OFF	1: ON
Status I/P 5- Present state	10005	0: OFF	1: ON
Status I/P 6- Present state	10006	0: OFF	1: ON
Status 1/P 7- Present state	10007	0: OFF	1: ON
Status I/P 8-Present state	10008	0: OFF	1: ON
Status 1/P 9- Present state	10009	0: OFF	1: ON
Status I/P 10- Present state	10010	0: OFF	1: ON
Status I/P 11- Present state	10011	0: OFF	1: ON
Status I/P 12- Present state	10012	0: OFF	1: ON
Status I/P 13- Present state	10013	0: OFF	1: ON
Status I/P 14- Present state	10014	0: OFF	1: ON
Status I/P 1-Change of state	10257	0: OFF	1: ON
Status I/P 2-Change of state	10258	0: OFF	1: ON
Status I/P 3-Change of state	10259	0: OFF	1: ON
Status I/P 4-Change of state	10260	0: OFF	1: ON
Status I/P 5-Change of state	10261	0: OFF	1: ON
Status I/P 6-Change of state	10262	0: OFF	1: ON
Status I/P 7-Change of state	10263	0: OFF	1: ON
Status I/P 8-Change of state	10264	0: OFF	1: ON
Status I/P 9- Change of state	10265	0: OFF	1: ON
Status I/P 10-Change of state	10266	0: OFF	1: ON
Status I/P 11- Change of state	10267	0: OFF	1: ON
Status I/P 12- Change of state	10268	0: OFF	1: ON
Status I/P 13-Change of state	10269	0: OFF	1: ON
Status I/P 14-Change of state	10270	0: OFF	1: ON
Virtual Input1	10513	0: OFF	1: ON
Virtual Input2	10514	0: OFF	1: ON
Virtual Input3	10515	0: OFF	1: ON
Virtual Input4	10516	0: OFF	1: ON
Virtual Input5	10517	0: OFF	1: ON
Virtual Input6	10518	0: OFF	1: ON
Virtual Input7	10519	0: OFF	1: ON
Virtual Input8	10520	0: OFF	1: ON
Virtual Input9	10521	0: OFF	1: ON
Virtual Input10	10522	0: OFF	1: ON
Virtual Input11	10523	0: OFF	1: ON
Virtual Input12	10524	0: OFF	1: ON
Virtual Input13	10525	0: OFF	1: ON


Read Discrete Inputs (Function Code 02)			
Channel	Address	Value	
Virtual Input14	10526	0: OFF	1: ON
Virtual Input15	10527	0: OFF	1: ON
Virtual Input16	10528	0: OFF	1: ON
Virtual Input17	10529	0: OFF	1: ON
Virtual Input18	10530	0: OFF	1: ON
Virtual Input19	10531	0: OFF	1: ON
Virtual Input20	10532	0: OFF	1: ON
Virtual Input21	10533	0: OFF	1: ON
Virtual Input22	10534	0: OFF	1: ON
Virtual Input23	10535	0: OFF	1: ON
Virtual Input24	10536	0: OFF	1: ON
Virtual Input25	10537	0: OFF	1: ON
Virtual Input26	10538	0: OFF	1: ON
Virtual Input27	10539	0: OFF	1: ON
Virtual Input28	10540	0: OFF	1: ON
Virtual Input29	10541	0: OFF	1: ON
Virtual Input30	10542	0: OFF	1: ON


Read Holding Registers (Function Code 03)				
Channel		Address	Units	Scale
F-PRO Clock Time (UTC) - Note: Read all in same query to ensure consistent time reading data				
Milliseconds now	40001	$0-999$	1	
Seconds now	40002	$0-59$	1	
Minutes now	40003	$0-59$	1	
Hours now	40004	$0-23$	1	
Day of year now	40005	$1-365$	1	
Year since 1900	40006	$90-137$	1	
Synchronized to IRIG-B	40007	$0:$ No \& 1: Yes	1	
Synchronized to SNTP	40008	$0:$ No \& 1: Yes	1	
Time of Acquisition (UTC) - Note: Read all in same query to ensure consistent time reading data				
Milliseconds now	40009	$0-999$	1	
Seconds now	40010	$0-59$	1	
Minutes now	40011	$0-59$	1	
Hours now	40012	$0-23$	1	
Day of year now	40013	$1-365$	1	
Year since 1900	40014	$90-137$	1	
Synchronized to				
IRIG-B	40015	$0:$ No \& 1: Yes	1	
Synchronized to				
SNTP	40016	$0:$ No \& 1: Yes	1	
Local time offset	40017	2's compliment half	1	

## Read Input Register (Function Code 04)

No input registers supported. Response front IED indicates "ILLEGAL FUNCTION."

## Write Single Coil (Function Code 05)

Only the "hold readings" coil can be forced. When active, this coil locks all coil, input and holding register readings simultaneously at their present values. When inactive, coil, input and holding register values will read their most recently available state.

Channel	Type	Address	
Hold Readings	Read/Write	01	0000: Readings update


Write Single Register (Function Code 06)			
Channel	Address	Value	
Event Message Control (See 'given below for details of use)			
Refresh event list	40513	No data required	N/A
Acknowledge the cur-   rent event and get   the next event	40514	No data required	N/A
Get the next   event (without   acknowledge)	40515	No data required	


Diagnostic Subfunctions (Function Code 08)	This provides an echo of the submitted
Return Query Data (Subfunction00)	This restarts the Modbus communications
Restart Communication Option (Subfunction01)	


Force Listen Only Mode (Subfunction04)	No response is returned. IED enters "Listen   Only" mode. This mode can only be excited   by the "Restart Communication Option"   command.

## Write Multiple Registers (Function Code 16)

Channel	Address	Units	Scale
F-PRO Clock Time (UTC)		Note: Must write to all the registers in same query	
Milliseconds now	40001	$0-999$	1
Seconds now	40002	$0-59$	1
Minutes now	40003	$0-59$	1
Hours now	40004	$0-23$	1
Day of year now	40005	$1-365$	1
Year since 1900	40006	$90-137$	1


A fixed response is returned by the IED, including system model, version and issue numbers.			
Channel	Type	Bytes	
Model Number	Read Only	0 and 1	
Version Number	Read Only	2 and 3	
Issue Number	Read Only	4 and 5	

- The F-PRO IED model number is 298.
- Version and issue will each be positive integers, say X and Y.
- The F-PRO is defined as "Model, Version X Issue B"

Accessing F-PRO Event Information
All F-PRO event messages displayed in the Event log are available via Modbus. This includes fault
location information. The following controls are available.
Note: Fault Information is applicable only for FPRO 298 Variant.
Refresh event list
(Function code 6, address 40512): Fetches the latest events from the F-PRO's   event log and makes them available for Modbus access. The most recent event   becomes the current event available for reading.


Accessing F-PRO Event Information	
Acknowledge current event and Get next event	(Function code 6, address 40513): Clears the event from the read registers and places the next event into them. An acknowledged event is no longer available for reading.
Get next event	(Function code 6, address 40514): Places the next event in the read registers without acknowledging the current event. The current event will appear in the list when Refresh event list is used
Size of current event message	(Function code 3, address 40515): Indicates the number of 16 bit registers used to contain the current event. Event data is stored with two characters per register. A reading of zero indicates that there are no unacknowledged events available in the current set. (Note: The Refresh event list function can be used to check for new events that have occurred since the last Refresh event list.)
Read event message	(Function code 3, address 40516 to 40568): Contains the current event message. Two ASCII characters are packed into each 16bit register. All unused registers in the set are set to 0 .
Fault Information -   Type	(Function Code 3, address 40570): If the current event is a fault location event, this register contains the type of fault.   The following type bitmap:   0x0001 - Phase A   0x0002 - Phase B   0x0004 - Phase C   0x0008-Ground   Any number of the flags may be set for a given fault. If the relay could not determine the fault type, then the register will not have any flags set and will read 0x0000.
Fault Information -   Fault Distance	(Function Code 3, address 40571): If the current event is a fault location event, this register contains the distance to the fault. It is scaled up by a factor of 10 . The units are the same as the units set in the relay configuration.
Fault Information -   Time of Fault	(Function Code 3, addresses 40572 to 40575): If the current event is a fault location event, these registers contain the time of the fault in seconds since 1970. Each of these 16 -bit registers contains an 8-bit portion of a 32-bit time value. Register 40572 contains the upper most 8 bits, and register 40575 contains the lowest 8 bits.

## Sample Event Record

Register	Value		Meaning
	Low Byte	High Byte	
40515	0x00	0x1E	Event text size $=30$ (0x1E hex)
40516	0x46	0x4C	'FL' - Fault Location Event
40517	0x32	0x30	'2' , '0'
40518	0x31	0x39	'1' , '9'
40519	0x4E	0x6F	'N' , 'o'
40520	0x76	0x32	'v' , '2'
40521	0x35	0x20	'5' , '<SP>'
40522	0x30	0x39	'0' , '9'
40523	0x3A	$0 \times 33$	':' , '3'
40524	$0 \times 38$	$0 \times 3 \mathrm{~A}$	'8' , ':'
40525	0x32	$0 \times 39$	'2' , '9'
40526	0x2E	0x31	'.' , '1'
40527	0x36	$0 \times 30$	'6' , '0'
40528	0x3A	0x35	':' , '5'
40529	0x30	0x2F	'0' , '/'
40530	0x36	0x37	'6' , '7'
40531	0x2D	$0 \times 31$	'-' , '1'
40532	$0 \times 20$	0x41	'<SP>', 'A'
40533	0x20	0x50	'<SP>', 'P'
40534	$0 \times 68$	0x61	'h' , 'a'
40535	0x73	0x65	's' , 'e'
40536	0x3A	0x20	':' , '<SP>'
40537	0x30	0x2E	'0' , '.'
40538	0x37	0x31	'7' , '1'
40539	0x6B	0x6D	'k' , 'm'
40540	0x20	0x4F	'<SP>', 'O'
40541	0x70	0x65	'p' , 'e'
40542	0x72	0x61	'r' , 'a'
40543	0x74	$0 \times 65$	't' , 'e'
40544	0x64	0x00	'd'
Fault Infor	ation		
Register		ue	Meaning
40570	0x00	$0 \times 01$	Bitmap $=0 \times 0001-$ A Fault
40571	$0 \times 00$	$0 \times 07$	$0 \times 0007$ = 7 in decimal 0.7 km Fault Distance
40572	$0 \times 00$	0x5D	Upper 8 bits of timestamp *
40573	$0 \times 00$	0xDB	Next 8 bits of timestamp *
40574	$0 \times 00$	0xA5	Next 8 bits of timestamp *
40575	0x00	0x57	Lowest 8 bits of timestamp *
			* Seconds since $1970=5$ DDBA557 Converted to readable timestamp: November 25, 2019 09:38:29

## Appendix F DNP3 Device Profile

Device
Properties
This document shows the device capabilities and the current value of each parameter for the default unit configuration as defined in the default configuration file.

1.1 Device Identification		Capabilities	Current Value	If configurable, list methods
1.1.1	Device Function:	Master   - Outstation	Master   Outstation	
1.1.2	Vendor Name:		ERLPhase Power Technologies	
1.1.3	Device Name:		F-PRO 298	
1.1.4	Device manufacturer's hardware version string:		v1.0	
1.1.5	Device manufacturer's software version string:		v1.4	
1.1 .6	Device Profile Document Version Number:		$\begin{aligned} & \text { v1.02, Nov 26, } \\ & 2019 \end{aligned}$	
1.1.7	DNP Levels Supported for:	Outstations Only Requests and Responses None Level 1 Level 2 Level 3		
1.1.8	Supported Function Blocks:	Self-Address Reservation   Object 0 - attribute objects   Data Sets   File Transfer   Virtual Terminal   Mapping to IEC 61850 Object Models defined in a DNP3 XML file		
1.1.9	Notable Additions:	- Start-stop (qualifier codes $0 \times 00$ and $0 \times 01$ ), limited quantity (qualifier codes $0 \times 07$ and $0 \times 08$ ) and indices (qualifier codes $0 \times 17$ and $0 \times 28$ ) for Binary Inputs, Binary Outputs and Analog Inputs (object groups 1, 10 and 30)   - 32-bit and 16-bit Analog Inputs with and without flag (variations 1, 2, 3 and 4)   - 32-bit and 16-bit Analog Input events with time (variations 3 and 4)   - Fault Location information as analog readings   - Event log messages as Object groups 110 and 111		


1.1 D	vice Identification	Capabilities	Current Value	If configurable, list methods
1.1.10	Methods to set Configurable Parameters:	XML - Loaded via DNP3 File Transfer   XML - Loaded via other transport mechanism   Terminal - ASCII Terminal Command Line   Software - Vendor software named F-PRO 2000 Offliner   Proprietary file loaded via DNP3 file transfer Proprietary file loaded via other transport mechanism   Direct - Keypad on device front panel   Factory - Specified when device is ordered   Protocol - Set via DNP3 (e.g. assign class)   Other - explain $\qquad$		
1.1.11	DNP3 XML files available On-Line:	RdWrFilenameDescription of Contents   dnpDP.xml Complete Device Profile dnpDPcap.xml Device Profile Capabilities dnpDPcfg.xml Device Profile config.   values $\qquad$ *.xml $\qquad$   *The Complete Device Profile Document contains the capabilities, Current Value, and configurable methods columns.   *The Device Profile Capabilities contains only the capabilities and configurable methods columns.   *The Device Profile Config. Values contains only the Current Value column.	Not supported	
1.1.12	External DNP3 XML files available Off-line:	dnpDP.xml Complete Device Profile dnpDPcap.xml Device Profile Capabilities dnpDPcfg.xml Device Profile config. values $\qquad$ *.xml $\qquad$   *The Complete Device Profile Document contains the capabilities, Current Value, and configurable methods columns.   *The Device Profile Capabilities contains only the capabilities and configurable methods columns.   *The Device Profile Config. Values contains only the Current Value column.	Not supported	
1.1.13	Connections Supported:	® Serial (complete section 1.2)   ® IP Networking (complete section 1.3)   $\square$ Other, explain $\qquad$		


1.2	erial Connections	Capabilities		Current Value	If configurable, list methods
1.2.1	Port Name	Port 32			
1.2.2	Serial Connection Parameters:	$\square$ Asynchronous - 8 Data Bits, 1 Start Bit, 1 Stop Bit, No Parity   ख Other, explain - Asynchronous with selectable parity		Not configured for DNP	F-PRO 2000 Offliner
1.2.3	Baud Rate:	Fixed at $\qquad$   Configurable, range $\qquad$ to $\qquad$   Configurable, selectable from $300,1200,2400$,   $9600,19200,38400$ and 57600   Configurable, other, describe $\qquad$		Not configured for DNP	F-PRO 2000 Offliner
1.2.4	Hardware Flow Control (Handshaking):   Describe hardware signaling requirements of the interface.   Where a transmitter or receiver is inhibited until a given control signal is asserted, it is considered to require that signal prior to sending or receiving characters. Where a signal is asserted prior to transmitting, that signal will be maintained active until after the end of transmission.   Where a signal is asserted to enable reception, any data sent to the device when the signal is not active could be discarded.			Not Supported	
1.2.5	Interval to Request Link Status:	® Not Supported $\qquad$ seconds Configurable, range $\qquad$ to Configurable, selectable from Configurable, other, describe	$\qquad$ seconds $\qquad$ seconds		
1.2.6	Supports DNP3 Collision Avoidance:	No   Yes, explain			


1.2	Serial Connections	Capabilities	Current Value	If configurable, list methods
1.2.7	Receiver Intercharacter Timeout:	® Not checked   No gap permitted   Fixed at $\qquad$ bit times   Fixed at $\qquad$ ms   Configurable, range $\qquad$ to $\qquad$ bit times   Configurable, range $\qquad$ to $\qquad$ ms   Configurable, Selectable from $\qquad$ , , bit times   Configurable, Selectable from $\qquad$ , _, $\qquad$ ms   Configurable, other, describe $\qquad$ Variable, explain $\qquad$		
1.2.8	Inter-character gaps in transmission:	区 None (always transmits with no inter-character gap) Maximum $\qquad$ bit times Maximum $\qquad$ ms		


1.3 IP	Networking	Capabilities		Current Value	If configurable， list methods
1．3．1	Port Name	CON 1 Network			
1．3．2	Type of End Point：	$\begin{aligned} & \square \\ & \boxed{\otimes} \end{aligned}$	TCP Initiating（Master Only）   TCP Listening（Outstation Only）   TCP Dual（required for Masters） UDP Datagram（required）	Not configured for DNP	F－PRO 2000 Offliner
1．3．3	IP Address of this Device：			192．168．100．80	F－PRO 2000 Offliner
1．3．4	Subnet Mask：			255．255．255．0	F－PRO 2000 Offliner
1．3．5	Gateway IP Address：			192．168．100．65	F－PRO 2000 Offliner
1．3．6	Accepts TCP   Connections or UDP   Datagrams from：	区   区   区	Allows all（show as＊．＊．＊．＊＊in 1．3．7）   Limits based on an IP address   Limits based on list of IP addresses   Limits based on a wildcard IP address   Limits based on list of wildcard IP addresses   Other validation，explain $\qquad$	Limits based on an IP address	F－PRO 2000 Offliner
1.3.7	IP Address（es）from which TCP Connections or UDP Datagrams are accepted：			192．168．1．1	F－PRO 2000 Offliner
1．3．8	TCP Listen Port Number：	$\begin{gathered} \square \\ \square \\ \square \\ \square \\ \square \end{gathered}$	Not Applicable（Master w／o dual end point）   Fixed at 20，000   Configurable，range $\underline{1025}$ to $\underline{32737}$   Configurable，selectable from $\qquad$ $\qquad$   Configurable，other，describe $\qquad$	20，000	F－PRO 2000 Offliner
1．3．9	TCP Listen Port Number of remote device：	区	Not Applicable（Outstation w／o dual end point）   Fixed at 20，000   Configurable，range $\qquad$ to $\qquad$ Configurable，selectable from $\qquad$ $\qquad$   Configurable，other，describe $\qquad$	NA	F－PRO 2000 Offliner
1．3．10	TCP Keep－alive timer：	$\begin{aligned} & \square \\ & \text { 区 } \\ & \square \\ & \square \end{aligned}$	Fixed at $\qquad$ ms   Configurable，range $\underline{5}$ to $\underline{3,600} \mathrm{~s}$   Configurable，selectable from $\qquad$ ms Configurable，other，describe $\qquad$	Disabled	F－PRO 2000 Offliner
1．3．11	Local UDP port：	$\begin{aligned} & \square \\ & \boxtimes \\ & \square \\ & \square \end{aligned}$	Fixed at 20，000   Configurable，range 1025 to $\underline{32737}$   Configurable，selectable from $\qquad$ ，   Configurable，other，describe $\qquad$   Let system choose（Master only）	20，000	F－PRO 2000 Offliner
1.3.12	Destination UDP port for initial unsolicited null responses（UDP only Outstations）：	区 $\square$ $\square$ $\square$ $\square$	None   Fixed at 20，000   Configurable，range $\qquad$ to $\qquad$   Configurable，selectable from $\qquad$ ， $\qquad$   Configurable，other，describe $\qquad$	NA	


1．3 IP	Networking	Capabilities		Current Value	If configurable， list methods
1．3．13	Destination UDP port for responses：	$\square$	None   Fixed at 20，000   Configurable，range $\underline{1025}$ to $\underline{32737}$   Configurable，selectable from $\qquad$   Configurable，other，describe $\qquad$   Use source port number	20，000	F－PRO 2000 Offliner
1．3．14	Multiple master connections （Outstations Only）：	®   ®   区   区	Supports multiple masters（Outstations only） If supported，the following methods may be used：   Method 1 （based on IP address）－required Method 2 （based on IP port number）－ recommended   Method 3 （browsing for static data）－optional	Method 1 （based on IP address）	F－PRO 2000 Offliner
1.3.15	Time synchronization support：	$\square$   区	DNP3 LAN procedure（function code 24）   DNP3 Write Time（not recommended over LAN）   Other，explain $\qquad$   Not Supported		

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1.4 \& Link Layer \& \multicolumn{2}{|l|}{Capabilities} \& Current Value \& If configurable， list methods \\
\hline 1．4．1 \& Data Link Address： \&  \& \begin{tabular}{l}
Fixed at \(\qquad\) \\
Configurable，range 1 to 65519 \\
Configurable，selectable from \(\qquad\)
\(\qquad\) \\
Configurable，other，describe \(\qquad\)
\end{tabular} \& 1 \& F－PRO 2000 Offliner \\
\hline 1．4．2 \& DNP3 Source Address Validation： \& 区 \& \begin{tabular}{l}
Never \\
Always，one address allowed（shown in 1．4．3） Always，any one of multiple addresses allowed （each selectable as shown in 1．4．3） \\
Sometimes，explain \(\qquad\)
\end{tabular} \& \& \\
\hline 1．4．3 \& DNP3 Source Address（es）expected when Validation is Enabled： \& \[
\begin{aligned}
\& \square \\
\& \square \\
\& \square \\
\& \square
\end{aligned}
\] \& \begin{tabular}{l}
Configurable to any 16 bit DNP Data Link Address value \\
Configurable，range \(\qquad\) to \(\qquad\) Configurable，selectable from \(\qquad\) ， \\
Configurable，other，describe \(\qquad\)
\end{tabular} \& NA \& \\
\hline 1．4．4 \& Self Address Support using address 0xFFFC： \& 区 \& Yes（only allowed if configurable） No \& NA \& \\
\hline 1．4．5 \& Sends Confirmed User Data Frames： \& \begin{tabular}{l}

<br>
区

 \& 

Always <br>
Sometimes，explain $\qquad$ <br>
Never <br>
Configurable，either always or never
\end{tabular} \& \& F－PRO 2000 Offliner （to disable，set Data Link Time－ out to 0） <br>

\hline 1．4．6 \& Data Link Layer Confirmation Timeout： \&  \& | None |
| :--- |
| Fixed at $\qquad$ ms |
| Configurable，range $\underline{0}$ to $\underline{2,000} \mathrm{~ms}$ |
| Configurable，selectable from $\qquad$ ms Configurable，other，describe $\qquad$ Variable，explain $\qquad$ | \& 500 \& F－PRO 2000 Offliner <br>

\hline 1．4．7 \& Maximum Data Link Retries： \& $\square$

$\boxed{\star}$ \& | Never Retries |
| :--- |
| Fixed at 3 |
| Configurable，range $\qquad$ to $\qquad$ |
| Configurable，selectable from $\qquad$ $\qquad$ |
| Configurable，other，describe $\qquad$ | \& 3 \& <br>


\hline 1．4．8 \& Maximum number of octets Transmitted in a Data Link Frame： \& 区 \& | Fixed at 292 |
| :--- |
| Configurable，range $\qquad$ to $\qquad$ |
| Configurable，selectable from $\qquad$ $\qquad$ |
| Configurable，other，describe $\qquad$ | \& 292 \& <br>


\hline 1．4．9 \& Maximum number of octets that can be Received in a Data Link Frame： \& 区 \& | Fixed at 292 |
| :--- |
| Configurable，range $\qquad$ to $\qquad$ |
| Configurable，selectable from $\qquad$ $\qquad$ |
| Configurable，other，describe $\qquad$ | \& 292 \& <br>

\hline
\end{tabular}

1.5	Application Layer	Capabilities		Current Value	If configurable， list methods
1.5.1	Maximum number of octets Transmitted in an Application Layer Fragment other than File Transfer：	区 $\square$ $\square$ $\square$	Fixed at 2048   Configurable，range $\qquad$ to $\qquad$ Configurable，selectable from $\qquad$ $\qquad$ Configurable，other，describe $\qquad$	2048	
$1.5 .2$	Maximum number of octets Transmitted in an Application Layer Fragment containing File Transfer：	$\begin{aligned} & \square \\ & \square \\ & \square \\ & \square \end{aligned}$	Fixed at $\qquad$   Configurable，range $\qquad$ to $\qquad$   Configurable，selectable from $\qquad$   Configurable，other，describe $\qquad$	NA	
1.5.3	Maximum number of octets that can be Received in an Application Layer Fragment：	区	Fixed at 2048   Configurable，range $\qquad$ to $\qquad$ Configurable，selectable from $\qquad$ $\qquad$ Configurable，other，describe $\qquad$	2048	
1．5．4	Timeout waiting for Complete Application Layer Fragment：		None   Fixed at $2,000 \mathrm{~ms}$   Configurable，range $\qquad$ to $\qquad$ ms   Configurable，selectable from $\qquad$ ms   Configurable，other，describe $\qquad$   Variable，explain $\qquad$	2，000 ms	
1.5 .5	Maximum number of objects allowed in a single control request for CROB（group 12）：	区	Fixed at 16   Configurable，range $\qquad$ to $\qquad$ Configurable，selectable from $\qquad$ ，   Configurable，other，describe $\qquad$ Variable，explain $\qquad$	16	
1．5．6	Maximum number of objects allowed in a single control request for Analog Outputs （group 41）：	$\square$ $\square$ $\square$ $\square$ $\square$ $\square$	Fixed at   Configurable，range $\qquad$ to $\qquad$ Configurable，selectable from $\qquad$ ，   Configurable，other，describe $\qquad$ Variable，explain $\qquad$	Analog Outputs not supported	
1．5．7	Maximum number of objects allowed in a single control request for Data Sets（groups 85，86，87）：	$\square$ $\square$ $\square$ $\square$ $\square$ $\square$	Fixed at $\qquad$   Configurable，range $\qquad$ to $\qquad$   Configurable，selectable from $\qquad$ $\qquad$   Configurable，other，describe $\qquad$ Variable，explain $\qquad$	Data Sets not supported	
1.5 .8	Supports mixing object groups（AOBs，CROBs and Data Sets）in the same control request：	$\square$ $\square$ $\square$ 区	Not applicable－controls are not supported Yes   No	Analog Outputs not supported	


$1.6$	Fill Out The Following Items For Outstations Only	Capabilities		Current Value	If configurable， list methods
1．6．1	Timeout waiting for Application Confirm of solicited response message：	区	None   Fixed at $\underline{5,000} \mathrm{~ms}$   Configurable，range $\qquad$ to $\qquad$ ms   Configurable，selectable from $\qquad$ ，—， $\qquad$ ms   Configurable，other，describe $\qquad$   Variable，explain $\qquad$	$5,000 \mathrm{~ms}$	
1.6 .2	How often is time synchronization required from the master？	® $\square$	Never needs time   Within $\qquad$ seconds after IIN1．4 is set Periodically every $\qquad$ seconds		
1.6 .3	Device Trouble Bit IIN1．6：	区	Never used Reason for setting：Unable to access requested data or execute CROB，assuming a valid request has been received		
1．6．4	File Handle Timeout：	区	Not applicable，files not supported   Fixed at $\qquad$ ms   Configurable，range $\qquad$ to $\qquad$ ms Configurable，selectable from $\qquad$ ms Configurable，other，describe $\qquad$ Variable，explain $\qquad$		
1.6 .5	Event Buffer Overflow Behaviour：	囚	Discard the oldest event Discard the newest event Other，explain $\qquad$		
1.6 .6	Event Buffer Organization：		Single buffer for the Object Groups 2 and 32，size 200.   Separate buffer for the Object Group 111，size 100.   Separate buffer for the Fault Locator events，size 100.		
1.6.7	Sends Multi－Fragment Responses：		$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$		
1.6 .8	DNP Command Settings preserved through a device reset：	$\square$ $\square$ $\square$ $\square$ $\square$	Assign Class   Analog Deadbands Data Set Prototypes Data Set Descriptors	Not supported	


| 1.7Outstation Unsolicited <br> Response Support | Capabilities | Current Value | If configurable, <br> list methods |
| :--- | :--- | :--- | :--- | :--- |
| 1.7.1Supports Unsolicited <br> Reporting: | 区 Not Supported <br> Configurable, selectable from On and Off NA |  |  |


1.8	Outstation Performance	Capabilities	Current Value	If configurable, list methods
1.8.1	Maximum Time Base Drift (milliseconds per minute):		NA, not synchronized by DNP	
1.8.2	When does outstation set IIN1.4?	® Never   $\square$ Asserted at startup until first Time Synchronization request received Periodically, range $\qquad$ to $\qquad$ seconds Periodically, selectable from $\qquad$ , -_, $\qquad$ seconds Range $\qquad$ to $\qquad$ seconds after last time sync Selectable from $\qquad$ ,_,_, $\qquad$ seconds after last time sync When time error may have drifted by range to $\qquad$ $\qquad$ ms When time error may have drifted by selectable from $\qquad$ , ,__	NA	
$1.8 .3$	Maximum Internal Time Reference Error when set via DNP (ms):		NA	
1.8.4	Maximum Delay Measurement error (ms):		NA	
1.8.5	Maximum Response time (ms):		300 ms - TCP mode (for the case all supported points mapped to the DNP point lists)	F-PRO 2000 Offliner
1.8.6	Maximum time from start-up to IIN 1.4 assertion (ms):		NA	
1.8.7	Maximum Event Timetag error for local Binary and Double-bit I/O (ms):		- 0.5208 ms for 60 Hz systems   - 0.6250 ms for 50 Hz systems	
1.8.8	Maximum Event Timetag error for local I/O other than Binary and Double-bit data types (ms):		- 0.5208 ms for 60 Hz systems   - 0.6250 ms for 50 Hz systems	

## Capabilities and Current Settings for Device Database

The following tables identify the capabilities and current settings for each DNP3 data type. Each data type also provides a table defining the data points available in the device, default point lists configuration and a description of how this information can be obtained in case of customized point configuration.

2.1   Static   Event	ngle-Bit Binary Inputs   eady-State) Group Number: 1 up Number: 2	Capabilities	Current Value	If configurable, list methods
2.1.1	Static Variation reported when variation 0 requested:	® Variation 1 - Single-bit Packed format Variation 2 - Single-bit with flag Based on point Index (add column to table below)		
2.1.2	Event Variation reported when variation 0 requested:	Variation 1 - without time   区 Variation 2 - with absolute time   $\square \quad$ Variation 3 - with relative time Based on point Index (add column to table below)		
2.1.3	Event reporting mode:	$\square \quad$ Only most recent   ® All events		
2.1.4	Binary Inputs included in Class 0 response:	区 Always Never Only if point is assigned to Class 1,2 , or 3 Based on point Index (add column to table below)		F-PRO 2000 Offliner
2.1.5	Definition of Binary Input Point List:	Fixed, list shown in table below   Configurable   Other, explain	Complete list is shown in the table below; points excluded from the default configuration are marked with '*'	F-PRO 2000 Offliner

1. Binary Inputs are scanned with 1 ms resolution.

Notes
2. Binary Input data points are user selectable; the data points available in the device for any given Binary Input point selection can be obtained through the F-PRO 2000 Offliner software (see SCADA Setting Summary).

Point Index	Name	Default Class Assigned to Events (1, 2, 3 or none)	Name for State when value is 0	Name for State when value is 1	Description
0	External Input 1	1	Inactive	Active	
1	External Input 2	1	Inactive	Active	
2	External Input 3	1	Inactive	Active	
3	External Input 4	1	Inactive	Active	
4	External Input 5	1	Inactive	Active	
5	External Input 6	1	Inactive	Active	
6	External Input 7	1	Inactive	Active	
7	External Input 8	1	Inactive	Active	
8	External Input 9	1	Inactive	Active	
9	External Input 10	1	Inactive	Active	
10	External Input 11	1	Inactive	Active	
11	External Input 12	1	Inactive	Active	
12	External Input 13	1	Inactive	Active	
13	External Input 14	1	Inactive	Active	
14	Virtual Input 1	1	Inactive	Active	
15	Virtual Input 2	1	Inactive	Active	
16	Virtual Input 3	1	Inactive	Active	
17	Virtual Input 4	1	Inactive	Active	
18	Virtual Input 5	1	Inactive	Active	
19	Virtual Input 6	1	Inactive	Active	
20	Virtual Input 7	1	Inactive	Active	
21	Virtual Input 8	1	Inactive	Active	
22	Virtual Input 9	1	Inactive	Active	
23	Virtual Input 10	1	Inactive	Active	
24	Virtual Input 11	1	Inactive	Active	
25	Virtual Input 12	1	Inactive	Active	
26	Virtual Input 13	1	Inactive	Active	
27	Virtual Input 14	1	Inactive	Active	
28	Virtual Input 15	1	Inactive	Active	
29	Virtual Input 16	1	Inactive	Active	
30	Virtual Input 17	1	Inactive	Active	
31	Virtual Input 18	1	Inactive	Active	


32	Virtual Input 19	1	Inactive	Active	
33	Virtual Input 20	1	Inactive	Active	
34	Virtual Input 21	1	Inactive	Active	
35	Virtual Input 22	1	Inactive	Active	
36	Virtual Input 23	1	Inactive	Active	
37	Virtual Input 24	1	Inactive	Active	
38	Virtual Input 25	1	Inactive	Active	
39	Virtual Input 26	1	Inactive	Active	
40	Virtual Input 27	1	Inactive	Active	
41	Virtual Input 28	1	Inactive	Active	
42	Virtual Input 29	1	Inactive	Active	
43	Virtual Input 30	1	Inactive	Active	
44	ProLogic 1	1	Inactive	Active	
45	ProLogic 2	1	Inactive	Active	
46	ProLogic 3	1	Inactive	Active	
47	ProLogic 4	1	Inactive	Active	
48	ProLogic 5	1	Inactive	Active	
49	ProLogic 6	1	Inactive	Active	
50	ProLogic 7	1	Inactive	Active	
51	ProLogic 8	1	Inactive	Active	
52	ProLogic 9	1	Inactive	Active	
53	ProLogic 10	1	Inactive	Active	
54	ProLogic 11	1	Inactive	Active	
55	ProLogic 12	1	Inactive	Active	
56	ProLogic 13	1	Inactive	Active	
57	ProLogic 14	1	Inactive	Active	
58	ProLogic 15	1	Inactive	Active	
59	ProLogic 16	1	Inactive	Active	
60	ProLogic 17	1	Inactive	Active	
61	ProLogic 18	1	Inactive	Active	
62	ProLogic 19	1	Inactive	Active	
63	ProLogic 20	1	Inactive	Active	
64	27DT-1 Operated	1	Inactive	Active	
65	Fault Information Available	1	Inactive	Active	
66	27DT-1 Operated A	1	Inactive	Active	
67	27DT-1 Operated B	1	Inactive	Active	


68	27DT-1 Operated C	1	Inactive	Active	
69	27DT-2 Operated	1	Inactive	Active	
70	27DT-2 Operated A	1	Inactive	Active	
71	27DT-2 Operated B	1	Inactive	Active	
72	27DT-2 Operated C	1	Inactive	Active	
73	27DT-3 Operated	1	Inactive	Active	
74	27DT-3 Operated A	1	Inactive	Active	
75	27DT-3 Operated B	1	Inactive	Active	
76	27DT-3 Operated C	1	Inactive	Active	
77	27DT-4 Operated	1	Inactive	Active	
78	27DT-4 Operated A	1	Inactive	Active	
79	27DT-4 Operated B	1	Inactive	Active	
80	27DT-4 Operated C	1	Inactive	Active	
81	27DT-5 Operated	1	Inactive	Active	
82	27DT-5 Operated A	1	Inactive	Active	
83	27DT-5 Operated B	1	Inactive	Active	
84	27DT-5 Operated C	1	Inactive	Active	
85	27DT-6 Operated	1	Inactive	Active	
86	27DT-6 Operated A	1	Inactive	Active	
87	27DT-6 Operated B	1	Inactive	Active	
88	27DT-6 Operated C	1	Inactive	Active	
89	27IT-1 Operated	1	Inactive	Active	
90	27IT-1 Operated A	1	Inactive	Active	
91	27IT-1 Operated B	1	Inactive	Active	
92	27IT-1 Operated C	1	Inactive	Active	
93	27IT-2 Operated	1	Inactive	Active	
94	27IT-2 Operated A	1	Inactive	Active	
95	27IT-2 Operated B	1	Inactive	Active	
96	27IT-2 Operated C	1	Inactive	Active	
97	59DT-1 Operated	1	Inactive	Active	
98	59DT-1 Operated A	1	Inactive	Active	
99	59DT-1 Operated B	1	Inactive	Active	
100	59DT-1 Operated C	1	Inactive	Active	
101	59DT-2 Operated	1	Inactive	Active	
102	59DT-2 Operated A	1	Inactive	Active	
103	59DT-2 Operated B	1	Inactive	Active	


104	59DT-2 Operated C	1	Inactive	Active	
105	59DT-3 Operated	1	Inactive	Active	
106	59DT-3 Operated A	1	Inactive	Active	
107	59DT-3 Operated B	1	Inactive	Active	
108	59DT-3 Operated C	1	Inactive	Active	
109	59DT-4 Operated	1	Inactive	Active	
110	59DT-4 Operated A	1	Inactive	Active	
111	59DT-4 Operated B	1	Inactive	Active	
112	59DT-4 Operated C	1	Inactive	Active	
113	59DT-5 Operated	1	Inactive	Active	
114	59DT-5 Operated A	1	Inactive	Active	
115	59DT-5 Operated B	1	Inactive	Active	
116	59DT-5 Operated C	1	Inactive	Active	
117	59DT-6 Operated	1	Inactive	Active	
118	59DT-6 Operated A	1	Inactive	Active	
119	59DT-6 Operated B	1	Inactive	Active	
120	59DT-6 Operated C	1	Inactive	Active	
121	5917-1 Operated	1	Inactive	Active	
122	591T-1 Operated A	1	Inactive	Active	
123	5917-1 Operated B	1	Inactive	Active	
124	5917-1 Operated C	1	Inactive	Active	
125	59IT-2 Operated	1	Inactive	Active	
126	591T-2 Operated A	1	Inactive	Active	
127	5917-2 Operated B	1	Inactive	Active	
128	5917-2 Operated C	1	Inactive	Active	
129	24DT-1 Operated	1	Inactive	Active	
130	24DT-2 Operated	1	Inactive	Active	
131	24IT Operated	1	Inactive	Active	
132	47DT-1 Operated	1	Inactive	Active	
133	47DT-2 Operated	1	Inactive	Active	
134	47IT Operated	1	Inactive	Active	
135	59NDT-1 Operated	1	Inactive	Active	
136	59NDT-2 Operated	1	Inactive	Active	
137	59NIT Operated	1	Inactive	Active	
138	37-1 Operated	1	Inactive	Active	
139	37-1 Operated A	1	Inactive	Active	


140	37-1 Operated B	1	Inactive	Active	
141	37-1 Operated C	1	Inactive	Active	
142	37-2 Operated	1	Inactive	Active	
143	37-2 Operated A	1	Inactive	Active	
144	37-2 Operated B	1	Inactive	Active	
145	37-2 Operated C	1	Inactive	Active	
146	50/67-1 Operated	1	Inactive	Active	
147	50/67-1 Operated A	1	Inactive	Active	
148	50/67-1 Operated B	1	Inactive	Active	
149	50/67-1 Operated C	1	Inactive	Active	
150	50/67-2 Operated	1	Inactive	Active	
151	50/67-2 Operated A	1	Inactive	Active	
152	50/67-2 Operated B	1	Inactive	Active	
153	50/67-2 Operated C	1	Inactive	Active	
154	51/67-1 Operated	1	Inactive	Active	
155	51/67-1 Operated A	1	Inactive	Active	
156	51/67-1 Operated B	1	Inactive	Active	
157	51/67-1 Operated C	1	Inactive	Active	
158	51/67-2 Operated	1	Inactive	Active	
159	51/67-2 Operated A	1	Inactive	Active	
160	51/67-2 Operated B	1	Inactive	Active	
161	51/67-2 Operated C	1	Inactive	Active	
162	50N/67N-1 Operated	1	Inactive	Active	
163	50N/67N-2 Operated	1	Inactive	Active	
164	51N/67N-1 Operated	1	Inactive	Active	
165	51N/67N-2 Operated	1	Inactive	Active	
166	46/50 Operated	1	Inactive	Active	
167	46/51 Operated	1	Inactive	Active	
168	64/50SEF-1 Operated	1	Inactive	Active	
169	64/50SEF-2 Operated	1	Inactive	Active	
170	64/51SEF-1 Operated	1	Inactive	Active	
171	64/51SEF-2 Operated	1	Inactive	Active	
172	49 Operated	1	Inactive	Active	
173	49 Alarm Operated	1	Inactive	Active	
174	50BF-D1 Operated	1	Inactive	Active	
175	50BF-D2 Operated	1	Inactive	Active	


176	DICBF-D1 Operated	1	Inactive	Active	
177	DICBF-D2 Operated	1	Inactive	Active	
178	46BC Operated	1	Inactive	Active	
179	81HBL2 Operated	1	Inactive	Active	
180	81U-1 Operated	1	Inactive	Active	
181	81U-2 Operated	1	Inactive	Active	
182	81U-3 Operated	1	Inactive	Active	
183	81U-4 Operated	1	Inactive	Active	
184	81U-5 Operated	1	Inactive	Active	
185	81U-6 Operated	1	Inactive	Active	
186	81U-7 Operated	1	Inactive	Active	
187	81U-8 Operated	1	Inactive	Active	
188	810-1 Operated	1	Inactive	Active	
189	810-2 Operated	1	Inactive	Active	
190	810-3 Operated	1	Inactive	Active	
191	810-4 Operated	1	Inactive	Active	
192	810-5 Operated	1	Inactive	Active	
193	810-6 Operated	1	Inactive	Active	
194	810-7 Operated	1	Inactive	Active	
195	810-8 Operated	1	Inactive	Active	
196	81R-1 Operated	1	Inactive	Active	
197	81R-2 Operated	1	Inactive	Active	
198	81R-3 Operated	1	Inactive	Active	
199	81R-4 Operated	1	Inactive	Active	
200	32-1 Operated	1	Inactive	Active	
201	32-1 Operated A	1	Inactive	Active	
202	32-1 Operated B	1	Inactive	Active	
203	32-1 Operated C	1	Inactive	Active	
204	32-2 Operated	1	Inactive	Active	
205	32-2 Operated A	1	Inactive	Active	
206	32-2 Operated B	1	Inactive	Active	
207	32-2 Operated C	1	Inactive	Active	
208	32-3 Operated	1	Inactive	Active	
209	32-3 Operated A	1	Inactive	Active	
210	32-3 Operated B	1	Inactive	Active	
211	32-3 Operated C	1	Inactive	Active	


212	32-4 Operated	1	Inactive	Active	
213	32-4 Operated A	1	Inactive	Active	
214	32-4 Operated B	1	Inactive	Active	
215	32-4 Operated C	1	Inactive	Active	
216	60VTS Operated	1	Inactive	Active	
217	60CTS Operated	1	Inactive	Active	
218	74TCS-1 Operated	1	Inactive	Active	
219	74TCS-2 Operated	1	Inactive	Active	
220	I2T Limit Operated	1	Inactive	Active	
221	THD-1 Operated	1	Inactive	Active	
222	THD-2 Operated	1	Inactive	Active	
223	UV Counter Operated	1	Inactive	Active	
224	OV Counter Operated	1	Inactive	Active	
225	UF Counter Operated	1	Inactive	Active	
226	OF Counter Operated	1	Inactive	Active	
227	El Counter Operated	1	Inactive	Active	
228	79AR_Cumm_Count_				
229	25/27/59 Operated	1	Inactive	Active	
230	79 Initiate	1	Inactive	Active	
231	79 Reclose	1	Inactive	Active	
232	79 Lockout	1	Inactive	Active	
233	79 Block	1	Inactive	Active	
234	Output Contact 1	1	Open	Closed	
235	Output Contact 2	1	Open	Closed	
236	Output Contact 3	1	Open	Closed	
237	Output Contact 4	1	Open	Closed	
238	Output Contact 5	1	Open	Closed	
239	Output Contact 6	1	Open	Closed	
240	Output Contact 7	1	Open	Closed	
241	Output Contact 8	1	Open	Closed	
242	Output Contact 9	1	Open	Closed	
243	Output Contact 10	1	Open	Closed	
244	Output Contact 11	1	Open	Closed	
245	Output Contact 12	1	Open	Closed	
246	Output Contact 13	1	Open	Closed	
247	Output Contact 14	1	Open	Closed	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
2．2 Binary Output Status And Control Relay Output Block \\
Binary Output Status Group Number： 10 Binary Output Event Group Number： 11 CROB Group Number： 12 \\
Binary Output Command Event Object Num： 13
\end{tabular}} \& \multicolumn{2}{|l|}{Capabilities} \& Current Value \& If configurable， list methods \\
\hline 2.2.1 \& Minimum pulse time allowed with Trip， Close，and Pulse On commands： \& 区 \& \begin{tabular}{l}
Fixed at \(0,000 \mathrm{~ms}\)（hardware may limit this further） \\
Based on point Index（add column to table below）
\end{tabular} \& \& \\
\hline 2.2.2 \& Maximum pulse time allowed with Trip， Close，and Pulse On commands： \& 区 \& \begin{tabular}{l}
Fixed at \(0,000 \mathrm{~ms}\)（hardware may limit this further） \\
Based on point Index（add column to table below）
\end{tabular} \& \& \\
\hline 2.2.3 \& Binary Output Status included in Class 0 response： \& 区 \& \begin{tabular}{l}
Always \\
Never \\
Only if point is assigned to Class 1，2，or 3 Based on point Index（add column to table below）
\end{tabular} \& \& \\
\hline \[
2.2 .4
\] \& Reports Output Command Event Objects： \& 区 \& \begin{tabular}{l}
Never \\
Only upon a successful Control Upon all control attempts
\end{tabular} \& Not supported \& \\
\hline 2.2.5 \& Event Variation reported when variation 0 requested： \& \[
\begin{aligned}
\& \square \\
\& \square \\
\& \square
\end{aligned}
\] \& \begin{tabular}{l}
Variation 1 －without time \\
Variation 2 －with absolute time Based on point Index（add column to table below）
\end{tabular} \& Not supported \& F－PRO 2000 Offliner（See Note 2 below） \\
\hline 2.2.6 \& Command Event Variation reported when variation 0 requested： \& \[
\begin{aligned}
\& \square \\
\& \square \\
\& \square
\end{aligned}
\] \& \begin{tabular}{l}
Variation 1 －without time \\
Variation 2 －with absolute time Based on point Index（add column to table below）
\end{tabular} \& Not supported \& F－PRO 2000 Offliner （See Note 2 below） \\
\hline 2．2．7 \& Event reporting mode： \& \[
\begin{aligned}
\& \square \\
\& \square
\end{aligned}
\] \& Only most recent All events \& Not supported \& F－PRO 2000 Offliner （See Note 2 below） \\
\hline 2．2．8 \& Command Event reporting mode： \& \[
\begin{aligned}
\& \square \\
\& \square
\end{aligned}
\] \& Only most recent All events \& Not supported \& \\
\hline 2.2.9 \& Maximum Time between Select and Operate： \& \begin{tabular}{l}
\(\square\) \\
\(\square\) \\
ㅁ

 \& 

Not Applicable <br>
Fixed at 10 seconds <br>
Configurable，range $\qquad$ to $\qquad$ seconds <br>
Configurable，selectable from $\qquad$
$\qquad$ sec－ onds <br>
Configurable，other，describe $\qquad$ <br>
Variable，explain $\qquad$ <br>
Based on point Index（add column to table below）
\end{tabular} \& 10 s \& <br>

\hline 2.2.10 \& Definition of Binary Output Status／Control relay output block （CROB）Point List： \& $$
\begin{aligned}
& \square \\
& \boxed{\otimes}
\end{aligned}
$$ \& Fixed，list shown in table below Configurable Other，explain $\qquad$ \& Complete list is shown in the table below； points excluded from the default configuration are marked with＇＊＇ \& F－PRO 2000 Offliner <br>

\hline
\end{tabular}

## 1. Binary Outputs are scanned with 500 ms resolution.

2. Events are not supported for Binary Outputs (group 10), but most of Binary Output points can be mapped to Binary Inputs (group 2) with full Event and Class Data support. See F-PRO 2000 Offliner/DNP Configuration/Point Map screen for complete point lists and configuration options.
NOTES
3. Virtual Inputs (default Binary Output points 94-123) can be used to control relay output contacts. See F-PRO 2000 Offliner/Setting Group X/Output Matrix screen for configuration options.
4. Binary Output data points are user selectable; the data points available in the device for any given Binary Output point selection can be obtained through the F-PRO 2000 Offliner software (see SCADA Setting Summary).

	Name	Supported Control Operations											Name for State when value is 0	Name for State when value is 1	Default Class Assigned to Events (1, 2, 3 or none)		Description
				Direct Operate - No Ack	1 2 2 0 0 0 0 0 0	$\begin{aligned} & \text { 告 } \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \end{aligned}$			을	$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{0} \end{aligned}$		Cancel Currently Running Operation			Change	Command	
0	Output contact 1	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
1	Output contact 2	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
2	Output contact 3	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
3	Output contact 4	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
4	Output contact 5	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
5	Output contact 6	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
6	Output contact 7	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
7	Output contact 8	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
8	Output contact 9	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
9	Output contact 10	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
10	Output contact 11	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
11	Output contact 12	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
12	Output contact 13	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
13	Output contact 14	-	-	-	-	-	-	-	-	-	-	-	Open	Closed	None	None	
14	Get Next Fault Events	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inavtive	Active	None	None	Pulse duration fixed at 1 s
15	Virtual Input 1	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
16	Virtual Input 2	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
17	Virtual Input 3	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
18	Virtual Input 4	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s


	Name	Supported Control Operations											Name for State when value is 0	Name for State when value is 1	Default Class Assigned to Events (1, 2, 3 or none)		Description
			Direct Operate	Direct Operate - No Ack		$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & \text { O } \\ & \text { in } \end{aligned}$			은	$\begin{aligned} & \ddot{0} \\ & \text { O} \\ & \hline 0 \end{aligned}$	$$	Cancel Currently Running Operation			Change	Command	
19	Virtual Input 5	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
20	Virtual Input 6	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
21	Virtual Input 7	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
22	Virtual Input 8	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
23	Virtual Input 9	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
24	Virtual Input 10	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
25	Virtual Input 11	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
26	Virtual Input 12	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
27	Virtual Input 13	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
28	Virtual Input 14	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
29	Virtual Input 15	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
30	Virtual Input 16	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
31	Virtual Input 17	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
32	Virtual Input 18	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
33	Virtual Input 19	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
34	Virtual Input 20	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
35	Virtual Input 21	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
36	Virtual Input 22	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
37	Virtual Input 23	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
38	Virtual Input 24	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
39	Virtual Input 25	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
40	Virtual Input 26	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
41	Virtual Input 27	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
42	Virtual Input 28	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
43	Virtual Input 29	Y	Y	Y	Y	-	Y	Y	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s
44	Virtual Input 30	Y	Y	Y	Y	-	Y	-	-	-	-	-	Inactive	Active	None	None	Pulse duration fixed at 1 s

$\left.\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { 2.3 } \begin{array}{l}\text { Analog Input Points } \\ \text { Static (Steady-State) Group Number: 30 } \\ \text { Event Group Number: 32 }\end{array} \\ \hline \text { Capabilities }\end{array} & & & \text { Current Value }\end{array}\right] \begin{array}{l}\text { If configurable, } \\ \text { list methods }\end{array}\right]$

1. Analog Inputs are scanned with 500 ms resolution.
2. Nominal values in calculations for the following table are based on 69 V secondary voltage * PT ratio for voltage channels, and either 1 A or 5A secondary current * CT ratio for current channels dependent upon the format of CT installed in the F-PRO.
3. Analog Input data points are user selectable; the data points available in the device for any given Analog Input point selection can be obtained through the FPRO 2000 Offliner software (see SCADA Setting Summary).
4. When a fault location event is available, Binary Input Fault Information Available (default point index 39) is asserted while there are still fault location events in the buffer (size 100). When a Pulse or Latch is received for the Binary Output Get Next Fault Event (default point index 44, previous state is not important),
NOTES fault event information is put into the Analog Inputs. If there is no fault location event available when the Binary Output is pulsed, the fault type is set to zero.

Not all fault location events are reported trough DNP. In a burst of fault locations from a fault, only the first processed event is available through DNP, all other events within the following 100 ms interval are ignored. Outside 100 ms from the processed fault location event, the system accepts another fault location event and performs the same filtering. In addition, only fault location events generated by trip elements are available.

The following bitmap id used for the fault information Type points:
$0 \times 0001$ Phase A
$0 \times 0002$ Phase B
$0 \times 0004$ Phase C
0x0008 Ground

	Name	Default Class Assigned to Events (1, 2, 3 or none)	Transmitted Value ${ }^{\text {a }}$		Scaling ${ }^{\text {b }}$		Units	Resolution ${ }^{\text {c }}$ (default/ maximal)	Description
			Minimum	Maximum ${ }^{\text {d }}$	$\underset{\text { Multiplier }}{\text { (default/ (range)) }}$	Offset			
0	Va Magnitude	2	0	Configurable	0.01 / (0.00001-1.0)	0.0	kV	$0.1 / 0.00001$	
1	Va Angle	2	-18,000	18,000	0.1 / (0.01-1.0)	0.0	Degrees	0.1 / 0.01	
2	Vb Magnitude	2	0	Configurable	0.01 / (0.000001-1.0)	0.0	kV	$0.1 / 0.00001$	
3	Vb Angle	2	-18,000	18,000	0.1 / (0.01-1.0)	0.0	Degrees	0.1 / 0.01	
4	Vc Magnitude	2	0	Configurable	0.01 / (0.000001-1.0)	0.0	kV	$0.1 / 0.00001$	
5	Vc Angle	2	-18,000	18,000	0.1 / (0.01-1.0)	0.0	Degrees	0.1 / 0.01	
6	VN Magnitude	2	0	Configurable	$0.01 /(0.000001-1.0)$	0.0	kV	$0.1 / 0.00001$	
7	VN Angle	2	-18,000	18,000	0.1 / (0.01-1.0)	0.0	Degrees	0.1 / 0.01	
8	Vab Magnitude	2	0	Configurable	0.01 / (0.000001-1.0)	0.0	kV	$0.1 / 0.00001$	
9	Vab Angle	2	-18,000	18,000	0.1 / (0.01-1.0)	0.0	Degrees	0.1/0.01	


	Name	Default Class Assigned to Events (1, 2, 3 or none)	Transmitted Value ${ }^{\text {a }}$		Scaling ${ }^{\text {b }}$		Units	Resolution ${ }^{\text {c }}$ (default/ maximal)	Description
			Minimum	Maximum ${ }^{\text {d }}$	$\begin{gathered} \text { Multiplier } \\ \text { (default/ (range)) } \end{gathered}$	Offset			
10	Vbc Magnitude	2	0	Configurable	$0.01 /(0.000001-1.0)$	0.0	kV	$0.1 / 0.00001$	
11	Vbc Angle	2	-18,000	18,000	0.1/ (0.01-1.0)	0.0	Degrees	0.1 / 0.01	
12	Vca Magnitude	2	0	Configurable	$0.01 /(0.000001-1.0)$	0.0	kV	$0.1 / 0.00001$	
13	Vca Angle	2	-18,000	18,000	0.1 / (0.01-1.0)	0.0	Degrees	0.1 / 0.01	
14	Vsync Magnitude	2	0	Configurable	0.01 / (0.000001-1.0)	0.0	kV	$0.1 / 0.00001$	
15	Vsync Angle	2	-18,000	18,000	0.1/ (0.01-1.0)	0.0	Degrees	0.1 / 0.01	
16	V1 Magnitude	2	0	Configurable	0.01 / (0.000001-1.0)	0.0	kV	$0.1 / 0.00001$	
17	V2 Magnitude	2	0	Configurable	0.01 / (0.000001-1.0)	0.0	kV	$0.1 / 0.00001$	
18	Vo Magnitude	2	0	Configurable	0.01 / (0.000001-1.0)	0.0	kV	0.1 / 0.00001	
19	V/F	2	0	Configurable	0.01 / (0.0001-1.0)	0.0	pu		
20	\%THD Voltage	2	0	10,000	$0.1 /$ (0.01-1.0)	0.0	\%		
21	la Magnitude	2	0	Configurable	$0.01 /(0.00001-10.0)$	0.0	A	1.0 / 0.01	
22	la Angle	2	-18,000	18,000	0.1 / (0.01-1.0)	0.0	Degrees	0.1 / 0.01	
23	Ib Magnitude	2	0	Configurable	$0.01 /(0.00001-10.0)$	0.0	A	1.0 / 0.01	
24	Ib Angle	2	-18,000	18,000	0.1 / (0.01-1.0)	0.0	Degrees	0.1 / 0.01	
25	Ic Magnitude	2	0	Configurable	$0.01 /(0.00001-10.0)$	0.0	A	$1.0 / 0.01$	
26	Ic Angle	2	-18,000	18,000	$0.1 /$ ( $0.01-1.0)$	0.0	Degrees	$0.1 / 0.01$	
27	In Magnitude	2	0	Configurable	0.01 / (0.000001-10.0)	0.0	A	1.0 / 0.01	
28	In Angle	2	-18,000	18,000	$0.1 /$ ( $0.01-1.0$ )	0.0	Degrees	0.1 / 0.01	
29	Isef Magnitude	2	0	Configurable	0.01 / (0.000001-10.0)	0.0	A	1.0 / 0.01	
30	Isef Angle	2	-18,000	18,000	$0.1 /(0.01-1.0)$	0.0	Degrees	0.1 / 0.01	
31	11 Magnitude	2	0	Configurable	$0.01 /(0.000001-10.0)$	0.0	A	$1.0 / 0.01$	
32	12 Magnitude	2	0	Configurable	$0.01 /(0.000001-10.0)$	0.0	A	1.0 / 0.01	
33	10 Magnitude	2	0	Configurable	0.01 / (0.000001-10.0)	0.0	A	$1.0 / 0.01$	
34	\%12/11	2	0	Configurable	0.1/ (0.01-1.0)	0.0	\%	$0.1 / 0.01$	
35	P	2	0	Configurable	$0.001 /(0.000001-1.0)$	0.0	MW	$0.1 / 0.00001$	
36	Q	2	0	Configurable	$0.001 /(0.000001-1.0)$	0.0	Mvar	$0.1 / 0.00001$	
37	Pa	2	0	Configurable	0.001 / (0.000001-1.0)	0.0	MW	$0.1 / 0.00001$	
38	Pb	2	0	Configurable	0.001 / (0.000001-1.0)	0.0	MW	$0.1 / 0.00001$	
39	Pc	2	0	Configurable	0.001 / (0.000001-1.0)	0.0	MW	$0.1 / 0.00001$	
40	Qa	2	0	Configurable	0.001 / (0.000001-1.0)	0.0	Mvar	$0.1 / 0.00001$	
41	Qb	2	0	Configurable	0.001 / (0.000001-1.0)	0.0	Mvar	$0.1 / 0.00001$	
42	Qc	2	0	Configurable	0.001 / (0.000001-1.0)	0.0	Mvar	$0.1 / 0.00001$	
43	Frequency	2	0	Max F x 100	$0.01 /(0.01-1.0)$	0.0	Hz	$0.01 / 0.01$	
44	Power Factor	2	0	1,000	$0.01 /(0.001-0.1)$	0.0	N/A	$0.01 / 0.001$	
45	Thermal State	2	0	10,000	$0.1 /(0.01-1.0)$	0.0	\%	$0.1 / 0.01$	
46	12t Accumulated	2	0	Configurable	$1.0 /(0.1-10.0)$	0.0	kA^2s	$1.0 / 0.1$	
47	I2t for Last Operation	2	0	Configurable	1.0 / (0.1-10.0)	0.0	kA^2s	1.0 / 0.1	
48	Bus Voltage	2	0	Configurable	$0.01 /(0.000001-1.0)$	0.0	kV	0.01/0.000001	
49	Line Voltage	2	0	Configurable	0.01 / (0.000001-1.0)	0.0	kV	$0.01 / 0.000001$	
50	Bus Phase Angle	2	-18,000	18,000	$0.1 /(0.01-1.0)$	0.0	degrees	$0.1 / 0.01$	
51	Line Phase Angle	2	-18,000	18,000	0.1/ (0.01-1.0)	0.0	degrees	$0.1 / 0.01$	
52	Bus Frequency	2	0	Max F x 100	0.01 / (0.01-1.0)	0.0	Hz	$0.01 / 0.01$	
53	Line Frequency	2	0	Max F x 100	0.01 / (0.01-1.0)	0.0	Hz	$0.01 / 0.01$	
54	79AR_Count	2	0	Configurable	1/1	0.0	N/A	1/1	
55	79AR_Cumm_Count	2	0	Configurable	1/1	0.0	N/A	1/1	


	Name	Default Class Assigned to Events (1, 2, 3 or none)	Transmitted Value ${ }^{\text {a }}$		Scaling ${ }^{\text {b }}$		Units	$\begin{aligned} & \text { Resolutionc } \\ & \text { (default/ } \\ & \text { maximal) } \end{aligned}$	Description
			Minimum	Maximum ${ }^{\text {d }}$	Multiplier (default/ (range))	Offset			
56	Fault Information DNP Time (High 16 bits)	2	0	65535	1.0/1.0	0.0	N/A	1.0/1.0	
57	Fault Information DNP Time (Middle 16 bits)	2	0	65535	1.0/1.0	0.0	N/A	1.0/1.0	
58	Fault Information DNP Time (Low 16 bits)	2	0	65535	1.0/1.0	0.0	N/A	1.0/1.0	
59	Fault Information Fault Distance	2	0	Configurable	0.1/0.1	0.0	Configurable (km or miles)	0.1/0.1	
60	Fault Information Type	2	0	15	1.0/1.0	0.0	N/A	1/1	

a. The minimum and maximum transmitted values are the lowest and highest values that the outstation will report in DNP analog input objects. These values are integers if the outstation transmits only integers. If the outstation is capable of transmitting both integers and floating-point, then integer and floating-point values are required for the minimums and maximums.
For example, a pressure sensor is able to measure 0 to 500 kPa . The outstation provides a linear conversion of the sensor's output signal to integers in the range of 0 to 25000 or floating-point values of 0 to 500.000 . The sensor and outstation are used in an application where the maximum possible pressure is 380 kPa . For this input, the minimum transmitted value would be stated as 0 / 0.0 and the maximum transmitted value would be stated as $19000 / 380.000$.
b. The scaling information for each point specifies how data transmitted in integer variations ( 16 bit and 32 bit) is converted to engineering units when received by the Master (i.e. scaled according to the equation: scaled value $=$ multiplier * raw + offset). Scaling is not applied to Floating point variations since they are already transmitted in engineering units.
c. Resolution is the smallest change that may be detected in the value due to quantization errors and is given in the units shown in the previous column. This parameter does not represent the accuracy of the measurement.
d. Maximal values are calculated as ( $2 *$ Configured Nominal / Multiplier) for voltage channels and as ( 40 * Configured Nominal / Multiplier) for current channels (see Note 2 above for the nominal definitions).

2.4   Static (Steady-State Grope Number: 110   Event Group Number: 111	Capabilities	Current Value	If configurable,   list methods	
2.4.1	Event reporting mode *:	$\square$	Only most recent   $\square$   All events	Not supported
2.4.2	Octet Strings Included   in Class 0 response:	$\square$	Always   $\square$   Never   $\square$	Only if point is assigned to Class 1, 2, or 3   Based on point Index (add column to table   below)

* Object 110 and 111 are Octet String Object used to provide access to the Event Log text of the relay. Object 110 always contains the most recent event in the relay. Object 111 is the corresponding change event object.

As stated in the DNP specifications, the variation of the response object represents the length of the string. The string represents the ASCII values of the event text. The first two characters in the string can be used to quickly identify fault location events. Fault locator events begin with the characters "FL" ( $0 \times 46,0 \times 4 \mathrm{C}$ hex). The following example shows a fault distance event returned through either of the octet string objects:

Event Message:
FL2019Nov26 12:35:30.267: 50/67-1 A Phase: 4.16 km Operated

DNP Octet string object components:					
0x46	0x4c	0x32	0x30	$0 \times 31$	0x39
0x4e	0x6f	0x76	0x32	$0 \times 36$	0x20
0x31	0x32	0x3a	$0 \times 33$	$0 \times 35$	0x3a
0x33	0x30	0x2e	0x32	0x36	0x37
0x20	0x3a	0x20	$0 \times 35$	$0 \times 30$	0x2f
0x36	0x37	0x2d	$0 \times 31$	$0 \times 20$	0x41
0x20	0x50	0x68	$0 \times 61$	$0 \times 73$	0x65
0x3a	0x20	0x34	0x2E	$0 \times 31$	0x36
0x20	0x6b	0x6d	0x20	0x4f	0x70
0x65	0x72	$0 \times 61$	0x74	0x65	0x64

## Implementation Table

The following implementation table identifies which object groups and variations, function codes and qualifiers the device supports in both requests and responses. The Request columns identify all requests that may be sent by a Master, or all requests that must be parsed by an Outstation. The Response columns identify all responses that must be parsed by a Master, or all responses that may be sent by an Outstation.

The implementation table must list all functionality required by the device whether Master or Outstation as defined within the DNP3 IED Conformance Test Pro-

## NOTE

 cedures. Any functionality beyond the highest subset level supported is indicated by highlighted rows. Any Object Groups not provided by an outstation or not processed by a Master are indicated by strikethrough (note these Object Groups will still be parsed).| DNP Object Group \& Variation |  |  | Request Outstation parses |  | Response <br> Outstation can issue |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Group Num | Var Num | Description | Function Codes (dec) | Qualifier Codes (hex) | Function Codes (dec) | Qualifier Codes (hex) |
| 1 | 0 | Binary Input - Any Variation | 1 (read) | 06 (no range, or all) <br> 00, 01 (start-stop) <br> 07, 08 (limited qty) <br> 17, 28 (index) | 129 (response) | 00, 01 (start-stop) |
| 1 | 1 | Binary Input - Packed format | 1 (read) | 06 (no range, or all) 00, 01 (start-stop) <br> 07, 08 (limited qty) <br> 17, 28 (index) | 129 (response) | 00, 01 (start-stop) |
| 1 | 2 | Binary Input - With flags | 1 (read) | 06 (no range, or all) <br> 00, 01 (start-stop) <br> 07, 08 (limited qty) <br> 17, 28 (index) | 129 (response) | 00, 01 (start-stop) |
| 2 | 0 | Binary Input Event - Any Variation | 1 (read) | 06 (no range, or all) <br> 07, 08 (limited qty) | 129 (response) | 17, 28 (index) |
| 2 | 1 | Binary Input Event - Without time | 1 (read) | 06 (no range, or all) <br> 07, 08 (limited qty) | 129 (response) <br> 130 (unsol. resp) | 17, 28 (index) |
| 2 | 2 | Binary Input Event - With absolute time | 1 (read) | 06 (no range, or all) <br> 07, 08 (limited qty) | 129 (response) <br> 130 (unsol. resp) | 17, 28 (index) |
| 2 | 3 | Binary Input Event - With relative time | 1 (read) | 06 (no range, or all) <br> 07, 08 (limited qty) | 129 (response) <br> 130 (unsol. resp) | 17, 28 (index) |
| 10 | 0 | Binary Output - Any Variation | 1 (read) | 06 (no range, or all) <br> 00, 01 (start-stop) <br> 07, 08 (limited qty) <br> 17, 28 (index) | 129 (response) | 00, 01 (start-stop) |
| 10 | 2 | Binary Output - Output Status with flag | 1 (read) | 06 (no range, or all) 00, 01 (start-stop) <br> 07, 08 (limited qty) <br> 17, 28 (index) | 129 (response) | 00, 01 (start-stop) |
| 12 | 1 | Binary Command - Control relay output block (CROB) | 3 (select) <br> 4 (operate) <br> 5 (direct op) <br> 6 (dir. op, no ack) | 17, 28 (index) | 129 (response) | Echo of request |


DNP Object Group \& Variation			Request   Outstation parses			Response Outstation can issue	
Group Num	Var Num	Description	Fun (dec)	ion Codes	Qualifier Codes (hex)	Function Codes (dec)	Qualifier Codes (hex)
20	0	Gountor-Any Variation		(read) (freeze) (freeze noack) (freeze clear) (frz. cl. noack)	06 (no range, or all)	129 (response)	
20	1	Gountor-32-bit with flag				129 (response)	00,01 (start-ston)
20	2	Counter - 16-bit with flag				129 (response)	00,01 (start-stop)
20	5	Gountor-32-bit without flag				129 (response)	00,01 (start-ston)
20	6	Counter-16-bit without flag				129 (response)	00,01 (start-stop)
21	0	Erozon Countor-Any Variation		(read)	06 (no range, or all)		
21	1	Frozen Counter - 32-bit with flag				129 (response)	00,01 (start-stop)
21	2	Frozoncountor-16-bit with flag				129 (response)	00,01 (start-stop)
21	9	Frozen Counter-32-bit without flag				129 (response)	00,01 (start-stop)
21	10	Frozoncountor - 16-bit without flag				129 (response)	00,01 (start-stop)
22	0	Gountor Event-Any Variation	1	(read)	06 (no range, or all)   07, 08 (limited qty)		
22	1	Gounter Event-32-bit with flag				129 (response)   130 (unsol. resp)	17,28 (index)
22	2	Counter Event-16-bit with flag				129 (response)   130 (unsol. resp)	17,28 (index)
30	0	Analog Input - Any Variation	1	(read)	06 (no range, or all)	129 (response)	00, 01 (start-stop)
					$\begin{array}{lr}\text { 00, } 01 & \text { (start-stop) } \\ 07,08 & \text { (limited qty) } \\ 17,28 & \text { (index) }\end{array}$		
30	1	Analog Input - 32-bit with flag	1	(read)	06 (no range, or all)   00, 01 (start-stop)   07, 08 (limited qty)   17, 28 (index)	129 (response)	00, 01 (start-stop)
30	2	Analog Input - 16-bit with flag	1	(read)	06 (no range, or all)   00, 01 (start-stop)   07, 08 (limited qty)   17, 28 (index)	129 (response)	00, 01 (start-stop)
30	3	Analog Input - 32-bit without flag	1	(read)	06 (no range, or all)   00, 01 (start-stop)   07, 08 (limited qty)   17, 28 (index)	129 (response)	00, 01 (start-stop)
30	4	Analog Input - 16-bit without flag	1	(read)	06 (no range, or all)   00, 01 (start-stop)   07, 08 (limited qty)   17, 28 (index)	129 (response)	00, 01 (start-stop)
32	0	Analog Input Event - Any Variation	1	(read)	06 (no range, or all)   07, 08 (limited qty)	129 (response)	17, 28 (index)
32	1	Analog Input Event - 32-bit without time	1	(read)	06 (no range, or all)   07, 08 (limited qty)	129 (response)   130 (unsol. resp)	17, 28 (index)
32	2	Analog Input Event - 16-bit without time	1	(read)	06 (no range, or all)   07, 08 (limited qty)	129 (response)   130 (unsol. resp)	17, 28 (index)
32	3	Analog Input Event - 32-bit with time	1	(read)	06 (no range, or all)   07, 08 (limited qty)	129 (response)	17, 28 (index)
32	4	Analog Input Event - 16-bit with time	1	(read)	06 (no range, or all)   07, 08 (limited qty)	129 (response)	17, 28 (index)
40	0	Analog-Output Status-Any Variation		(read)	06 (no range, or all)	129 (response)	


DNP Object Group \& Variation			Request Outstation parses			Response Outstation can issue	
Group Num	Var Num	Description	Fun	tion Codes	Qualifier Codes (hex)	Function Codes (dec)	Qualifier Codes (hex)
40	2	Analog outputStatus-16-bit with flag				129 (response)	00,01 (start-stop)
41	2	Analog Output-16-bit		$\begin{array}{r} \text { (select) } \\ \text { (operate) } \\ \text { (direct op) } \\ \text { (dir. op, no ack) } \end{array}$	17, 28 (index)	129 (response)	Echofrequest
50	1	Time and Date - Absolute time		(write)	07 (limited qty = 1)	129 (response)	
51	1	Time and DatacTO-Absoluto time, synchronized				129 (response)   130 (unsol. resp)	Q7 (imitada) $(\text { aty }=1)$
51	2	Time and Date CTO - Absolute time, unsynchronized				129 (response)   130 (unsol. resp)	$\begin{aligned} & 07 \text { (limited qty) } \\ & (\text { qty }=1) \end{aligned}$
52	1	Time Delay - Coarse				129 (response)	$\begin{aligned} & 07 \text { (limited qty) } \\ & (\text { qty }=1) \end{aligned}$
52	2	Time delay - Fine				129 (response)	07 (limitedaty) (aty=1)
60	1	Class Objects - Class 0 data	1	(read)	06 (no range, or all)	129 (response)	00, 01 (start-stop)
60	2	Class Objects - Class 1 data	1	(read)	06 (no range, or all)	129 (response)	17, 28 (index)
60	3	Class Objects - Class 2 data	1	(read)	06 (no range, or all)	129 (response)	17, 28 (index)
60	4	Class Objects - Class 3 data	1	(read)	06 (no range, or all)	129 (response)	17, 28 (index)
80	1	Internal Indications - Packet format	2	(write)	$\begin{aligned} & 00 \quad \text { (start-stop) } \\ & \text { (index }=7 \text { ) } \end{aligned}$	129 (response)	
110	0	Octet string	1	(read)	06 (no range, or all)	129 (response)	07 (limited qty)
111	0	Octet string event	1	(read)	06 (no range, or all)	129 (response)	07 (limited qty)
No Object (function code only)				(cold restart)		129 (response)	
No Object (function code only)				(warm restart)		129 (response)	
No Object (function code only)				(delay meas.)		129 (response)	

## Appendix G IEC 103 Device Profile

## G. 1 Device Properties

IEC60870
Function Type
\& COT
Descriptions
This document shows the device capabilities and the current value of each parameter for the default unit configuration as defined in the default configuration file.

Function Type	Description
160	IEC Overcurrent Protection
163	ERL Feeder Protection
164	ERL Overcurrent Protection
165	ERL Voltage Protection
166	ERL Frequency Protection
167	ERL Synchronizing Function
168	ERL High Impedance Differential Protection
169	ERL Capacitor Protection
170	IEC Transformer Protection
176	ERL Transformer Protection
178	IEC Generic
254	IEC Global
255	


Cause of   Transmission   (COT)	Description
1	Spontaneous Events
2	Cyclic
3	Reset Frame Count Bit (FCB)
4	Reset Communication Unit (CU)
5	Start Restart


8	Time Synchronization
9	General Interrogation
10	Termination of General Interrogation
11	Local Operation
12	Remote Operation
20	Positive Command Acknowledge
21	Negative Command Acknowledge

This section contains the event \& command codes defined
KEY: FUN Function Type
INF Information Number
GI Event supports General Interrogation $\mathrm{x}=$ supported
TYP ASDU Type
COT Cause of Transmission
DIR Direction of event Raised Only (RO), Raised / Cleared (RC) or Double Point Travelling, Cleared, Raised or Unknown (DP)
x Supported

- Not supported

FUN	INF	Description	GI	TYP	COT	DIR
165	2	Reset FCB	-	5	3	RO
165	3	Reset CU	-	5	4	RO
165	4	Start/Restart	-	5	5	RO
165	5	Power ON	-	5	6	RO
165	19	Arc In Progress	x	1	1,9	RC
165	19	LEDs reset	x	1	$1,9,11,12$	RC
			x	1	$1,9,11,12,20,21$	RC
165	22	Settings changed	x	1	$1,9,11,12,20,21$	RC
165	23	Setting G1 selected	x	1	$1,9,11,12,20,21$	RC
165	24	Setting G2 selected	x	1	$1,9,11,12,20,21$	RC
165	25	Setting G3 selected	$1,11,12,20,21$	RO		
165	26	Setting G4 selected				


FUN	INF	Description	GI	TYP	COT	DIR
165	27	Status Input1	x	1	1,9	RC
165	28	Status Input2	x	1	1,9	RC
165	29	Status Input3	x	1	1,9	RC
165	30	Status Input4	x	1	1,9	RC
165	36	Trip Circuit Supervision(TCS-1)	x	1	1,9	RC
164	64	A-Starter	x	2	1,9	RC
164	65	B-Starter	X	2	1,9	RC
164	66	C-Starter	x	2	1,9	RC
164	67	E-Starter	x	2	1,9	RC
164	68	General trip	-	2	1	RO
164	69	A-general trip	-	2	1	RO
164	70	B-genenral -trip	-	2	1	RO
164	71	C-general trip	-	2	1	RO
164	74	Fault Forward	-	2	1	RO
164	75	Fault Reverse	-	2	1	RO
$\begin{array}{r} 163 \\ 148 \\ \hline \end{array}$						
164	84	General starter	x	2	1,9	RC
164	85	Circuit Breaker Fail(50BF)	-	2	1	RO
164	90	P/F Genaral LS Trip(51)	-	2	1	RO
164	91	P/F Genaral HS Trip(50)	-	2	1	RO
164	92	E/F Genaral LS Trip(51N)	-	2	1	RO
164	93	E/F Genaral HS Trip(50N)	-	2	1	RO
164	128	CB on by Auto-reclose	x	1	1,9	RC
164	130	Reclose Blocked	x	1	1,9	RC
164	147	Measurand I ( VSync)	x	3	2	-
164	148	Measurand II (IL1,2,3, VL1,2,3, $\mathrm{P}, \mathrm{Q}, \mathrm{f})$	x	9	2	-


FUN	INF	Description	GI	TYP	COT	DIR
163	209	37-1 Picked up	-	2	1	RC
163	210	37-2 Picked up	-	2	1	RC
163	211	37-1 operated	-	2	1	RO
163	212	37-2 operated	-	2	1	RO
164	160	50-1 Picked up	-	2	1	RC
164	161	50-2 Picked up	-	2	1	RC
164	162	50-1 operated	-	2	1	RO
164	163	50-2 operated	-	2	1	RO
164	164	51-1 Picked up	-	2	1	RC
164	165	51-2 Picked up	-	2	1	RO
164	166	51-1 operated	-	2	1	RC
164	167	51-2 operated	-	2	1	RO
164	168	50N-1 Picked up	-	2	1	RC
164	169	50N-2 Picked up	-	2	1	RC
164	170	$50 \mathrm{~N}-1$ operated	-	2	1	RO
164	171	50 N -2 operated	-	2	1	RO
164	172	51N-1 Picked up	-	2	1	RC
164	173	51N-2 Picked up	-	2	1	RO
164	174	51N-1 operated	-	2	1	RC
164	175	51N-2 operated	-	2	1	RO
164	176	46/50 Picked up	-	2	1	RC
164	177	46/50 operated	-	2	1	RO
164	178	46/51 Picked up	-	2	1	RC
164	179	46/51 operated	-	2	1	RO
164	180	49 Picked up	-	2	1	RC
164	181	49 operated	-	2	1	RO
164	182	49AL operated	-	2	1	RO
164	183	50BF-D1 operated	-	2	1	RO
164	184	50BF-D2 operated	-	2	1	RO
164	185	DI-CBF-D1 Operated	-	2	1	RO
164	186	DI-CBF-D2 Operated	-	2	1	RO
164	187	46BC Operated	-	1	1	RO
164	188	12t Limit Operated	-	1	1	RO
164	189	81HBL2 Operated	-	1	1	RO


FUN	INF	Description	GI	TYP	COT	DIR
164	190	60CTS Operated	-	1	1	RO
164	191	60VTS Operated	-	1	1	RO
164	192	Trip Circuit Supervision(TCS-2)	X	1	1,9	RC
164	193	64/50SEF-1 Picked up	-	2	1	RC
164	194	64/50SEF-2 Picked up	-	2	1	RC
164	195	64/50SEF-1 Operated	-	2	1	RO
164	196	64/50SEF-2 Operated	-	2	1	RO
164	197	64/50SEF-1 Picked up	-	2	1	RC
164	198	64/51SEF-2 Picked up	-	2	1	RC
164	199	64/51SEF-1 operated	-	2	1	RO
164	200	64/51SEF-2 operated	-	2	1	RO
164	201	79AR Cumm Count Operated	-	1	1	RO
164	160	Output1	x	1	1, 9, 12, 20, 21	RC
164	161	Output2	X	1	1, 9, 12, 20, 21	RC
164	162	Output3	x	1	1, 9, 12, 20, 21	RC
164	163	Output4	X	1	1, 9, 12, 20, 21	RC
164	164	Output5	x	1	1, 9, 12, 20, 21	RC
164	165	Output6	X	1	1, 9, 12, 20, 21	RC
164	166	Output7	X	1	1, 9, 12, 20, 21	RC
164	167	Output8	X	1	1, 9, 12, 20, 21	RC
164	168	Output9	X	1	1, 9, 12, 20, 21	RC
164	169	Output10	X	1	1, 9, 12, 20, 21	RC
164	170	Output11	X	1	1, 9, 12, 20, 21	RC
164	171	Output12	X	1	1, 9, 12, 20, 21	RC
164	172	Output13	X	1	1, 9, 12, 20, 21	RC
16	173	Output14	X	1	1, 9, 12, 20, 21	RC
164	174	Setting G5 selected	X	1	1, 9, 11, 12, 20, 21	RC
164	175	Setting G6 selected	X	1	1, 9, 11, 12, 20, 21	RC
164	176	Setting G7 selected	X	1	1, 9, 11, 12, 20, 21	RC
164	177	Setting G8 selected	X	1	1, 9, 11, 12, 20, 21	RC
163	178	Status Input5	X	1	1,9	RC
163	179	Status Input6	X	1	1,9	RC


FUN	INF	Description	GI	TYP	COT	DIR
163	180	Status Input7	x	1	1,9	RC
163	181	Status Input8	x	1	1,9	RC
163	182	Status Input9	x	1	1,9	RC
163	183	Status Input10	x	1	1,9	RC
163	184	Status Input11	x	1	1,9	RC
163	185	Status Input12	x	1	1,9	RC
163	186	Status Input13	x	1	1,9	RC
163	187	Status Input14	x	1	1,9	RC
163	188	Disturbance record stored	x	1	1, 12, 20, 21	RO
163	189	VA Fault Voltage	x	4	1,9	-
163	190	VB Fault Voltage	x	4	1,9	-
163	191	VC Fault Voltage	x	4	1,9	-
163	192	VAB Fault Voltage	x	4	1,9	-
163	193	VBC Fault Voltage	x	4	1,9	-
163	194	VCA Fault Voltage	x	4	1,9	-
163	195	IA Fault current	x	4	1,9	-
163	196	IB Fault current	x	4	1,9	-
163	197	IC Fault current	x	4	1,9	-
163	198	ISEF Fault current	x	4	1,9	-
163	199	In Fault current	x	4	1,9	-
163	200	Vn Fault Voltage	x	4	1,9	-
163	201	V2 Fault Voltage	x	4	1,9	-
163	202	\%VF Fault voltage	x	4	1,9	-
163	203	Frequency	x	4	1,9	-
163	204	dF/dT	x	4	1,9	-
163	205	Fault location	x	4	1,9	-
163	206	Fault mag	x	4	1,9	-
165	160	27DT-1 Picked up	-	2	1	RC
165	161	27DT-2 Picked up	-	2	1	RC
165	162	27DT-3 Picked up	-	2	1	RC
165	163	27DT-4 Picked up	-	2	1	RC
165	164	27DT-5 Picked up	-	2	1	RC
165	165	27DT-6 Picked up	-	2	1	RC
165	166	27DT-1 Operated	-	2	1	RO


FUN	INF	Description	GI	TYP	COT	DIR
165	167	27DT-2 Operated	-	2	1	RO
165	168	27DT-3 Operated	-	2	1	RO
165	169	27DT-4 Operated	-	2	1	RO
165	170	27DT-5 Operated	-	2	1	RO
165	171	27DT-6 Operated	-	2	1	RO
165	172	27IT-1 Picked up	-	2	1	RC
165	173	27IT-2 Picked up	-	2	1	RC
165	174	27IT-1 Operated	-	2	1	RO
165	175	27IT-2 Operated	-	2	1	RO
165	176	59DT-1 Picked up	-	2	1	RC
165	177	59DT-2 Picked up	-	2	1	RC
165	178	59DT-3 Picked up	-	2	1	RC
165	179	59DT-4 Picked up	-	2	1	RC
165	180	59DT-5 Picked up	-	2	1	RC
165	181	59DT-6 Picked up	-	2	1	RC
165	182	59DT-1 Operated	-	2	1	RO
165	183	59DT-2 Operated	-	2	1	RO
165	184	59DT-3 Operated	-	2	1	RO
165	185	59DT-4 Operated	-	2	1	RO
165	186	59DT-5 Operated	-	2	1	RO
165	187	59DT-6 Operated	-	2	1	RO
165	188	5917-1 Picked up	-	2	1	RC
165	189	5917-2 Picked up	-	2	1	RC
165	190	59IT-1 Operated	-	2	1	RO
165	191	59IT-2 Operated	-	2	1	RO
165	192	24DT-1 Picked up	-	2	1	RC
165	193	24DT-2 Picked up	-	2	1	RC
165	194	24DT-1 Operated	-	2	1	RO
165	195	24DT-2 Operated	-	2	1	RO
165	196	24IT Picked up	-	2	1	RC
165	197	24IT Operated	-	2	1	RO
165	198	47DT-1 Picked up	-	2	1	RC
165	199	47DT-2 Picked up	-	2	1	RC
165	200	47DT-1 Operated	-	2	1	RO
165	201	47DT-2 Operated	-	2	1	RO


FUN	INF	Description	GI	TYP	COT	DIR
165	202	47IT Picked up	-	2	1	RC
165	203	47IT Operated	-	2	1	RO
165	204	59NDT-1 Picked up	-	2	1	RC
165	205	59NDT-2 Picked up	-	2	1	RC
165	206	59NDT-1 Operated	-	2	1	RO
165	207	59NDT-2 Operated	-	2	1	RO
165	208	59NIT Picked up	-	2	1	RC
165	209	59NIT Operated	-	2	1	RO
165	210	THD-1 Operated	-	1	1	RO
165	211	THD-2 Operated	-	1	1	RO
165	212	UV Count Operated	-	1	1	RO
165	213	OV Count Operated	-	1	1	RO
163	206	El Count Operated	-	1	1	RO
166	160	81U-1 Picked up	-	2	1	RC
166	161	81U-2 Picked up	-	2	1	RC
166	162	81U-3 Picked up	-	2	1	RC
166	163	81U-4 Picked up	-	2	1	RC
166	164	81U-5 Picked up	-	2	1	RC
166	165	81U-6 Picked up	-	2	1	RC
166	166	81U-7 Picked up	-	2	1	RC
166	167	81U-8 Picked up	-	2	1	RC
166	168	81U-1 Operated	-	2	1	RO
166	169	81U-2 Operated	-	2	1	RO
166	170	81U-3 Operated	-	2	1	RO
166	171	81U-4 Operated	-	2	1	RO
166	172	81U-5 Operated	-	2	1	RO
166	173	81U-6 Operated	-	2	1	RO
166	174	81U-7 Operated	-	2	1	RO
166	175	81U-8 Operated	-	2	1	RO
166	176	810-1 Picked up	-	2	1	RC
166	177	810-2 Picked up	-	2	1	RC
166	178	810-3 Picked up	-	2	1	RC
166	179	810-4 Picked up	-	2	1	RC


FUN	INF	Description	GI	TYP	COT	DIR
166	180	810-5 Picked up	-	2	1	RC
166	181	810-6 Picked up	-	2	1	RC
166	182	810-7 Picked up	-	2	1	RC
166	183	810-8 Picked up	-	2	1	RC
166	184	810-1 Operated	-	2	1	RO
166	185	810-2 Operated	-	2	1	RO
166	186	810-3 Operated	-	2	1	RO
166	187	810-4 Operated	-	2	1	RO
166	188	810-5 Operated	-	2	1	RO
166	189	810-6 Operated	-	2	1	RO
166	190	810-7 Operated	-	2	1	RO
166	191	810-8 Operated	-	2	1	RO
166	192	81R-1 Picked up	-	2	1	RC
166	193	81R-2 Picked up	-	2	1	RC
166	195	81R-4 Picked up	-	2	1	RC
166	195	81R-4 Picked up	-	2	1	RC
166	196	81R-1 Operated	-	2	1	RO
166	197	81R-2 Operated	-	2	1	RO
166	198	81R-3 Operated	-	2	1	RO
166	199	81R-4 Operated	-	2	1	RO
166	200	UF Count Operated	-	1	1	RO
166	201	OF Count Operated	-	1	1	RO
163	213	32-1 Picked up	-	2	1	RC
163	214	32-2 Picked up	-	2	1	RC
163	215	32-3 Picked up	-	2	1	RC
163	216	32-4 Picked up	-	2	1	RC
163	217	32-1 operated	-	2	1	RO
163	218	32-2 operated	-	2	1	RO
163	219	32-3 operated	-	2	1	RO


FUN	INF	Description	GI	TYP	COT	DIR
163	220	$32-4$ operated	-	2	1	RO
167	160	$25 / 27 / 59$ Operated	-	1	1	RO
164	206	IRIG_B Synchronization	x	1	1,9	RC
164	207	SNTP Synchronization	x	1	1,9	RC

## Appendix H Mechanical Drawings



Figure H.1: Front View Drawing


Figure G.1: Rear Panel Drawing

## Appendix I AC Schematic Drawings



Figure I.1: F-PRO 298 AC Schematic

## Appendix J DC Schematic Drawings



Figure J.1: F-PRO 298 DC Schematic

## Appendix K Connection Diagram



Figure K.1: F-PRO 298 Connection Diagram

# Appendix L IEC 61850 Conformance Statements and Data Mapping Specification 

## L. 1 Protocol Implementation Conformance Statement (PICS)

Protocol Implementation Conformance Statement for the IEC 61850 interface in F-PRO 298

Document Version ${ }^{1}$ : D05032R01.10

Date: 2021-12-27

Based upon UCAIUG PICS Template version 2.3

UCA International Users Group
Testing Sub Committee

[^1]
## General

ACSI basic conformance statement

The following ACSI conformance statements are used to provide an overview and details about F-PRO 298, with firmware v1.7:
-ACSI basic conformance statement,
-ACSI models conformance statement,
-ACSI service conformance statement
The statements specify the communication features mapped to IEC 61850-8-1 and IEC 61850-9-2.

The basic conformance statement is defined in Table L.1, "Basic conformance statement".

Table L.1: Basic conformance statement


## ACSI Models Conformance Statement

The ACSI models conformance statement is defined in Table L.2, "ACSI models conformance statement".

Table L.2: ACSI models conformance statement

		Client/ Subscriber	Server/ Publisher	Value/ Comments
If Server side (B11) and/or Client side (B12) supported				
M1	Logical device		YES	c1
M2	Logical node		YES	c1
M3	Data		YES	c1
M4	Data set		YES	c2
M5	Substitution		NO	
M6	Setting group control		NO	
	Reporting			
M7	Buffered report control		YES	
M7-1	sequence-number		YES	
M7-2	report-time-stamp		YES	
M7-3	reason-for-inclusion		YES	
M7-4	data-set-name		YES	
M7-5	data-reference		YES	
M7-6	buffer-overflow		YES	
M7-7	entryID		YES	
M7-8	BufTm		YES	
M7-9	IntgPd		YES	
M7-10	GI		YES	
M7-11	conf-revision		YES	
M8	Unbuffered report control		YES	
M8-1	sequence-number		YES	
M8-2	report-time-stamp		YES	
M8-3	reason-for-inclusion		YES	
M8-4	data-set-name		YES	
M8-5	data-reference		YES	
M8-6	BufTm		YES	
M8-7	IntgPd		YES	
M8-8	GI		YES	
M8-9	conf-revision		YES	

Table L.2: ACSI models conformance statement

		Client/   Subscriber	Server/   Publisher	Value/   Comments
M9	Logging		NO	
M9-1	IntgPd		NO	
M10	Log		NO	
M11	Control		NO	
M17	File Transfer		YES	
M18	Application association		YES	
M19	GOOSE Control Block		YES	c1
M20	Sampled Value Control Block		NO	


c1 Server must be Y if $\mathrm{B} 11=$ Yes; Client must be Y if $\mathrm{B} 12=\mathrm{Y}$   c2 Server must be Y if $\mathrm{M} 7-\mathrm{Y}$ or $\mathrm{M} 8=\mathrm{Y}$ or $\mathrm{M} 9=\mathrm{Y}$ or $\mathrm{M} 19=\mathrm{Y}$ or $\mathrm{M} 20=\mathrm{Y}$				
If GSE (B31/32) is supported				
M12	GOOSE	YES	YES	
M13	GSSE			Deprecated   Ed2
If SVC (B41/42) is supported		NO		
M14	Multicast SVC		NO	
M15	Unicast SVC			
For all IEDs	YES			
M16	Time			
YES $=$ service is supported   NO or empty $=$ service is not supported				

ACSI Service Conformance Statement

The ACSI service conformance statement is defined in ACSI service Conformance statement (depending on the statements in Table L.1, "Basic conformance statement" and Table L.2, "ACSI models conformance statement").

Table L.3: ACSI service Conformance statement

	Ed.	Services	AA:   TP/MC	Client   (C)	Server   (S)	Comments
Server: if B11=Y or B12=Y						
S1	1,2	GetServerDirectory   (LOGICAL-DEVICE)	TP		YES	


Application association: if $\mathbf{B 1 1}=\mathbf{Y}$ or $\mathbf{B 1 2}=\mathbf{Y}$							
S2	1,2	Associate			YES		
S3	1,2	Abort			YES		
S4	1,2	Release			YES		


Logical device: if $\mathbf{M} \mathbf{1}=\mathbf{Y}$						
S5	1,2	GetLogicalDeviceDirectory	TP		YES	


Logical node: if $\mathbf{M} \mathbf{2}=\mathbf{Y}$							
S6	1,2	GetLogicalNodeDirectory	TP		YES		
S7	1,2	GetAllDataValues	TP		YES		


Data: if $\mathbf{M} 3=\mathbf{Y}$							
S8	1,2	GetDataValues	TP		YES		
S9	1,2	SetDataValues	TP		NO		
S10	1,2	GetDataDirectory	TP		YES		
S11	1,2	GetDataDefinition	TP		YES		


Data set: if M4=Y						
S12	1,2	GetDataSetValues	TP		YES	
S13	1,2	SetDataSetValues	TP		NO	Deprecated in Ed2
S14	1,2	CreateDataSet	TP		NO	
S15	1,2	DeleteDataSet	TP		NO	
S16	1,2	GetDataSetDirectory	TP		YES	

Table L.3: ACSI service Conformance statement

	Ed.	Services	AA:   TP/MC	Client   (C)	Server   (S)	Comments
Substitution: if M5=Y						
S17	1,2	SetDataValues	TP		NO	


Setting group control: if M6=Y						
S18	1,2	SelectActiveSG	TP		NO	
S19	1,2	SelectEditSG	TP		NO	
S20	1,2	SetEditSGValues	TP		NO	
S21	1,2	ConfirmEditSGValues	TP		NO	
S22	1,2	GetEditSGValues	TP		NO	
S23	1,2	GetSGCBValues	TP		NO	


| Reporting: If M7=Y or M8=Y |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Buffered report control block (BRCB); If M7=Y |  |  |  |  |  |  |
| S24 | 1,2 | Report | TP |  | YES |  |
| S24-1 | 1,2 | data-change (dchg) |  |  | YES |  |
| S24-2 | 1,2 | quality-change (qchg) |  |  | YES |  |
| S24-3 | 1,2 | data-update (dupd) |  |  | YES |  |
| S25 | 1,2 | GetBRCBValues | TP |  | YES |  |
| S26 | 1,2 | SetBRCBValues | TP |  | YES |  |
| Unbuffered report control block (URCB) If M8=Y |  |  |  |  |  |  |
| S27 | 1,2 | Report | TP |  | YES |  |
| S27-1 | 1,2 | data-change (dchg) |  |  | YES |  |
| S27-2 | 1,2 | quality-change (qchg) |  |  | YES |  |
| S27-3 | 1,2 | data-update (dupd) |  |  | YES |  |
| S28 | 1,2 | GetURCBValues | TP |  | YES |  |
| S29 | 1,2 | SetURCBValues | TP |  | YES |  |


Logging: If $\mathbf{M} 9=\mathbf{Y}$ or $\mathbf{M} 1 \mathbf{0}=\mathbf{Y}$						
Log control block; If M9 $=$ Y						
S30	1,2	GetLCBValues	TP		NO	
S31	1,2	SetLCBValues	TP		NO	
Log; If M10 $=$ Y						
S32	1,2	QueryLogByTime	TP		NO	

Table L.3: ACSI service Conformance statement

	Ed.	Services	AA:   TP/MC	Client   (C)	Server   (S)	Comments
S33	1,2	QueryLogAfter	TP		NO	
S34	1,2	GetLogStatusValues	TP		NO	


Generic substation event model (GSE): If M19=Y						
GOOSE						
S35	1,2	SendGOOSEMessage	MC		YES	
GOOSE-CONTROL-BLOCK						
S36	1,2	GetGoReference	TP		NO	
S37	1,2	GetGOOSEElementNumber	TP		NO	
S38	1,2	GetGoCBValues	TP		YES	
S39	1,2	SetGoCBValues	TP		NO	
GSSE						
S40	1	SendGSSEMessage	MC	-	-	Deprecated in Edition 2
GSSE-CONTROL-BLOCK						
S41	1	GetReference	TP	-	-	Deprecated in Edition 2
S42	1	GetGSSEElementNumber	TP	-	-	Deprecated in Edition 2
S43	1	GetGsCBValues	TP	-	-	Deprecated in Edition 2
S44	1	SetGsCBValues	TP	-	-	Deprecated in Edition 2



Table L.3: ACSI service Conformance statement

	Ed.	Services	AA:   TP/MC	Client   (C)	Server   (S)	Comments
ControI: If M11=Y						
S51	1,2	Select		NO		
S52	1,2	SelectWithValue	TP		NO	
S53	1,2	Cancel	TP		NO	
S54	1,2	Operate	TP		YES	
S55	1,2	CommandTermination	TP		NO	
S56	1,2	TimeActivatedOperate	TP		NO	


File transfer: If M17=Y							
S57	1,2	GetFile	TP		YES		
S58	1,2	SetFile	TP		NO		
S59	1,2	DeleteFile	TP		YES		
S60	1,2	GetFileAttributeValues	TP		YES		
S61	1,2	GetServerDirectory   (FILE-SYSTEM)	TP		YES		


Tim					
T1	1,2	Time resolution of internal clock		$\begin{aligned} & 10 \\ & (1 \mathrm{~ms}) \end{aligned}$	Nearest negative power of $2^{-\mathrm{n}}$ in seconds (number 0..24)
T2	1,2	Time accuracy of internal clock		T3	$\begin{aligned} & \text { TL (ms)(low accuracy), } \\ & \text { T3 <7 (c1) } \\ & \text { T0 (ms) (<=10ms), } \\ & 7<=\text { T3 }<10(\mathrm{c} 1) \\ & \text { T1 }(\mu \mathrm{s})(<=1 \mathrm{~ms}), \\ & 10<=\text { T3 }<13 \\ & \text { T2 }(\mu \mathrm{s})(<=100 \mu \mathrm{~s}), \\ & 13<=\mathrm{T} 3<15 \\ & \text { T3 }(\mu \mathrm{s})(<=25 \mu \mathrm{~s}), \\ & 15<=\mathrm{T} 3<18 \\ & \text { T4 }(\mu \mathrm{s})(<=4 \mu \mathrm{~s}), \\ & 18<=\mathrm{T} 3<20 \\ & \text { T5 }(\mu \mathrm{s})(<=1 \mu \mathrm{~s}), \\ & 20<=\mathrm{T} 3<25 \end{aligned}$
T3	1,2	Supported TimeStamp resolution	-	$\begin{aligned} & 16 \\ & (25 \mu \mathrm{~s}) \end{aligned}$	Nearest value of $2^{-\mathrm{n}}$ in seconds (number 0...24)
c1 TL may only be specified for Ed2. If Ed1 has accuracy which is better than 1 second but is not T 1 then declare T 0 .					

# L. 2 Model Implementation Conformance Statement (MICS) 

Model Implementation Conformance Statement (MICS)<br>for the IEC 61850 Edition 2 server interface in F-PRO 298

Document Version ${ }^{1}$ : D05033R01.10

Date: 2021-12-27

Based upon
UCA International Users Group
Testing Sub Committee

MICS template for Server Test Procedures First edition and Edition 2 servers
Template version 1.2

[^2]Introduction

## Logical Nodes

 ListThis model implementation conformance statement is applicable for F-PRO 298, with firmware v1.7.

This MICS document specifies the modelling extensions compared to IEC 61850 Edition 2. For the exact details on the standardized model please compare the ICD substation configuration file: "ERLFPRO2000_298.icd", version 4 revision 8.

Table L.4, "Logical Nodes List" contains the list of implemented logical nodes.

The following table contains the list of logical nodes implemented in the device:

Table L.4: Logical Nodes List

L: System Logical Nodes
LPHD (Physical device information)
LLNO (Logical node zero)
LGOS (GOOSE Subscription)
P: Logical Nodes for protection functions
PTOF (Overfrequency)
PTUF (Underfrequency)
PFRC (Rate of change of frequency)
PTOC (Time overcurrent)
PIOC (Instantaneous overcurrent)
PTUV (Undervoltage)
PTOV (Overvoltage)
PVPH (Volts per Hz)
PSDE (Sensitive directional earthfault)
PTTR (Thermal overload)
PHAR (Harmonic restraint)
PTUC (Undercurrent)
PDUP (Directional underpower)
PDOP (Directional overpower)
R: Logical nodes for protection related functions
RSYN (Synchronism-check)
RBRF (Breaker failure)
RREC (Autoreclosing)


RDRE (Disturbance record function)
G: Logical Nodes for generic references
GGIO (Generic process I/O)
M: Logical Nodes for metering and measurement
MSQI (Sequence and Imbalance)
MMXU (Measurement)
C: Logical Nodes for Supervisory Control
CALH (Alarm Handling)

# Logical Node <br> Extensions 

The following table use:
M: Data is mandatory in the IEC-61850-7-4 Ed.2.
O: Data is optional in the IEC-61850-7-4 Ed. 2 and is used in the device.
E: Data is an extension to the IEC-61850-7-4 Ed.2.

## New Logical Nodes

New logical nodes have the descriptions in the Name plate.

## RTCS - Trip Circuit Supervision

RTCS class				
Name	Description			
D74TCSRTCS	Trip Circuit Supervision, indexed D74TCSRTCS 1 - D74TCSRTCS2.			
Data object name	Common data class	Explanation	M/O/E	Remarks
Data Objects				
Common Logical Node Information				
Beh	ENS	Behaviour	M	
Status Information				
Op	ACT	General indication (Operated)	E	

## RCBC - Circuit Breaker Condition

RCBC class				
Name	Description			
I2TRCBC	I2t-CB Condition, indexed I2TRCBC1.			
Data object name	Common data class	Explanation	M/O/E	Remarks
Data Objects				
Common Logical Node Information				
Beh	ENS	Behaviour	M	
Measured Values				
I2TAcc	MV	I2T Accumulated Value	E	
12TLstOp	MV	12T Last Operated Value	E	
Status Information				
Op	ACT	I2T Operated	E	

## RTHD - Total Harmonic Distortion



RUVC - Under Voltage Counter

RUVC class				
Name	Description			
UVCRUVC	Under Voltage Counter, indexed UVCRUVC1.			
Data object name	Common data class	Explanation	M/O/E	Remarks
Data Objects				
Common Logical Node Information				
Beh	ENS	Behaviour	M	
Measured Values				
Acc	MV	Under Voltage Counter value	E	
Status Information				
Op	ACT	General indication (Counter Operated)	E	

ROVC- Over Voltage Counter

ROVC class				
Name	Description			
OVCROVC	Over Voltage Counter, indexed OVCROVC1.			
Data object name	Common data class	Explanation	M/O/E	Remarks
Data Objects				
Common Logical Node Information				
Beh	ENS	Behaviour	M	
Measured Values				
Acc	MV	Over Voltage Counter value	E	
Status Information				
Op	ACT	General indication (Counter Operated)	E	

RUFC - Under Frequency Counter

RUFC class				
Name	Description			
UFCRUFC	Under Frequency Counter, indexed UFCRUFC1.			
Data object name	Common data class	Explanation	M/O/E	Remarks
Data Objects				
Common Logical Node Information				
Beh	ENS	Behaviour	M	
Measured Values				
Acc	MV	Under frequency counter value	E	
Status Information				
Op	ACT	General indication (Counter Operated)	E	

ROFC - Over Frequency Counter

ROFC class					
Name	Description	M/O/E	Remarks		
OFCROFC	Over Frequency Counter, indexed OFCROFC1.				
Data object   name	Common   data class	Explanation	M		
Data Objects	Behaviour				
Common Logical Node Information	E				
Beh					
Measured Values	ENS	Over frequency counter			
value					

REIC - External Input Counter

REIC class				
Name	Description			
EIREIC	External Input Counter, indexed EIREIC1.			
Data object name	Common data class	Explanation	M/O/E	Remarks
Data Objects				
Common Logical Node Information				
Beh	ENS	Behaviour	M	
Measured Values				
Acc	MV	External Input counter value	E	
Status Information				
Op	ACT	General indication (Counter Operated)	E	

## MTHR - Auto Reclosure Counter

MTHR class				
Name	Description			
MMMTHR	Auto Reclose Counter, indexed MMMTHR1.			
Data object name	Common data class	Explanation	M/O/E	Remarks
Data Objects				
Common Logical Node Information				
Beh	ENS	Behaviour	M	
Measured Values				
Tmp01	MV	Auto Reclose Count	E	
Tmp02	MV	Auto Reclose Cumulative Count Value	E	

## L. 3 TISSUES Implementation Conformance Statement (TICS)

## Introduction

This document provides a template for the Tissues conformance statement. According to the UCA IUG QAP the Tissue conformance statement is required to perform a conformance test and is referenced on the certificate.

This document is applicable for F-PRO 298 with firmware v1.7.
Document Version ${ }^{1}$ : D05034R01.10
Date: 2021-12-27

## Mandatory Edition 2 <br> Tissues

Below tables give an overview of the applicable mandatory Tissues. Items in italic are brief interpretations provided by the UCA International Users Group to aid in interpretation and is not normative. The original TISSUE should consulted for details of changes.

Table L.5: Mandatory Edition 2 Tissues

Tissue	Description	Implemented   Y/na
Part 6		
658	Tracking related features   EntryID and CST missing, these are checked by schema	na
663	FCDA element cannot be a "functionally constrained logical   node"   doName now mandatory in FCDA element,   SCT: refuse to make empty doName? ICT: Refuse SCD	Y
668	Autotransformer modeling   Autotransformer model in substation section has changed	na
687	SGCB ResvTms   SettingControl has added attribute resvTms   see also TISSUE 845	na
719	ConfDataSet - maxAttributes definition is confusing   maxAttributes now means max count of FCDA in dataset	Y
721	Log element name   LNO/Log now has optional attribute "name"	na
768	bType VisString65 is missing   VisString65 added as SCL BasicType	na
779	object references   "@" as first character in object references now allowed	na
788	SICS S56 from optional to mandatory   SICS S56="Interpret IED capabilities and prohibit unsupported   usage"	na

1. The formatting of the official version of this document differs slightly from the version shown here in the user manual, but the content is the same.

Table L.5: Mandatory Edition 2 Tissues

Tissue	Description	Implemented Y/na
789	ConfLdName as services applies to both server and client Many changes made to Services section	na
804	valKind and IED versus System configuration vallmport missing/false DAI means ICT shall ignore value in SCD and SCT shall not change from ICD/IID value. Instance section inherits from DA/BDA element.	na
806	Max length of log name inconsistent between -6 and -7-2 LogControl.logName and Log.name restricted to 32 chars	na
807	Need a way to indicate if "Owner" present in RCB Services/ReportSettings@owner added	Y
823	ValKind for structured data attributes valKind is prohibited on structured attributes	Y
824	Short addresses on structured data attributes sAddr is now allowed for structured attributes	na
825	Floating point value   Server shall support <Val> with exponential notation	na
845	SGCB ResvTms   Services/SettingGroups/SGEdit added attribute resvTms Services/SettingGroups/ConfSG added attribute resvTms See also TISSUE 687	na
853	SBO and ProtNs   DA[@name=SBO] element shall have ProtNS element	na
855	Recursive SubFunction   Substation section extension must be tolerated	na
856	VoltageLevel frequency and phases Substation section extension must be tolerated	na
857	Function/SubFunction for ConductingEquipment Substation section extension must be tolerated	na
886	Missing 8-1 P-types   "tP_IP_UDP_PORT" and "tP_IP_TCP_PORT" added	na
901	tServices as AP or as IED element Rules for contents of AP/Server/Services are now defined	Y
936	SupSubscription parameter usage is difficult SupSubscription "max" replaced by "maxGo" and "maxSv"	Y
1147	tServices - FileHandling not consistent with -7-2   Services/FileHandling now means only support for GetFile and GetFileAttributeValues and NOT SetFile/DeleteFile	Y
1185	Valkind value Conf for EX FC data valKind=Conf is allowed for dataNs	na
1284	SCSM mapping may require a communication section in an ICD file   Server IEDs supporting client/server associations to 61850-8-1 shall include a <Communication> section	Y

Table L.5: Mandatory Edition 2 Tissues

Tissue	Description	Implemented Y/na
1328	Limitation on the size of data type templates identifiers Identifer now limited to 255 characters	Y
1395	Client LN attributes ReportControl/RptEnabled/ClientLN@/dInst shall be "LD0" for pure clients (without any Logical Devices)	na
1402	ExtRef during engineering   an ExtRef.intAddr attribute value unequal to empty string (prescribed or filled by the IED tool) is the flag indicating that the ExtRef shall not be deleted by the system tool. The system tool can however remove the link to the source IED <<applicable for SCL tool test>>	na
1415	SICS-S110 IID import mandatory for Edition2   only the import of data model modifications and CF value changes is mandatory for system tool <<applicable for SCL tool test>>	na
1419	Support of IdName on other IEDs SICS I212 is now mandatory	Y
1444	Need to support fixed and SCT controlled Datasets Services/xxxSettings@datSet=fix now means "data set pointed by Control Block cannot be altered from ICD/IID value <<applicable for SCL tool test>>	na
1445	ConfReportControl and a fixed ReportSettings Control block capabilities must be consistent <<applicable for SCL tool test>>	na
1450	originalScIXxx computation rules   Ed2 ICD/IID files specifying SCL@version=2007 SHALL include originalSCLVersion=2007 and originalSCLRevision as attributes of the <IED>element	Y
1485	Need to supercede Tissue 1398 to clarify SCT behavior Same as TISSUE 1450 <<applicable for SCL tool test>>	na
Part 7-1		
828	Data model namespace revision IEC 61850-7-4:2007[A] Both 2007 and 2007A are allowed for namespace name	Y
948	Enumeration (string) values format Enums are limited to 127 characters from Basic-Latin and Latin1 character sets	Y
1151	simulated GOOSE disappears after 1st appearance when LPHD.Sim = TRUE   New LGOS state machine defined, but TISSUE is not IntOp2, therefore TISSUE is optional if LGOS is used	Y
1396	The use and configuration flow of LGOS and LSVS is unclear If Services/SupSubscription@maxGo > 1 then at least 1 LGOS must exist. Same for maxSv/LSVS.   If maxGo > count(LGOS) then SCT can create additional LGOS. Same for maxSv/LSVS	Y

Table L.5: Mandatory Edition 2 Tissues

Tissue	Description	Implemented   Y/na
1447	Restriction on ENUMItypes in SCL   If a ENUM DA limits write or configuration to a subset, then that   subset must be declared	na
1457	Multiple DOI nodes with the same name   LN can have no more than one DOI with same name	Y
1468	Re-use DO from other LN   allow standard or private dataNs	na
1491	CmdBIk blocks itself?   The data CmdBlk shall have no effect on the controllable data   Mod or CmdBIk	na
1495	GetVariableAccessAttributes error code   Return MMS error access/object-non-existent if the object does   not exist	Y


Part 7-2		
728	BRCB: could PurgeBuf be set when RptEna=TRUE? PurgeBuf while RptEna=true is prohibited	Y
778	AddCause values - add value not-supported Align 7-2 with 8-1 (nothing new to 8-1)	na
780	What are unsupported trigger option at a control block?   All control blocks must support all trigger options	Y
783	TimOper Resp- ; add Authorization check Clarifies Time-Operated Controls	na
786	AddCause values 26 and 27 are switched Annex B. 2 has wrong AddCause values	na
820	Mandatory ACSI services (use for PICS template)   Model entries M18 (Application Association), M19 (GCB), M20 (SVCB) are new. Services S17 (Substitution) and S61 (GetServerDirectory) are new. Services S1, S3, S4, S5, S6, S8, S16, S18, S23, S36, S37, S41, S42 are changed.	Y
858	typo in enumeration ServiceType Tracking serviceType now has GetLogicalNodeDirectory	na
861	dchg of ConfRev attribute Clarifies (tracking) BTS.confRev is AFTER BRCB change	na
1050	GTS Phycomaddr definition in SCL (Tracking) GTS needs a special structure for SCL	na
1071	Length of DO name   Private DO name length shall be <=12 including instance	Y
1127	Missing owner attribute in BTS and UTS NSD files for 61850-7-3 show owner in (tracking) BTS/UTS	na
1202	GI not optional GI support is mandatory for both URCB and BRCB	Y
1232	EntryID needs clarification   Segments of a report shall have same identifiers	Y

Table L.5: Mandatory Edition 2 Tissues

Tissue	Description	Implemented Y/na
1242	NTS definition NTS.resv have been added	na
1307	Segmented report with Buffer overflow   Segments of a report shall have identical buf-overflow value	Y
1428	MTS and NTS should use svOptFIds MTS.optFIds and NTS.optFIds now have bType=SvOptFIds	na
1630	Attributes in CDC=LTS do not match 8-1 definition Order of attributes in LTS changed to: logEna, logRef, datSet, oldEntrTm, newEntrTm, oldEnt, newEnt, trgOps, intgPd	na
Part 7-3		
697	persistent command / PulseConfig   PulseConfig adds enum "persistent-feedback"   DPC.cmdQual=="persistent" is conditionally allowed	na
698	Wrong case is BAC.dB attribute attribute renamed from " $d B$ " to " $d b$ "	na
711	blkEna freeze data update while setting its quality to operaterBlocked   Mode=Blocked shall not cause q.operatorBlocked	na
722	Units for ' h ' and 'min' not in UnitKind enumeration. New unit enums 84=hours, 85=minutes	na
919	Presence Condition for sVC svC may be valKind=Conf in ICD file	na
925	Presence of $i$ or $f$ attribute - Problem with writing New constructed attribute class "AnalogueValueCtl"	na
926	Presence Conditions within RangeConfig   All or none of hhLim+hLim+/Lim+IILim shall be present	Y
954	Data attributes with FC=CF should have $\operatorname{trgOp=dchg}$ Some INS and HST and CSG attributes missing dchg	Y
1078	CMV.t update if rangeAng changed   Add rangeAng to "reasons-to-update-timestamp-of-CMV"	na
1565	$\mathrm{db}=0$ behaviour   $d b=0$ not longer suppresses reporting	na
1578	dataAttribute NameSpace content Attributes with FC=EX must be initialized in ICD/IID file	Y
Part 7-4		
671	mistake in definition of Mod \& Beh   Beh=on, $q=$ test should be "Processed as valid"	Y
674	CDC of ZRRC.LocSta is wrong ZRRC LocSta should be CDC=SPC	na
676	Same data object name used with different CDC LCCH.Fer renamed to FerCh, LCCH.RedFer to RedFerCh	na

Table L.5: Mandatory Edition 2 Tissues

Tissue	Description	Implemented Y/na
677	MotStr is used with different CDC in PMMS and SOPM LN classes Rename SOPM.MotStr to MotStrNum	na
679	Remove CycTrMod Enum   Enum is no longer used, use TrMod instead	na
680	SI unit for MHYD.Cndct Change unit from $\mathrm{S} / \mathrm{cm}^{2}$ to $\mathrm{S} / \mathrm{m}$	na
681	Enum PIDAIg   Typographical error, invalid XML syntax	na
682	ANCR.ParColMod   ParColMod enum values text have changed	na
683	Enum QVVR.IntrDetMth IntrDetMth enum values text have changed	na
685	Enum ParTraMod   ParTraMod enum values text have changed	na
686	New annex H - enums types in XML Many changes have been made to enumeration names	Y
694	Data object CmdBIk   CmdBIk semantics have changed	na
696	LSVS.St (Status of subscription) LSVS.St is now mandatory	Y
712	interpretation of quality operatorBlocked Mode and Behavior semantics have changed	na
713	DO Naming of time constants in FFIL Many DO names in FFIL have changed	na
714	Enums for ShOpCap and SwOpCap   Type for YPSH.ShOpCap and XSWI.SwOpCap have changed	na
715	RBDR.ChNum1 RBDR.ChNum1 changes from optional to conditional	na
716	TAXD text for condition   TAXD.SmRte condition for inclusion has changed	na
724	ANCR.Auto ANCR.Auto changes from mandatory to optional	na
725	Loc in LN A-group Loc changes to optional, LocKey/LocSta conditions change	na
734	LLNO.OpTmh vs. LPHD.OpTmh LLNO.OpTmh deleted, LPHD.OpTmH added as conditional	na
736	PFSign   MMXU.PFSign enum is extended with 3=Excitation	na
742	GAPC.Str, GAPC.Op and GAPC.StrVal Objects have instance indicator removed (ex, Str1 to Str)	na

Table L.5: Mandatory Edition 2 Tissues

Tissue	Description	Implemented   Y/na
743	CCGR.PmpCtl and CCGR.FanCtl Object have instance indicator added (ex:PmpCtl to PmpCt11)	na
744	LN STMP, EEHealth and EEName Removed STMP.EEHealth and STMP.EEName	na
772	LPHD.PwrUp/PwrDn should be transient These objects are now transient	na
773	Loc, LocKey and LocSta YPSH and YLTC Add Loc, LocKey and LocSta in YLTC and YPSH (optional)	na
774	ITCI.LocKey Add ITCI.LocKey as optional	na
776	LPHD.OutOv/InOv and LCCH.OutOv/InOv Clarified: stays true until buffer space again available	na
800	Misspelling in CSYN CSYN.VInvTmms renamed to CSYN.VIntvTmms	na
802	CCGR and Harmonized control authority   Add Loc, LocKSta to every controllable LN (e.g. FSPT)	na
808	Presence condition of ZMoT.DExt and new DOs Change ZMOT.DExt to optional; add TotThmSt and MotSt	na
831	Setting of ConfRevNum in LGOS Add RxConfRevNum to LGOS and LSVS	Y
838	Testing in Beh=Blocked Change sematic of Beh=Blocked to allow controls to be acknowledged even when LN is blocked.	na
844	MFLK.PhPiMax, MFLK.PhPiLoFil, MFLK.PhPiRoot DEL->WYE Change these NFLK objects from $c d c=D E L$ to $c d c=W Y E$	na
877	QVUB -settings should be optional Change QVUB.UnbDetMth and QVUB.StrVal to optional	na
908	ARIS.StrSeq - transient Change ARIS.StrSeq to transient	na
909	Remove ANCR.ColOpR and ColOpL Replace ANCR.ColOpR and ANCR.ColOpL with ANCR.ColChg. Add YEFN.ColChg	na
912	Clarification of PwrRtg/VARtg Change many DOs in YPTR, and ZGEN, see name space 2007A2.nsd for final result	na
920	Resetable Counter is NOT resetable Change GGIO.CntRs to CntVal; Same for FCNT	na
932	Rename AVCO.SptVol to AVCO.VoISpt	na
933	Presence of LCCH.RedFerCh and RedRxCnt Change the presence condition of LCCH.RedChLiv	na
939	Change CDC for ANCR.FixCol Change ANCR.FixCol from APC to ASG	na

Table L.5: Mandatory Edition 2 Tissues

Tissue	Description	Implemented   Y/na
991	LGOS: GoCBRef (as well as LSVS.SvCBRanre ef) should be   mandatory   LGOS.GoCBRef and LSVS.SvCBRef are now both mandatory	Y
1007	PTRC as fault indicator - Update of description required   PTRC.Tr and Op and Str conditional (at least 1 of group)	na
1044	TapChg in AVCO   AVCO.TapChg is now optional	na
1077	Rename DOnames within LTIM   LTIM.TmChgDayTm, changed to TmChgDay;   LTIM.TmChgStdTm changed to TmChgStd	na
1256	New DO for LTIM to set time "manually"   Add LTIM.TmSet	na
1331	Mod, Beh and Health with q=TEST, client can't receive their   states   Mod while in Blocked will always be processed	Y
1426	Add two DO for leap seconds in LTIM   LTIM.Leap added,	na
1456	Annex A and Mod/Beh/Health   Mod.stVal writes always igore test bits in controls	Y
1568	ISAF.AlmReset ->transient   Change ISAF.AmIReset to transient	na

Note: TISSUE 675, 735, 772, 775, 776, 878 are not relevant for conformance testing

Part 8-1		
770	GoID type mitmatch 18.1.1 and 18.1.2.5.2   GoID string length is now 129	Y
784	Tracking of control (CTS)   Tracking CTS has been added	na
817	Fixed-length GOOSE float encoding   GOOSE float is encoded Tag-0x87, length=5, first octet=8	na
827	Mandatory ACSI services (Part of 7-2 TISSUE resolution)   Change Table 111 (ServicesSupported): Add initiate, abort, and   release. Change conditions for defineNamedVariables.	Y
834	File dir name length 64   Filename length changed from 32 to 64	Y
951	Encoding of Owner attribute   xRCB.owner is encoded as 4 octets(IPv4) or 16 octets(IPv6)	na
1040	More associate error codes   3 additional associate error codes added	Y


1178	Select Response+ is non-null value   Response to SBO read should be <CO_CtrIObjectRef>	na
1324	The response- for DeleteNamedVariableList is not defined   numDeleted=0; error=service/object-constraint-conflict	na
1345	Fixed-length GOOSE ASN.1 length encoding   GOOSE publisher shall always encode minimum size legth field	na
1441	Optonal fields in buffered reports   Writing BRCB.optFId shall not cause a purgeBuf operation	Y
1442	Journal variableTag for ReasonCode   Example in the standard is incorrect	na
1453	Purge buffer on write to BRCB   PurgeBuf only occurs if different value is written	Y
1454	Reports can be transmitted before write (RptEna=true) is con-   firmed	na
1500	GetVariableAccessAttributes error code Return MMS error   access/object-non-existent if the object does not exist	Y
1626	the response for DeleteNamedVariableList with a non-existent   LN is not specified   CreateDataSet/DefineNamedVariableList specifying a non-   existing LD/LN shall fail with access/object-non-existent	na
PICS for Information Report is incorrect MMS   ServicesSupported "informationReport" should be optional for   servers because they never receive InformationReport   requests.   It is only required for clients which process reports or control   command-termination	Y	

## L. 4 Protocol Implementation eXtra Information for Testing (PIXIT)

Protocol Implementation eXtra Information for Testing (PIXIT) for the IEC 61850 Edition 2 server interface in F-PRO 298

Document Version ${ }^{1}$ : D05035R01.10
Date: 2021-12-27

Based Upon UCAIug Server PIXIT
Template version 20

[^3]
## PIXIT for Server

## Introduction

This document specifies the protocol implementation extra information for testing (PIXIT) of the IEC 61850 interface in F-PRO 298 with firmware version v1.7.

Together with the PICS and the MICS the PIXIT forms the basis for a conformance test according to IEC 61850-10. The PIXIT entries contain information which is not available in the PICS, MICS, TICS documents or SCL file.

Each table specifies the PIXIT for applicable ACSI service model as structured in IEC 61850-10. The "Ed" column indicates if the entry is applicable for IEC 61850 Edition 1 and/or Edition 2. A hyphen ("-") in the Ed column indicates the PIXIT entry is not applicable for any version.

## PIXIT for DOCUMENTATION

ID	Ed	Description	Value / Clarification
Do1	2	How to expose required firmware versions   not present in the datamodel	Firmware version and ICD   file compatibility listed in the   firmware release notes.

PIXIT for ASSOCIATION MODEL

ID	Ed	Description	Value / Clarification
As1	1	Maximum number of clients that can set-up an association simultaneously	4
As2	1,2	TCP_KEEPALIVE value. The recommended range is $1 . . .20 \mathrm{~s}$	5 seconds
As3	1,2	Lost connection detection time	20 seconds
As 4	-	Authentication is not supported yet	
As5	1,2	What association parameters are necessary for successful association: Called value:   Calling values:	Transport selector Y   Session selector Y   Presentation selector Y   AP Title N   AE Qualifier N   other    Transport selector Y   Session selector Y   Presentation selector Y   AP Title N   AE Qualifier N   other
As6	1,2	If association parameters are necessary for association, describe the correct Called values: e.g.   Calling parameters: e.g.	Transport selector 0001   Session selector 0001   Presentation   selector   other 00000001   Transport selector 0001   Session selector 0001   Presentation   selector   other 00000001$\quad 10$
As7	1,2	What is the maximum and minimum MMS PDU size	Max MMS PDU size 32,000   Min MMS PDU size 1300
As8	1,2	What is the maximum start up time after a power supply interrupt	180 seconds
As9	1,2	Does this device function only as test equipment?   (test equipment need not have a non-volatile configuration; but it cannot be part of the substation automation system)	$N$

## PIXIT for SERVER MODEL

ID	Ed	Description	Value / Clarification
Sr1	1,2	Which analogue value (MX) quality bits are supported (can be set by server)	Validity:   Y Good,   N Invalid,   N Reserved,   N Questionable   Detail Quality   N Overflow   N OutofRange   N BadReference   N Oscillatory   N Failure   N OldData   N Inconsistent   N Inaccurate   Miscellaneous:   Y Source   Y Test   N   OperatorBlocked
Sr2	1,2	Which status value (ST) quality bits are supported (can be set by server)	Validity:   Y Good,   N Invalid,   N Reserved,   N Questionable   Detail Quality   N BadReference   N Oscillatory   N Failure   N OldData   N Inconsistent   N Inaccurate   Miscellaneous:   Y Source   Y Test   Operator-   Blocked
Sr3	-	What is the maximum number of data object references in one GetDataValues request	Deprecated
Sr4	-	What is the maximum number of data object references in one SetDataValues request	Deprecated
Sr5	1	Which Mode values are supported ${ }^{\text {a }}$	On Y   [On-Blocked] N   Test Y   Test/Blocked Y   Off N

a. IEC 61850-6:2009 clause 9.5.6 states that if only a subrange of the enumeration value set is supported, this shall be indicated within an ICD file by an enumeration type, where the unsupported values are missing

## PIXIT for DATA SET MODEL

ID	Ed	Description	Value / Clarification
Ds1	1	What is the maximum number of data elements in   one data set (compare ICD setting)	128
Ds2	1	How many persistent data sets can be created by one   or more clients   (this number includes predefined datasets)	CreateDataSet not   supported.
Ds3	1	How many non-persistent data sets can be created   by one or more clients	CreateDataSet not   supported.

## PIXIT for SUBSTITUTION MODEL

ID	Ed	Description	Value / Clarification
Sb1	1	Are substituted values stored in volatile memory	Not Supported

## PIXIT for SETTING GROUP CONTROL MODEL

ID	Ed	Description	Value / Clarification
Sg1	1	What is the number of supported setting   groups for each logical device	Not Supported
Sg2	1,2	What is the effect of when and how the non-   volatile storage is updated   (compare IEC 61850-8-1 §16.2.4)	Not Supported
Sg3	1	Can multiple clients edit the same setting   group	Not Supported
Sg4	1	What happens if the association is lost while   editing a setting group	Not Supported
Sg5	1	Is EditSG value 0 allowed	Not Supported
Sg6	2	When ResvTms is not present how long is an   edit setting group locked	Not Supported

## PIXIT for REPORTING MODEL

| ID | Ed | Description | Value / Clarification |
| :--- | :--- | :--- | :--- | :--- |


ID	Ed	Description	Value / Clarification
Rp12	2	After restart of the server is the value   of ConfRev restored from the original   configuration or retained prior to   restart	Restored from original configuration
Rp13	1,2	Does the server accept any client to   configure / enable a BRCB with   ResvTms=-1?   What fields are used to do the identi-   fication?	N
Rp14	1,2	When BRCB.ResvTms is exposed,   what is the default value for   BRCB.ResvTms if client does not   write (must be > 0)	N/A
Rp15	2	When BRCB.ResvTms is not   exposed, what is the internal   reservation time-(must be >= 0)	0 seconds

## PIXIT for LOGGING MODEL

ID	Ed	Description	Value / Clarification
Lg1	1,2	What is the default value of LogEna   (Compare IEC 61850-8-1 §17.3.3.2.1, the   default value should be FALSE)	Not Supported
Lg2	-	What is the format of EntryID	Deprecated
Lg3	1,2	Are there multiple Log Control Blocks that spec-   ify the Journaling of the same MMS NamedVari-   able and TrgOps and the Event Condition   (Compare IEC 61850-8-1 §17.3.3.3.2)	Not Supported
Lg4	-	Pre-configured LCB attributes that cannot be   changed online	Deprecated, the informa-   tion is already available in   SCL
Lg5	1	Which TrgOps are supported for logging   (note Ed2 and up requires support for   all TrgOps)	Not Supported

## PIXIT for GOOSE PUBLISH MODEL

ID	Ed	Description	Value / Clarification
Gp1	1,2	Can the test (Ed1) / simulation (Ed2) flag in the   published GOOSE be set	N
Gp2	1	What is the behaviour when the GOOSE publish   configuration is incorrect	NdsCom=T   DUT keeps GoEna=F
Gp3	1,2	Published FCD supported common data   classes are	SPS, ENS, ACD, LPL,   DPL, ACT, INS, ORG, SPC   Arrays are not supported
Gp4	1,2	What is the maximum value of TAL (maxTime)   Is it fixed or configurable	Configurable by ICT   MaxTime 120,000ms
Gp5	1,2	What is the fastest retransmission time	2 ms
Gp6	-	Can the GOOSE publish be turned on / off by   using SetGoCBValues(GoEna)	Deprecated   See PICS -   SetGoCBValues
Gp7	1,2	What is the initial GOOSE sqNum after restart	sqNum = 0
Gp8	1	May the GOOSE data set contain:   -structured data objects (FCD)   -timestamp data attributes	Y   Yqu
Gp9	1,2	Does Server or ICT refuse GOOSE payload   dataset length greater than SCSM supports?	Y - ICT refuses

## PIXIT for GOOSE SUBSCRIBE MODEL

ID	Ed	Description	Value / Clarification
Gs1	1,2	What elements of a subscribed GOOSE message are checked to decide the message is valid and the allData values are accepted? If yes, describe the conditions. Notes:   - the VLAN tag may be removed by an Ethernet switch and shall not be checked   - the simulation flag shall always be checked (Ed2)	Y destination MAC      address   Y APPID   Y gocbRef   Y timeAllowedtoLive   N datSet   N golD   N T   Y stNum    NsqNum   Y simulation / test   N confRev   Y ndsCom   Y numDatSetEntries   Y   out-of-order dataset
Gs2	1,2	When is a subscribed GOOSE marked as lost   (TAL = time allowed to live value from the last received GOOSE message)	message does not arrive by 2 x TAL
Gs3	1,2	What is the behaviour when one or more subscribed GOOSE messages is not received or syntactically incorrect (missing GOOSE)	Syntactically incorrect messages (Incorrect stNum increment) received within the TAL are discarded, message will be processed after TAL expires and syntactically correct message is not received.
Gs4	1,2	What is the behaviour when a subscribed GOOSE message is out-of-order	Older messages are discarded
Gs5	1,2	What is the behaviour when a subscribed GOOSE message is duplicated	First message will process and second message will discard.
Gs6	1	Does the device subscribe to GOOSE messages with/without the VLAN tag	Y , with the VLAN tag   Y , without the VLAN tag
Gs7	1	May the GOOSE data set contain:   - structured data objects (FCD)   - timestamp data attributes	$\begin{aligned} & Y \\ & Y \end{aligned}$
Gs8	1,2	Subscribed FCD supported common data classes are	SPS, ACD, ACT, SPC   Arrays are not supported
Gs9	1,2	Are subscribed GOOSE with test=T (Ed1) / simulation=T (Ed2) accepted in test/simulation mode	Y
Gs10	1,2	Max number of dataset members	Fixed at 60
Gs11	1	Is Fixed-length encoded GOOSE supported	Y
Gs12	2	Is IEC 62351-6 security supported	N

## PIXIT for GOOSE PERFORMANCE

ID	Ed	Description	Value / Clarification	
Gf1	1,2	Performance class	P2 $=10 \mathrm{~ms}$   P3 $=20 \mathrm{~ms}$	
Gf2	1,2	GOOSE ping-pong processing method	Scan cycle based	
Gf3	1,2	Application logic scan cycle (ms)	Max.	4ms (GOOSE PUB)   $100 \mathrm{us}($ GOOSE SUBS)
			Min.	100us (GOOSE PUB)   100 us (GOOSE PUB)
Gf4	1	Maximum number of data attributes in   GOOSE dataset (value and quality has   to be counted as separate attributes)	Such that dataset does not   exceed GOOSE: 1000 Bytes	

## PIXIT for CONTROL MODEL

ID	Ed	Description	Value / Clarification
Ct1	1	What control models are supported   (compare ICD file enums for Ed2)	Dons: Y   SBOns: N   DOes: N   SBOes: N
Ct2	1,2	Is the control model fixed, configurable   and/or dynamic	Fixed
Ct3	-	Is TimeActivatedOperate supported (com-   pare PICS or SCL)	Deprecated
Ct4	-	Is "operate-many" supported (compare   sboClass)	Deprecated, see sboClass in   datamodel (ICD)
Ct5	1	Will the DUT activate the control output   when the test attribute is set in the   SelectWithValue and/or Operate request   (when N test procedure Ctl2 is applicable)	N
Ct6	-	What are the conditions for the time (T)   attribute in the SelectWithValue and/or   Operate request	Deprecated
Ct7	-	Is pulse configuration supported (com-   pare pulseConfig)	Deprecated
Ct8	1	What is the behaviour of the DUT when   the check conditions are set	Check conditions are   not checked.


ID	Ed	Description	Value / Clarification
Ct9	1,2	Which additional cause diagnosis are supported	N Unknown   N Not-supported   N Blocked-by-switching-hierarchy   N Select-failed   N Invalid-position   N Position-reached   N Step-limit   N Blocked-by-Mode   N Blocked-by-process   N Blocked-by-interlocking   N Blocked-by-synchrocheck   N Command-already-in-execu-   tion   N Blocked-by-health   N 1-of-n-control   N Abortion-by-cancel   N Time-limit-over   N Abortion-by-trip   N Object-not-selected   Edition 1 specific values:   N Parameter-change-in-execu-   tion (Ed1 semantics)   Edition 2 specific values:   N Object-already-selected   N No-access-authority   N Ended-with-overshoot   N Abortion-due-to-deviation   N Abortion-by-communication-   loss   N Blocked-by-command   N None   N Locked-by-other-client   N Parameter-change-in-execu-   tion (Ed2 semantics)
Ct10	1,2	How to force a "test-not-ok" respond with SelectWithValue request	Not Supported
Ct11	1,2	How to force a "test-not-ok" respond with Select request	Not Supported
Ct12	1,2	How to force a "test-not-ok" respond with Operate request	Not supported
Ct13	1,2	Which origin categories are supported / accepted	Y bay-control   Y station-control   Y remote-control   Y automatic-bay   Y automatic-station   Y automatic-remote   $Y$ maintenance   Y process
Ct14	1,2	What happens if the orCat value is not supported or invalid	DOns:   Operate response-

Appendix L IEC 61850 Conformance Statements and Data Mapping Specification

ID	Ed	Description	Value / Clarification
Ct15	1,2	Does the IED accept a SelectWithValue / Operate with the same control value as the current status value   Is this behaviour configurable	$\begin{array}{lr} \text { DOns: } & \mathrm{N} \\ \text { Configurable: } & \mathrm{N} \end{array}$
Ct16	1	Does the IED accept a select/operate on the same control object from 2 different clients at the same time	DOns: N
Ct17	1	Does the IED accept a Select/SelectWithValue from the same client when the control object is already selected (Tissue \#334)	Not Suported
Ct18	1	Deprecated	
Ct19	-	Can a control operation be blocked by Mod=Off or [On-] Blocked (Compare PIXIT-Sr5)	Deprecated
Ct20	1,2	Does the IED support local / remote operation	N
Ct21	1,2	Does the IED send an InformationReport with LastAppIError as part of the Operate response-for control with normal security	DOns: N
Ct22	2	How to force a "parameter-change-in-execution"	Not Supported
Ct23	1,2	How many SBOns/SBOes control objects can be selected at the same time?	Not Supported
Ct24	1,2	Can a controllable object be forced to keep its old state e.g. Internal Controllable Objects may not be accessible to force this, whereas a switch like Circuit Breaker outside the DUT can?	$N$
Ct25	1,2	When CDC=DPC is supported, is it possible to have DPC (Controllable Double Point) go to the intermediate state? (00)	N/A
Ct26	1,2	Name an enhanced security point (if any) with a finite operate timeout   specify the timeout (in milliseconds)	Ld/Ln.DataObject, xxx or No DOes points have timeout   DOes: No   SBOes: No
Ct27	2	Does the IED support control objects with external signals?	DOns: N   SBOns: N   DOes: N   SBOes: N
Ct28		Deprecated, kept as placeholder	

PIXIT for TIME SYNCHRONIZATION MODEL

ID	Ed	Description	Value / Clarification
Tm1	1	What time quality bits are supported (may be set by the IED)	Y LeapSecondsKnown   Y ClockFailure   Y ClockNotSynchronized
Tm2	1,2	Describe the behaviour when all time server(s) cease to respond   What is the time server lost detection time	IRIG - next second   SNTP - Configurable   "Poll Interval" + 5*" Timeout Interval"
Tm3	1,2	How long does it take to take over the new time from time server	From 'no sync' to 'SNTP sync': it takes approximately 5 seconds For the same SNTP time master time adjustment: it takes   "Poll Interval" + 5*" * Timeout Interval" to get the new time from the same time server.
Tm4	1,2	When is the time quality bit "ClockFailure" set	Bit is set, when no IRIG-B or SNTP is detected
Tm5	1	When is the time quality bit "Clock not Synchronized" set	Bit is set, when No IRIG-B, SNTP is detected Unlocked IRIG-B is detected
Tm6	-	Is the timestamp of a binary event adjusted to the configured scan cycle	Deprecated
Tm7	1	Does the device support time zone and daylight saving	Y
Tm8	1,2	Which attributes of the SNTP response packet are validated	$N$ Leap indicator not equal to 3   Y Mode is equal to SERVER   Y OriginateTimestamp is equal to value sent by the SNTP client as Transmit Timestamp   Y RX/TX timestamp fields are checked for reasonableness   Y SNTP version 3 and/or 4   N other (describe)
Tm9	1,2	Do the COMTRADE files have local time or UTC time and is this configurable	COMTRADE files are not supported on the IED. Native Records may be converted to COMTRADE via software tools. It is configurable to display either Local or UTC time.

## PIXIT for FILE TRANSFER MODEL

ID	Ed	Description	Value / Clarification
Ft1	1	What is the structure of files and   directories   Where are the COMTRADE files   stored   Are CoMTRADE files zipped and   what files are included in each zip file	Flat file system with pseudo folders   (Ed2)   COMTRADE files are not stored on   the IED
Ft2	1,2	Directory names are separated from   the file name by	"/"
Ft3	1	The maximum file name size including   path (recommended 64 chars)	64 chars
Ft4	1,2	Are directory/file name case sensitive	Y
Ft5	1,2	Maximum file size for SetFile	SetFile Not Supported
Ft6	1	Is the requested file path included in   the MMS fileDirectory respond file   name	Y   But client is not allowed to use any   path names that contain anything   other than "/" In that case Server will   return response with zero files.   (Ed2: always complete path)
Ft7	1	Is the wild card supported in the MMS   fileDirectory request	Yes, wild card = *
Ft8	1,2	Is it allowed that 2 clients get a file at   the same time	Y same file   Y different files
Ft9	1,2	Which files can be deleted	No restriction for deleting files

## PIXIT for SERVICE TRACKING MODEL

ID	Ed	Description	Value / Clarification
Tr1	2	Which ACSI services are tracked by   LTRK.GenTrk	Not Supported

## L. 5 Data Mapping Specifications

F-PRO Logical Device

The F-PRO 298 has the following IEC 61850 logical devices (LD) defined in its ICD file:

- FPROProtection
- FPROMeasurements
- FPRORecords
- FPROSystem
- FPROSubscription
- FPROFaultData
- FPROControl

Table L.6: F-PRO 298 Logical Nodes defines the list of logical nodes (LN) for the F-PRO logical devices.

Note: System logical nodes (group L) are not shown here

Table L.6: F-PRO 298 Logical Nodes

| LD Name | LN Name | LN Description | FPRO <br> Protection <br> Function <br> Reference | Comments | Data <br> Refere <br> nce |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| PROTECTION FUNCTIONS |  |  |  |  |  |
| FPROProtection | DT27PTUV1 | Time Under Voltage | Dev 27_1 | DTL Under <br> Voltage_1 | PTUV |
| FPROProtection | DT27PTUV2 | Time Under Voltage | Dev 27_2 | DTL Under <br> Voltage_2 | PTUV |
| FPROProtection | DT27PTUV3 | Time Under Voltage | Dev 27_3 | DTL Under <br> Voltage_3 | PTUV |
| FPROProtection | DT27PTUV4 | Time Under Voltage | Dev 27_4 | DTL Under <br> Voltage_4 | PTUV |
| FPROProtection | DT27PTUV5 | Time Under Voltage | Dev 27_5 | DTL Under <br> Voltage_5 | PTUV |
| FPROProtection | DT27PTUV6 | Time Under Voltage | Dev 27_6 | DTL Under <br> Voltage_6 | PTUV |
| FPROProtection | IT27PTUV1 | Time Under Voltage | Dev 27_IT | IDMTL Under <br> Voltage_1 | PTUV |
| FPROProtection | IT27PTUV2 | Time Under Voltage | Dev 27_IT | IDMTL Under <br> Voltage_2 | PTUV |


LD Name	LN Name	LN Description	FPRO   Protection   Function   Reference	Comments	Data Refere nce
FPROProtection	DT59PTOV1	Time Over Voltage	Dev 59_1	DTL Over Voltage_1	PTOV
FPROProtection	DT59PTOV2	Time Over Voltage	Dev 59_2	DTL Over Voltage 2	PTOV
FPROProtection	DT59PTOV3	Time Over Voltage	Dev 59_3	DTL Over Voltage_3	PTOV
FPROProtection	DT59PTOV4	Time Over Voltage	Dev 59_4	DTL Over Voltage_4	PTOV
FPROProtection	DT59PTOV5	Time Over Voltage	Dev 59_5	DTL Over Voltage_5	PTOV
FPROProtection	DT59PTOV6	Time Over Voltage	Dev 59_6	DTL Over Voltage_6	PTOV
FPROProtection	IT59PTOV1	Time Over Voltage	Dev 59_1	IDMTL Over Voltage_1	PTOV
FPROProtection	IT59PTOV2	Time Over Voltage	Dev 59_2	IDMTL Over Voltage 2	PTOV
FPROProtection	DT24PVPH1	Time Over Flux	Dev 24_1	DTL Over Flux_1	PVPH
FPROProtection	DT24PVPH2	Time Over Flux	Dev 24_2	DTL Over Flux_2	PVPH
FPROProtection	IT24PVPH3	Time Over Flux	Dev 24_3	IDMTL Over Flux 3	PVPH
FPROProtection	DT47PTOV1	Time Over Voltage	Dev 47_1	DTL Negative Sequence Over Voltage 1	PTOV
FPROProtection	DT47PTOV2	Time Over Voltage	Dev 47_2	DTL Negative Sequence Over Voltage_2	PTOV
FPROProtection	IT47PTOV1	Time Over Voltage	Dev 47_3	IDMTL Negative Sequence Over Voltage_1	PTOV
FPROProtection	DT59NPTOV1	Time Over Voltage	Dev 59N_1	DTL Derived Ground Over Voltage_1	PTOV
FPROProtection	DT59NPTOV2	Time Over Voltage	Dev 59N_2	DTL Derived Ground Over Voltage_1	PTOV
FPROProtection	IT59NPTOV1	Time Over Voltage	Dev 59N_1	IDMTL Derived Ground Over Voltage 31	PTOV
FPROProtection	D37PTUC1	Undercurrent (directional)	Dev 37_1	Inst. Phase Undercurrent_1	PIUC
FPROProtection	D37PTUC2	Undercurrent (directional)	Dev 37_2	Inst. Phase Undercurrent_2	PIUC


LD Name	LN Name	LN Description	FPRO   Protection Function Reference	Comments	Data Refere nce
FPROProtection	D50PIOC1	Instantaneous Overcurrent (directional)	$\begin{gathered} \text { Dev 50/ } \\ 67 _1 \end{gathered}$	Inst. Phase Overcurrent_1	PIOC
FPROProtection	D50PIOC2	Instantaneous Overcurrent (directional)	$\begin{gathered} \text { Dev 50/ } \\ 67 _2 \end{gathered}$	Inst. Phase Overcurrent_2	PIOC
FPROProtection	D51PTOC1	Time Overcurrent (directional)	$\begin{gathered} \hline \text { Dev 51/ } \\ 67 _1 \\ \hline \end{gathered}$	IDMTL Phase Overcurrent	PTOC
FPROProtection	D51PTOC2	Time Overcurrent (directional)	$\begin{gathered} \text { Dev 51/ } \\ 67 _2 \\ \hline \end{gathered}$	IDMTL Phase Overcurrent	PTOC
FPROProtection	D50NPIOC1	Instantaneous Overcurrent (directional)	$\begin{gathered} \text { Dev 50/ } \\ 67 \mathrm{~N} _1 \end{gathered}$	Inst. Phase Overcurrent_1 (Derived)	PIOC
FPROProtection	D50NPIOC2	Instantaneous Overcurrent (directional)	$\begin{gathered} \text { Dev 50N/ } \\ 67 _2 \end{gathered}$	Inst. Phase Overcurrent_2 (Derived)	PIOC
FPROProtection	D51NPTOC1	Time Overcurrent (directional)	$\begin{gathered} \text { Dev 51/ } \\ \text { 67N_1 } \end{gathered}$	IDMTL Neutral Overcurrent (Derived)	PTOC
FPROProtection	D51NPTOC2	Time Overcurrent (directional)	$\begin{gathered} \text { Dev 51/ } \\ \text { 67N_2 } \end{gathered}$	IDMTL Neutral Overcurrent (Derived)	PTOC
FPROProtection	D50GPIOC1	Instantaneous Overcurrent (directional)	Dev 50G_1	Inst. Phase Overcurrent_1   (Measured)	PIOC
FPROProtection	D50GPIOC2	Instantaneous Overcurrent (directional)	Dev 50G_2	$\begin{aligned} & \text { Inst. Phase } \\ & \text { Overcurrent_2(M } \\ & \text { easured) } \\ & \hline \end{aligned}$	PIOC
FPROProtection	D51GPTOC1	Time Overcurrent (directional)	Dev 51G_1	IDMTL Neutral Overcurrent (Measured)	PTOC
FPROProtection	D4650PIOC1	Instantaneous Overcurrent	Dev 46_50	Inst. Negative Sequence Overcurrent	PIOC
FPROProtection	D4651PTOC1	Time Overcurrent	Dev 46_51	IDMTL Negative Sequence Overcurrent	PTOC
FPROProtection	D50RPIOC1	Instantaneous Overcurrent	Dev 50R_1	Inst. REF/SEF Overcurrent 1	PIOC
FPROProtection	D50RPIOC2	Instantaneous Overcurrent	Dev 50R_2	Inst. REF/SEF Overcurrent 2	PIOC


| LD Name | LN Name | LN Description | FPRO <br> Protection <br> Function <br> Reference | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FPROProtection | D51RPTOC1 | Time Overcurrent <br> (directional) | Dev 51R_1 <br> Refere <br> nce |  |
| FPROProtection | D51RPTOC2 | IDMTL <br> REF/SEF <br> Time Overcurrent <br> (directional) | Perrent_1 |  |


LD Name	LN Name	LN Description	FPRO   Protection   Function   Reference	Comments	Data Refere nce
FPROProtection	D81RPFRC1	Rate of Change of Frequency	$\begin{gathered} \text { Dev } \\ \text { 81ROCOF_1 } \end{gathered}$	Rate of Change of Frequency_1	PFRC
FPROProtection	D81RPFRC2	Rate of Change of Frequency	$\begin{gathered} \hline \text { Dev } \\ \text { 81ROCOF_2 } \end{gathered}$	Rate of Change of Frequency 1	PFRC
FPROProtection	D81RPFRC3	Rate of Change of Frequency	$\begin{gathered} \mathrm{Dev} \\ \text { 81ROCOF_3 } \end{gathered}$	Rate of Change of Frequency_1	PFRC
FPROProtection	D81RPFRC4	Rate of Change of Frequency	$\begin{gathered} \mathrm{Dev} \\ \text { 81ROCOF_4 } \end{gathered}$	Rate of Change of Frequency_1	PFRC
FPROProtection	D32PDUP1	Directional Underpower	Dev 32PDUP_1	Directional Underpower_1	PDOP
FPROProtection	D32PDUP2	Directional Underpower	Dev 32PDUP_2	Directional Underpower _2	PDOP
FPROProtection	D32PDUP3	Directional Underpower	Dev 32PDUP 3	Directional Underpower 3	PDOP
FPROProtection	D32PDUP4	Directional Underpower	$\begin{gathered} \text { Dev } \\ \text { 32PDUP } 4 \end{gathered}$	Directional Underpower 4	PDOP
FPROProtection	D32PDOP1	Directional Overpower	$\begin{gathered} \text { Dev } \\ \text { 32PDOP } 1 \end{gathered}$	Directional Overpower 1	PDOP
FPROProtection	D32PDOP2	Directional Overpower	$\begin{gathered} \text { Dev } \\ \text { 32PDOP_2 } \end{gathered}$	Directional Overpower 2	PDOP
FPROProtection	D32PDOP3	Directional Overpower	$\begin{gathered} \text { Dev } \\ \text { 32PDOP_3 } \end{gathered}$	Directional Overpower 3	PDOP
FPROProtection	D32PDOP4	Directional Overpower	$\begin{gathered} \text { Dev } \\ \text { 32PDOP } 4 \end{gathered}$	Directional Overpower_4	PDOP

PROTECTION RELATED FUNCTIONS

FPROProtection	D46BCPTOC3	Time Overcurrent   (directional)	Dev 46BC	Broken   Conductor   Detection	PTOC
FPROProtection	D60PTSPTOV7	Time Over Voltage	Dev PTS	VT Supervision	PTOV
FPROProtection	D60CTSPTOC4	Time Overcurrent   (directional)	Dev CTS	CT Supervision	PTOC
FPROProtection	D50BFRBRF1	Breaker Failure	Dev 50BF	Breaker Failure	RBRF
FPROProtection	DDICBFRBRF2	Breaker Failure	Dev CBF	Breaker Failure	RBRF
FPROProtection	D74TCSRTCS1	New LN: R-LN Group; T-   Trip; C-Circuit; S-   Supervision	Dev   $74 T C S 1$	Trip Circuit   Supervision	RTCS
FPROProtection	D74TCSRTCS2	New LN: R-LN Group; T-   Trip; C-Circuit; S-   Supervision	Dev   $74 T C S 2$	Trip Circuit   Supervision	RTCS


LD Name	LN Name	LN Description	FPRO   Protection   Function   Reference	Comments	Data Refere nce
FPROProtection	I2TRCBC1	New LN: R-LN Group; C-Circuit; B-Breaker; C-Condition	Dev I2T	CB Monitoring	RCBC
FPROProtection	THDRTHD1	New LN: R-LN Group; TTotal; H-Harmonic; DDistortion	Dev THD_1	Total Harmonic Distortion_1	RTHD
FPROProtection	THDRTHD2	New LN: R-LN Group; TTotal; H-Harmonic; DDistortion	Dev THD_2	Total Harmonic Distortion_2	RTHD
FPROProtection	UVCRUVC1	New LN: R-LN Group; U-Under; V- Voltage; C-Counter	Dev UVC_1	Under Voltage Counter	RUVC
FPROProtection	OVCROVC1	New LN: R-LN Group; U-Under; V- Voltage; C-Counter	Dev OVC_1	Over Voltage Counter	ROVC
FPROProtection	UFCRUFC1	New LN: R-LN Group; U-Under; V- Voltage; C-Counter	Dev UFC_1	Under   Frequency Counter	RUFC
FPROProtection	OFCROFC1	New LN: R-LN Group; U-Under; V- Voltage; C-Counter	Dev OFC_1	Over Frequency Counter	ROFC
FPROProtection	EICREIC1	New LN: R-LN Group; U-Under; V- Voltage; C-Counter	Dev EIC_1	External Input Counter	REIC
FPROProtection	D79RREC1	Auto Reclosing	Dev 79	Auto Reclose	RREC
FPROProtection	D79GGIO1	Auto Reclosing	Dev 79	Auto Reclose	GGIO
PROTECTION CONTROL					
FPROProtection	TRCALH1	Alarm Handling	NA	Status of Starter/ Trip Elements	CALH
MEASUREMENTS					
FPROMeasureme nts	ANAMMXU1	Measurements	NA	Analog Channel Input Measurement (3 Phase Current(s) \& Voltage(s))	MMXU
FPROMeasureme nts	ANAMMXU2	Measurements	NA	Analog Channel Input   Measurement	MMXU


LD Name	LN Name	LN Description	FPRO   Protection Function Reference	Comments	Data Refere nce
FPROMeasureme nts	SEQMSQI1	Sequence \& Imbalance	NA	$\begin{gathered} \text { Sequence } \\ \text { Components of } \\ \text { Voltage \& } \\ \text { Current (V1, } \\ \text { V2, V0, I1, } 12 \\ 10) \\ \hline \end{gathered}$	MSQI
FPROMeasureme nts	MMMTHR1	Measurements	NA	79count and 79Cumm_count alarm	MTHR1
RECORDS					
FPRORecords	DRRDRE1	Disturbance Record	NA	Disturbance Record	RDRE
GENERIC FUNCTIONS					
FPROSystem	HEALTHGGIO8	Generic Process I/O	Relay Health	Relay Health Status	GGIO
FPROSystem	IRIGGGIO6	Generic Process I/O	IRIG-B	IRIG-B Status	GGIO
FPROSystem	SNTPGGIO7	Generic Process I/O	SNTP   Monitoring	SNTP Status	GGIO
FPROSystem	ComAlmGGIO9	Generic Process I/O	IEC61850   Comm.   Alarm	IEC61850 Comm.   Alarm Status	GGIO
FPROSystem	LEDGGIO4	Generic Process I/O	HMI LED Monitoring	$\begin{gathered} \text { LED Status } \\ (1-14) \\ \hline \end{gathered}$	GGIO
FPROSystem	EIGGIO1	Generic Process I/O	External Inputs	Status of External Inputs (1-14)	GGIO
FPROSystem	OCGGIO2	Generic Process I/O	Output Contacts	Status of Output Contacts (1-14)	GGIO
FPROSystem	PLGGIO3	Generic Process I/O	Prologic's	Status of Prologic's (1-20)	GGIO
FPROSystem	VIGGIO5	Generic Process I/O	Virtual Input Status	Virtual Inputs Status (1-30)	GGIO
SUBSCRIPTION					
FPROSubscriptio n	SUBSCRGGIO 1	Generic Process I/O	GOOSE Subscriptio n	Virtual Inputs Status (1-30)	GGIO
FAULT					
FPROFaultData	FLTMMXU1	Fault Measurement Data	NA	Fault Current \& Voltage Details	MMXU


LD Name	LN Name	LN Description	FPRO   Protection   Function   Reference	Comments	Data Refere nce
FPROFaultData	FLTMSQI1	Fault Sequence \& Imbalance Data	NA	Negative Sequence Current D\& Voltage Details	MSQI
FPROFaultData	FLTMTHR1	Fault Location \& Impedance Data	NA	Fault Location, Fault Angle and Magnitude	MTHR
CONTROL					
FPROControl	$\begin{gathered} \text { SPCSOPULG } \\ \text { GIO1 } \end{gathered}$	Generic Process I/O	Single Point Pulse Type Control Input	Single Point Control Input \& Status Output (1-   6)	GGIO
FPROControl	$\begin{aligned} & \text { SPCSOLATG } \\ & \text { GIO2 } \end{aligned}$	Generic Process I/O	Single Point Latch Type Control Input	Single Point Control Input \& Status Output (712)	GGIO
FPROControl	$\begin{gathered} \text { DPCSOPULG } \\ \text { GIO3 } \end{gathered}$	Generic Process I/O	Double Point Pulse Type Control Input	Double Point Control Input \& Status Output (14)	GGIO
FPROControl	CtIModGGIO4	Generic Process I/O	Control Mode Status	Control Input   Status (1-3)	GGIO

Logical Node Specifications

The following sections provide detailed spec information on the F-PRO 298xAy logical device and logical nodes as defined in the Table N. 19 "F-PRO Logical Nodes".

Common Logical Node information is not shown here. Only the data that are provided from the F-PRO application to the IEC 61850 sub-system are listed here.

## Protection Logical Device

## DT27PTUV1

This section defines the logical node data for DT27PTUV1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
DT27PTUV1.ST.Str.general	Start (27DT-1 Picked up)		STATUS_HANDLER
DT27PTUV1.ST.Str.dirGen-   eral	Direction General		STATUS_HANDLER
DT27PTUV1.ST.Str.PhsA	Start (27DT-1 Picked up)   Phase A		STATUS_HANDLER
DT27PTUV1.ST.Str.PhsB	Start (27DT-1 Picked up)   Phase B		STATUS_HANDLER
DT27PTUV1.ST.Str.PhsC	Start (27DT-1 Picked up)   Phase C		STATUS_HANDLER
DT27PTUV1.ST.Op.general	Operate (27DT-1 Oper--   ated)		STATUS_HANDLER
DT27PTUV1.ST.Op.PhsA	Operate(27DT-1Oper-   ated) Phase A		STATUS_HANDLER
DT27PTUV1.ST.Op.PhsB	Operate(27DT-1 Oper-   ated) Phase B		STATUS_HANDLER
DT27PTUV1.ST.Op.PhsC	Operate(27DT-1 Oper-   ated) Phase C		STATUS_HANDLER

## DT27PTUV1

This section defines the logical node data for DT27PTUV1 of the FPROProtection logical device.

Data Name	Description	IEC6185   $\mathbf{0}$ Index	Source
DT27PTUV1.ST.Str.general	Start (27DT-1 Picked up)		STATUS_HANDLE   $R$
DT27PTUV1.ST.Str.dirGener   al	Direction General	STATUS_HANDLE   $R$	
DT27PTUV1.ST.Str.PhsA	Start (27DT-1 Picked up)   Phase A		STATUS_HANDLE   $R$
DT27PTUV1.ST.Str.PhsB	Start (27DT-1 Picked up)   Phase B		STATUS_HANDLE   $R$
DT27PTUV1.ST.Str.PhsC	Start (27DT-1 Picked up)   Phase C		STATUS_HANDLE   $R$
DT27PTUV1.ST.Op.general	Operate (27DT-1   Operated)		STATUS_HANDLE   $R$
DT27PTUV1.ST.Op.PhsA	Operate(27DT-   1Operated) Phase A	STATUS_HANDLE	
DT27PTUV1.ST.Op.PhsB	Operate(27DT-1   Operated) Phase B		STATUS_HANDLE   $R$
DT27PTUV1.ST.Op.PhsC	Operate(27DT-1   Operated) Phase C	STATUS_HANDLE   R	

## DT27PTUV2

This section defines the logical node data for DT27PTUV2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT27PTUV2.ST.Str.   general	Start (27DT-2 Picked   up)		STATUS_HANDLER
DT27PTUV2.ST.Str.   dirGeneral	Direction General	STATUS_HANDLER	
DT27PTUV2.ST.Str.   PhsA	Start (27DT-2 Picked   up) Phase A		STATUS_HANDLER
DT27PTUV2.ST.Str.   PhsB	Start (27DT-2 Picked   up) Phase B		STATUS_HANDLER
DT27PTUV2.ST.Str.   PhsC	Start (27DT-2 Picked   up) Phase C		STATUS_HANDLER
DT27PTUV2.ST.Op.   general	Operate (27DT-2   Operated)		STATUS_HANDLER
DT27PTUV2.ST.Op.   PhsA	Operate(27DT-2   Operated) Phase A		STATUS_HANDLER
DT27PTUV2.ST.Op.   PhsB	Operate(27DT-2   Operated) Phase B		STATUS_HANDLER
DT27PTUV2.ST.Op.   PhsC	Operate(27DT-2   Operated) Phase C		

## DT27PTUV3

This section defines the logical node data for DT27PTUV3 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT27PTUV3.ST.Str.   general	Start (27DT-3 Picked   up)		STATUS_HANDLER
DT27PTUV3.ST.Str.   dirGeneral	Direction General		STATUS_HANDLER
DT27PTUV3.ST.Str.   PhsA	Start (27DT-3 Picked   up) Phase A		STATUS_HANDLER
DT27PTUV3.ST.Str.   PhsB	Start (27DT-3 Picked   up) Phase B		STATUS_HANDLER
DT27PTUV3.ST.Str.   PhsC	Start (27DT-3 Picked   up) Phase C		STATUS_HANDLER
DT27PTUV3.ST.Op.   general	Operate (27DT-3   Operated)		STATUS_HANDLER
DT27PTUV3.ST.Op.   PhsA	Operate(27DT-3   Operated) Phase A		STATUS_HANDLER
DT27PTUV3.ST.Op.   PhsB	Operate(27DT-3   Operated) Phase B		STATUSANDLER
DT27PTUV3.ST.Op.   PhsC	Operate(27DT-2   Operated) Phase C		STASR

## DT27PTUV4

This section defines the logical node data for DT27PTUV4 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT27PTUV4.ST.Str.   general	Start (27DT-4 Picked   up)		STATUS_HANDLER
DT27PTUV4.ST.Str.   dirGeneral	Direction General		STATUS_HANDLER
DT27PTUV4.ST.Str.   PhsA	Start (27DT-4 Picked   up) Phase A		STATUS_HANDLER
DT27PTUV4.ST.Str.   PhsB	Start (27DT-4 Picked   up) Phase B		STATUS_HANDLER
DT27PTUV4.ST.Str.   PhsC	Start (27DT-4 Picked   up) Phase C		STATUS_HANDLER
DT27PTUV4.ST.Op.   general	Operate (27DT-4   Operated)		STATUS_HANDLER
DT27PTUV4.ST.Op.   PhsA	Operate(27DT-4   Operated) Phase A		STATUS_HANDLER
DT27PTUV4.ST.Op.   PhsB	Operate(27DT-4   Operated) Phase B		STATUS_HANDLER
DT27PTUV4.ST.Op.   PhsC	Operate(27DT-4   Operated) Phase C		

## DT27PTUV5

This section defines the logical node data for DT27PTUV5 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT27PTUV5.ST.Str.   general	Start (27DT-5 Picked   up)		STATUS_HANDLER
DT27PTUV5.ST.Str.   dirGeneral	Direction General		STATUS_HANDLER
DT27PTUV5.ST.Str.   PhsA	Start (27DT-5 Picked   up) Phase A		STATUS_HANDLER
DT27PTUV5.ST.Str.   PhsB	Start (27DT-5 Picked   up) Phase B		STATUS_HANDLER
DT27PTUV5.ST.Str.   PhsC	Start (27DT-5 Picked   up) Phase C		STATUS_HANDLER
DT27PTUV5.ST.Op.   general	Operate (27DT-5   Operated)		STATUS_HANDLER
DT27PTUV5.ST.Op.   PhsA	Operate(27DT-5   Operated) Phase A		STATUS_HANDLER
DT27PTUV5.ST.Op.   PhsB	Operate(27DT-5   Operated) Phase B		STATUS_HANDLER
DT27PTUV5.ST.Op.   PhsC	Operate(27DT-5   Operated) Phase C		

## DT27PTUV6

This section defines the logical node data for DT27PTUV6 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT27PTUV6.ST.Str.   general	Start (27DT-6 Picked   up)		STATUS_HANDLER
DT27PTUV6.ST.Str.   dirGeneral	Direction General		STATUS_HANDLER
DT27PTUV6.ST.Str.   PhsA	Start (27DT-6 Picked   up) Phase A		STATUS_HANDLER
DT27PTUV6.ST.Str.   PhsB	Start (27DT-6 Picked   up) Phase B		STATUS_HANDLER
DT27PTUV6.ST.Str.   PhsC	Start (27DT-6 Picked   up) Phase C		STATUS_HANDLER
DT27PTUV6.ST.Op.   general	Operate (27DT-6   Operated)		STATUS_HANDLER
DT27PTUV6.ST.Op.   PhsA	Operate(27DT-6   Operated) Phase A		STATUS_HANDLER
DT27PTUV6.ST.Op.   PhsB	Operate(27DT-6   Operated) Phase B		STATUS_HANDLER
DT27PTUV6.ST.Op.   PhsC	Operate(27DT-6   Operated) Phase C		STER

## IT27PTUV1

This section defines the logical node data for IT27PTUV1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
IT27PTUV1.ST.Str.g   eneral	Start (27IT-1 Picked   up)		STATUS_HANDLER
IT27PTUV1.ST.Str.d   irGeneral	Direction General		STATUS_HANDLER
IT27PTUV1.ST.Str.P   hsA	Start (27IT-1 Picked   up) Phase A		STATUS_HANDLER
IT27PTUV1.ST.Str.P   hsB	Start (27IT-1 Picked   up) Phase B		STATUS_HANDLER
IT27PTUV1.ST.Str.P   hsC	Start (27IT-1 Picked   up) Phase C		STATUS_HANDLER
IT27PTUV1.ST.Op.g   eneral	Operate (27IT-1   Operated)		STATUS_HANDLER
IT27PTUV1.ST.Op.P   hsA	Operate(27IT-1   Operated) Phase A		STATUS_HANDLER
IT27PTUV1.ST.Op.P   hsB	Operate(27IT-1   Operated) Phase B		STATUS_HANDLER
IT27PTUV1.ST.Op.P   hsC	Operate(27IT-1   Operated) Phase C		

## IT27PTUV2

This section defines the logical node data for IT27PTUV2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
IT27PTUV2.ST.Str.g   eneral	Start (27IT-2 Picked   up)		STATUS_HANDLER
IT27PTUV2.ST.Str.d   irGeneral	Direction General		STATUS_HANDLER
IT27PTUV2.ST.Str.P   hsA	Start (27IT-2 Picked   up) Phase A		STATUS_HANDLER
IT27PTUV2.ST.Str.P   hsB	Start (27IT-2 Picked   up) Phase B		STATUS_HANDLER
IT27PTUV2.ST.Str.P   hsC	Start (27IT-2 Picked   up) Phase C		STATUS_HANDLER
IT27PTUV2.ST.Op.g   eneral	Operate (27IT-2   Operated)		STATUS_HANDLER
IT27PTUV2.ST.Op.P   hsA	Operate(27IT-2   Operated) Phase A		STATUS_HANDLER
IT27PTUV2.ST.Op.P   hsB	Operate(27IT-2   Operated) Phase B		
IT27PTUV2.ST.Op.P   hsC	Operate(27IT-2   Operated) Phase C		STANDLER

## DT59PTOV1

This section defines the logical node data for DT59PTOV1 of the FPROProtection logical device

Data Name	Description	IEC61850 Index	Source
DT59PTOV1.ST.Str.   general	Start (59DT-1 Picked   up)		STATUS_HANDLER
DT59PTOV1.ST.Str.   dirGeneral	Direction General		STATUS_HANDLER
DT59PTOV1.ST.Str.   PhsA	Start (59DT-1 Picked   up) Phase A		STATUS_HANDLER
DT59PTOV1.ST.Str.   PhsB	Start (59DT-1 Picked   up) Phase B		STATUS_HANDLER
DT59PTOV1.ST.Str.   PhsC	Start (59DT-1 Picked   up) Phase C		STATUS_HANDLER
Operate (59DT-1   Operated)			
DT59PTOV1.ST.Op.   general	Sperate(59DT-1   Operated) Phase A		STATUS_HANDLER
DT59PTOV1.ST.Op.   PhsA	STATUS_HANDLER   DT59PTOV1.ST.Op.   PhsB   Operate(59DT-1   Operated) Phase B   PhsC	Operate(59DT-1   Operated) Phase C	

## DT59PTOV2

This section defines the logical node data for DT59PTOV2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT59PTOV2.ST.Str.   general	Start (59DT-2 Picked   up)		STATUS_HANDLER
DT59PTOV2.ST.Str.   dirGeneral	Direction General		STATUS_HANDLER
DT59PTOV2.ST.Str.   PhsA	Start (59DT-2 Picked   up) Phase A		STATUS_HANDLER
DT59PTOV2.ST.Str.   PhsB	Start (59DT-2 Picked   up) Phase B		STATUS_HANDLER
DT59PTOV2.ST.Str.   PhsC	Start (59DT-2 Picked   up) Phase C		STATUS_HANDLER
DT59PTOV2.ST.Op.   general	Operate (59DT-2   Operated)		STATUS_HANDLER
DT59PTOV2.ST.Op.   PhsA	Operate(59DT-2   Operated) Phase A		STATUS_HANDLER
DT59PTOV2.ST.Op.   PhsB	Operate(59DT-2   Operated) Phase B		STATUS_HANDLER
DT59PTOV2.ST.Op.   PhsC	Operate(59DT-2   Operated) Phase C		STER

## DT59PTOV3

This section defines the logical node data for DT59PTOV3 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT59PTOV3.ST.Str.   general	Start (59DT-3 Picked   up)		STATUS_HANDLER
DT59PTOV3.ST.Str.   dirGeneral	Direction General		STATUS_HANDLER
DT59PTOV3.ST.Str.   PhsA	Start (59DT-3 Picked   up) Phase A		STATUS_HANDLER
DT59PTOV3.ST.Str.   PhsB	Start (59DT-3 Picked   up) Phase B		STATUS_HANDLER
DT59PTOV3.ST.Str.   PhsC	Start (59DT-3Picked   up) Phase C		STATUS_HANDLER
Operate (59DT-3   Operated)			
DT59PTOV3.ST.Op.   general	Sperate(59DT-3   Operated) Phase A		STATUS_HANDLER
DT59PTOV3.ST.Op.   PhsA	STATUS_HANDLER   DT59PTOV3.ST.Op.   PhsBOperate(59DT-3   Operated) Phase B		STANDLER
DT59PTOV3.ST.Op.   PhsC	Operate(59DT-3   Operated) Phase C		

## DT59PTOV4

This section defines the logical node data for DT59PTOV4 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT59PTOV4.ST.Str. general	Start (59DT-4 Picked up)		STATUS_HANDLER
DT59PTOV4.ST.Str. dirGeneral	Direction General		STATUS_HANDLER
DT59PTOV4.ST.Str. PhsA	Start (59DT-4 Picked up) Phase A		STATUS_HANDLER
DT59PTOV4.ST.Str. PhsB	Start (59DT-4 Picked up) Phase B		STATUS_HANDLER
DT59PTOV4.ST.Str. PhsC	Start (59DT-4 Picked up) Phase C		STATUS_HANDLER
DT59PTOV4.ST.Op. general	Operate (59DT-4 Operated)		STATUS_HANDLER
DT59PTOV4.ST.Op. PhsA	Operate(59DT-4 Operated) Phase A		STATUS_HANDLER
DT59PTOV4.ST.Op. PhsB	Operate(59DT-4 Operated) Phase B		STATUS_HANDLER
DT59PTOV4.ST.Op. PhsC	Operate(59DT-4 Operated) Phase C		STATUS_HANDLER

## DT59PTOV5

This section defines the logical node data for DT59PTOV5 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT59PTOV5.ST.Str.   general	Start (59DT-5 Picked   up)		STATUS_HANDLER
DT59PTOV5.ST.Str.   dirGeneral	Direction General		STATUS_HANDLER
DT59PTOV5.ST.Str.   PhsA	Start (59DT-5 Picked   up) Phase A		STATUS_HANDLER
DT59PTOV5.ST.Str.   PhsB	Start (59DT-5 Picked   up) Phase B		STATUS_HANDLER
DT59PTOV5.ST.Str.   PhsC	Start (59DT-5Picked   up) Phase C		STATUS_HANDLER
Operate (59DT-5   Operated)			
DT59PTOV5.ST.Op.   general	Sperate(59DT-5   Operated) Phase A		STATUS_HANDLER
DT59PTOV5.ST.Op.   PhsA	STATUS_HANDLER   DT59PTOV5.ST.Op.   PhsBOperate(59DT-5   Operated) Phase B		STATUS_HANDLER
DT59PTOV5.ST.Op.   PhsC	Operate(59DT-5   Operated) Phase C		

## DT59PTOV6

This section defines the logical node data for DT59PTOV6 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
DT59PTOV6.ST.Str.gen   eral	Start (59DT-6 Picked up)		STATUS_HANDL   ER
DT59PTOV6.ST.Str.dir   General	Direction General		STATUS_HANDL   ER
DT59PTOV6.ST.Str.Phs   A	Start (59DT-6 Picked up)   Phase A		STATUS_HANDL   ER
DT59PTOV6.ST.Str.Phs   B	Start (59DT-6 Picked up)   Phase B		STATUS_HANDL   ER
DT59PTOV6.ST.Str.Phs   C	Start (59DT-6 Picked up)   Phase C		STATUS_HANDL   ER
DT59PTOV6.ST.Op.gen   eral	Operate (59DT-6 Operated)		
DT59PTOV6.ST.Op.Phs   A	Operate(59DT-6 Operated)   Phase A		STATUS_HANDL   ER
DT59PTOV6.ST.Op.Phs   B	Operate(59DT-6 Operated)   Phase B		STATUS_HANDL   ER
DT59PTOV6.ST.Op.Phs   C	Operate(59DT-6 Operated)   Phase C		ERANDL

## IT59PTOV1

This section defines the logical node data for IT59PTOV1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source

## IT59PTOV2

This section defines the logical node data for IT59PTOV2 of the FPROProtection logical device.

Data Name	Description	$\begin{aligned} & \text { IEC61850 } \\ & \text { Index } \end{aligned}$	Source
IT59PTOV2.ST.Str.gene ral	Start (59IT-2 Picked up)		$\underset{E R}{\text { STATUS_HANDL }}$
IT59PTOV2.ST.Str.dirG eneral	Direction General		STATUS_HANDL ER
IT59PTOV2.ST.Str.Phs A	Start (59IT-2 Picked up) Phase A		$\underset{E R}{\text { STATUS_HANDL }}$
IT59PTOV2.ST.Str.Phs B	Start (59IT-2 Picked up) Phase B		$\underset{\text { ER }}{\text { STATUS_HANDL }}$
IT59PTOV2.ST.Str.Phs C	Start (59IT-2 Picked up) Phase C		$\begin{gathered} \hline \text { STATUS_HANDL } \\ \text { ER } \end{gathered}$
IT59PTOV2.ST.Op.gene ral	Operate (591T-2 Operated)		$\begin{gathered} \text { STATUS_HANDL } \\ \text { ER } \end{gathered}$
IT59PTOV2.ST.Op.Phs A	Operate(59IT-2 Operated)   Phase A		STATUS_HANDL ER
IT59PTOV2.ST.Op.Phs B	Operate(59IT-2 Operated) Phase B		$\underset{\text { ER }}{\text { STATUS_HANDL }}$
IT59PTOV2.ST.Op.Phs C	Operate(59IT-2 Operated) Phase C		STATUS_HANDL $E R$

## DT24PVPH1

This section defines the logical node data for DT24PVPH1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT24PVPH1.ST.Str.gener al	Start (24DT-1 Picked up)		STATUS_HANDLE R
DT24PVPH1.ST.Str.dirGe neral	Direction General		STATUS_HANDLE R
DT24PVPH1.ST.Str.PhsA	Start (24DT-1 Picked up)   Phase A		STATUS_HANDLE   R
DT24PVPH1.ST.Str.PhsB	Start (24DT-1 Picked up)   Phase B		STATUS_HANDLE R
DT24PVPH1.ST.Str.PhsC	Start (24DT-1 Picked up) Phase C		STATUS_HANDLE R
DT24PVPH1.ST.Op.gener al	Operate (24DT-1 Operated)		STATUS_HANDLE   R
DT24PVPH1.ST.Op.PhsA	Operate(24DT-1 Operated)   Phase A		STATUS_HANDLE R
DT24PVPH1.ST.Op.PhsB	Operate(24DT-1 Operated)   Phase B		STATUS_HANDLE   R
DT24PVPH1.ST.Op.PhsC	Operate(24DT-1 Operated)   Phase C		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$

## DT24PVPH2

This section defines the logical node data for DT24PVPH2 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source

## IT24PVPH1

This section defines the logical node data for IT24PVPH1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
IT24PVPH1.ST.Str.gene   ral	Start (24IT-1 Picked up)		STATUS_HANDL   ER
IT24PVPH1.ST.Str.dirG   eneral	Direction General		STATUS_HANDL   ER
IT24PVPH1.ST.Str.Phs   A	Start (24IT-1 Picked up)   Phase A		STATUS_HANDL   ER
IT24PVPH1.ST.Str.Phs   B	Start (24IT-1 Picked up)   Phase B		STATUS_HANDL   ER
IT24PVPH1.ST.Str.Phs   C	Start (24IT-1 Picked up)   Phase C		STATUS_HANDL   ER
IT24PVPH1.ST.Op.gene   ral	Operate (24IT-1 Operated)		STATUS_HANDL   ER
IT24PVPH1.ST.Op.Phs   A	Operate(24IT-1 Operated)   Phase A		STATUS_HANDL   ER
IT24PVPH1.ST.Op.Phs   B	Operate(24IT-1 Operated)   Phase B		STATUS_HANDL   ER
IT24PVPH1.ST.Op.Phs   C	Operate(24IT-1 Operated)   Phase C		STATUS_HANDL   ER

## DT47PTOV1

This section defines the logical node data for DT47PTOV1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
DT47PTOV1.ST.Str.gen   eral	Start (47DT-1 Picked up)		STATUS_HANDL   ER
DT47PTOV1.ST.Str.dir   General	Direction General		STATUS_HANDL   ER
DT47PTOV1.ST.Op.gen   eral	Operate (47DT-1 Operated)		STATUS_HANDL   ER

## DT47PTOV2

This section defines the logical node data for DT47PTOV2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT47PTOV2.ST.Str.gen   eral	Start (47DT-2 Picked   up)		STATUS_HAN   DLER
DT47PTOV2.ST.Str.dir   General	Direction General		STATUS_HAN   DLER
DT47PTOV2.ST.Op.gen   eral	Operate (47DT-2   Operated)	STATUS_HAN   DLER	

## IT47PTOV1

This section defines the logical node data for DT47PTOV1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
IT47PTOV1.ST.Str.gen   eral	Start (47IT-1 Picked up)		STATUS_HAND   LER
IT47PTOV1.ST.Str.dirG   eneral	Direction General		STATUS_HAND   LER
IT47PTOV1.ST.Op.gen   eral	Operate (47IT-1 Operated)		STATUS_HAND   LER

## DT59NPTOV1

This section defines the logical node data for DT59NPTOV1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT59NPTOV1.ST.Str.gen   eral	Start (59NDT-1 Picked   up)		STATUS_HAN   DLER
DT59NPTOV1.ST.Str.dirG   eneral	Direction General		STATUS_HAN   DLER
DT59PNTOV1.ST.Op.gen   eral	Operate (59NDT-1   Operated)		STATUS_HAN   DLER

## DT59NPTOV2

This section defines the logical node data for DT59NPTOV2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DT59NPTOV2.ST.Str.gen   eral	Start (59NDT-2 Picked   up)		STATUS_HAN   DLER
DT59NPTOV2.ST.Str.dirG   eneral	Direction General	STATUS_HAN   DLER	
DT59NPTOV2.ST.Op.gen   eral	Operate (59NDT-2   Operated)	STATUS_HAN   DLER	

## IT59NPTOV1

This section defines the logical node data for IT59NPTOV1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
IT59NPTOV1.ST.Str.gene   ral	Start (59NIT-1 Picked   up)		STATUS_HAND   LER
IT59NPTOV1.ST.Str.dirG   eneral	Direction General		STATUS_HAND   LER
IT59NPTOV1.ST.Op.gene   ral	Operate (59NIT-1   Operated)		STATUS_HAND   LER

## D37PTUC1

This section defines the logical node data for D37PTUC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D37PTUC1.ST.Str.gen   eral	Start (37-1 Picked up)		STATUS_HAN   DLER
D37PTUC1.ST.Str.phs   A	Start (37-1 Picked up)   Phase A		STATUS_HAN   DLER
D37PTUC1.ST.Str.phs   B	Start (37-1 Picked up)   Phase B		STATUS_HAN   DLER
D37PTUC1.ST.Str.phs   C	Start (37-1 Picked up)   Phase C		STATUS_HAN   DLER
D37PTUC1.ST.Op.gen   eral	Operate (37-1 Operated)		STATUS_HAN   DLER
D37PTUC1.ST.Op.phs   A	Operate (37-1 Operated)   Phase A		STATUS_HAN   DLER
D37PTUC1.ST.Op.phs   B	Operate (37-1 Operated)   Phase B		STATUS_HAN   DLER
D37PTUC1.ST.Op.phs   C	Operate (37-1 Operated)   Phase C		

## D37PTUC2

This section defines the logical node data for D37PTUC2 of the FPROProtection logicaldevice.

Data Name	Description	IEC61850 Index	Source
D37PTUC2.ST.Str.ge   neral	Start (37-2 Picked up)		STATUS_HAN   DLER
D37PTUC2.ST.Str.ph   sA	Start (37-2 Picked up)   Phase A		STATUS_HAN   DLER
D37PTUC2.ST.Str.ph   sB	Start (37-2 Picked up)   Phase B		STATUS_HAN   DLER
D37PTUC2.ST.Str.ph   sC	Start (37-2 Picked up)   Phase C		STATUS_HAN   DLER
D37PTUC2.ST.Op.ge   neral	Operate (37-2 Operated)		STATUS_HAN   DLER
D37PTUC2.ST.Op.ph   sA	Operate (37-2 Operated)   Phase A		STATUS_HAN   DLER
D37PTUC2.ST.Op.ph   sB	Operate (37-2 Operated)   Phase B		STATUS_HAN   DLER
D37PTUC2.ST.Op.ph   sC	Operate (37-2 Operated)   Phase C		

## D50PIOC1

This section defines the logical node data for D50PIOC1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D50PIOC1.ST.Str.gen   eral	Start (50-1 Picked up)		STATUS_HAN   DLER
D50PIOC1.ST.Str.dirG   eneral	Direction General		STATUS_HAN   DLER
D50PIOC1.ST.Str.phs   A	Start (50-1 Picked up)   Phase A		STATUS_HAN   DLER
D50PIOC1.ST.Str.dirP   hsA	Direction Phase A		STATUS_HAN   DLER
D50PIOC1.ST.Str.phs   B	Start (50-1 Picked up)   Phase B		STATUS_HAN   DLER
D50PIOC1.ST.Str.dirP   hsB	Direction Phase B		STATUS_HAN   DLER
D50PIOC1.ST.Str.phs   C	Start (50-1 Picked up)   Phase C	STATUS_HAN   DLER	
D50PIOC1.ST.Str.dirP   hsC	Direction Phase C		STATUS_HAN   DLER
D50PIOC1.ST.Op.gen   eral	Operate (50-1 Operated)		
D50PIOC1.ST.Op.phs   A	Operate (50-1 Operated)   Phase A		STATUS_HAN   DLER
D50PIOC1.ST.Op.phs   B	Operate (50-1 Operated)   Phase B		STATUS_HAN   DLER
D50PIOC1.ST.Op.phs   C	Operate (50-1 Operated)   Phase C		DLER

## D50PIOC2

This section defines the logical node data for D50PIOC2 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D50PIOC2.ST.Str.gen   eral	Start (50-2 Picked up)		STATUS_HAN   DLER
D50PIOC2.ST.Str.dir   General	Direction General	STATUS_HAN   DLER	
D50PIOC2.ST.Str.phs   A	Start (50-2 Picked up) Phase A		STATUS_HAN   DLER
D50PIOC2.ST.Str.dir   PhsA	Direction Phase A		STATUS_HAN   DLER
D50PIOC2.ST.Str.phs   B	Start (50-2 Picked up) Phase B		STATUS_HAN   DLER
D50PIOC2.ST.Str.dir   PhsB	Direction Phase B		STATUS_HAN   DLER
D50PIOC2.ST.Str.phs   C	Start (50-2 Picked up) Phase   C		STATUS_HAN   DLER
D50PIOC2.ST.Str.dir   PhsC	Direction Phase C		


D50PIOC2.ST.Op.ge   neral	Operate (50-2 Operated)		STATUS_HAN   DLER
D50PIOC2.ST.Op.phs   A	Operate (50-2 Operated)   Phase A		STATUS_HAN   DLER
D50PIOC2.ST.Op.phs   B	Operate (50-2 Operated)   Phase B		STATUS_HAN   DLER
D50PIOC2.ST.Op.phs   C	Operate (50-2 Operated)   Phase C		STATUS_HAN   DLER

## D51PTOC1

This section defines the logical node data for D51PTOC1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D51PTOC1.ST.Str.ge   neral	Start (51-1 Picked up)		STATUS_HAN   DLER
D51PTOC1.ST.Str.dir   General	Direction General		STATUS_HAN   DLER
D51PTOC1.ST.Str.ph   sA	Start (51-1 Picked up) Phase   A		STATUS_HAN   DLER
D51PIOC1.ST.Str.dir   PhsA	Direction Phase A		STATUS_HAN   DLER
D51PTOC1.ST.Str.ph   sB	Start (51-1 Picked up) Phase   B		STATUS_HAN   DLER
D51PIOC1.ST.Str.dir   PhsB	Direction Phase B		STATUS_HAN   DLER
D51PTOC1.ST.Str.ph   sC	Start (51-1 Picked up) Phase   C		STATUS_HAN   DLER
D51PIOC1.ST.Str.dir   PhsC	Direction Phase C		STATUS_HAN   DLER
D51PTOC1.ST.Op.ge   neral	Operate (51-1 Operated)   DLER		
D51PTOC1.ST.Op.ph   sA	Operate (51-1 Operated)   Phase A		STATUS_HAN   DLER
D51PTOC1.ST.Op.ph   sB	Operate (51-1 Operated)   Phase B		STATUS_HAN   DLER
D51PTOC1.ST.Op.ph   sC	Operate (51-1 Operated)   Phase C		STATUS_HAN   DLER

## D51PTOC2

This section defines the logical node data for D51PTOC2 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D51PTOC2.ST.Str.ge   neral	Start (51-2 Picked up)		STATUS_HAN   DLER
D51PTOC2.ST.Str.dir   General	Direction General		STATUS_HAN   DLER


D51PTOC2.ST.Str.ph   sA	Start (51-2 Picked up) Phase A		STATUS_HAN   DLER
D51PTOC2.ST.Str.dir   PhsA	Direction Phase A		STATUS_HAN   DLER
D51PTOC2.ST.Str.ph   sB	Start (51-2 Picked up) Phase B		STATUS_HAN   DLER
D51PTOC2.ST.Str.dir   PhsB	Direction Phase B	STATUS_HAN   DLER	
D51PTOC2.ST.Str.ph   sC	Start (51-2 Picked up) Phase C		STATUS_HAN   DLER
D51PTOC2.ST.Str.dir   PhsC	Direction Phase C	STATUS_HAN   DLER	
D51PTOC2.ST.Op.ge   neral	Operate (51-2 Operated)   DTATUS_HAN   DLER		
D51PTOC2.ST.Op.ph   sA	Operate (51-2 Operated)   Phase A		STATUS_HAN   DLER
D51PTOC2.ST.Op.ph   sB	Operate (51-2 Operated)   Phase B	STATUS_HAN   DLER	
D51PTOC2.ST.Op.ph   sC	Operate (51-2 Operated)   Phase C		STATUS_HAN   DLER

## D50NPIOC1

This section defines the logical node data for D50NPIOC1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D50NPIOC1.ST.Str.ge   neral	Start (50N-1 Picked up)		STATUS_HANDL   ER
D50NPIOC1.ST.Str.dir   General	Direction General		STATUS_HANDL   ER
D50NPIOC1.ST.Op.ge			
neral	Operate (50N-1 Operated)		STATUS_HANDL   ER

## D50NPIOC2

This section defines the logical node data for D50NPIOC2 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source		
D50NPIOC2.ST.Str.ge   neral	Start (50N-2 Picked up)		STATUS_HAN   DLER		
D50NPIOC2.ST.Str.dir   General	Direction General		STATUS_HAN   DLER		
D50NPIOC2.ST.Op.ge					
neral				Operate (50N-2 Operated) $\quad$	STATUS_HAN
:---:					
DLER					

## D51NPTOC1

This section defines the logical node data for D51NPTOC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D51NPTOC1.ST.Str.ge   neral	Start (51N-1 Picked up)		STATUS_HA   NDLER
D51NPTOC1.ST.Str.dir   General	Direction General		STATUS_HA   NDLER
D51NPTOC1.ST.Op.ge   neral   Operate (51N-1 Operated)		STATUS_HA   NDLER	

## D51NPTOC2

This section defines the logical node data for D51NPTOC2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D51NPTOC2.ST.Str.ge   neral	Start (51N-2 Picked up)		STATUS_HAND   LER
D51NPTOC2.ST.Str.dir   General	Direction General		STATUS_HAND   LER
D51NPTOC2.ST.Op.ge   neral	Operate (51N-2   Operated)		STATUS_HAND   LER

## D50GPIOC1

This section defines the logical node data for D50GPIOC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D50GPIOC1.ST.Str.gen   eral	Start (50G-1 Picked up)		STATUS_HAND   LER
D50GPIOC1.ST.Str.dirG   eneral	Direction General		STATUS_HAND   LER
D50GPIOC1.ST.Op.gen   eral	Operate (50G-1   Operated)		STATUS_HAND   LER

## D50GPIOC2

This section defines the logical node data for D50GPIOC2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D50GPIOC2.ST.Str.gen   eral	Start (50G-2 Picked up)		STATUS_HAND   LER
D50GPIOC2.ST.Str.dirG   eneral	Direction General		STATUS_HAND   LER
D50GPIOC2.ST.Op.gen   eral	Operate (50G-2   Operated)		STATUS_HAND   LER

## D51GPTOC1

This section defines the logical node data for D51GPTOC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D51GPTOC1.ST.Str.ge   neral	Start (51G-1 Picked   up)		STATUS_HAND   LER
D51GPTOC1.ST.Str.dir   General	Direction General		STATUS_HAND   LER
D51GPTOC1.ST.Op.ge   neral	Operate (51G-1   Operated)		STATUS_HAND   LER

## D51GPTOC2

This section defines the logical node data for D51GPTOC2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D51GPTOC2.ST.Str.ge   neral	Start (51G-2 Picked   up)		STATUS_HAND   LER
D51GPTOC2.ST.Str.dir   General	Direction General		STATUS_HAND   LER
D51GPTOC2.ST.Op.ge   neral	Operate (51G-2   Operated)		STATUS_HAND   LER

## D4650PIOC1

This section defines the logical node data for D4650PIOC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D4650PIOC1.ST.Str.g   eneral	Start (46-50 Picked up)		STATUS_HANDL   ER
D4650PIOC1.ST.Op.g   eneral	Operate (46-50   Operated)		STATUS_HANDL   ER

## D4651PTOC1

This section defines the logical node data for D4651PTOC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D4651PTOC1.ST.Str.   general	Start (46-51 Picked up)		STATUS_HAND   LER
D4651PTOC1.ST.Op.   general	Operate (46-51   Operated)		STATUS_HAND   LER

## D50RPIOC1

This section defines the logical node data for D50RPIOC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D50RPIOC1.ST.Str.gen   eral	Start (50R Picked up)		STATUS_HANDL   ER
D50RPIOC1.ST.Str.dirG   eneral	Direction General		STATUS_HANDL   ER
D50RPIOC1.ST.Op.gen   eral	Operate (50R   Operated)		STATUS_HANDL   ER

## D50RPIOC2

This section defines the logical node data for D50RPIOC2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D50RPIOC2.ST.Str.gen   eral	Start (51R Picked up)		STATUS_HANDL   ER
D50RPIOC2.ST.Str.dirG   eneral	Direction General		STATUS_HANDL   ER
D50RPIOC2.ST.Op.gen   eral	Operate (51R   Operated)		STATUS_HANDL   ER

## D51RPTOC1

This section defines the logical node data for D51RPTOC1 of the FPROProtection logical device

Data Name	Description	IEC61850 Index	Source
D51RPTOC1.ST.Str.gen   eral	Start (51R Picked up)		STATUS_HANDL   ER
D51RPTOC1.ST.Str.dirG   eneral	Direction General		STATUS_HANDL   ER
D51RPTOC1.ST.Op.gen   eral	Operate (51R   Operated)		STATUS_HANDL   ER

## D51RPTOC2

This section defines the logical node data for D51RPTOC2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D51RPTOC2.ST.Str.gen   eral	Start (51R Picked up)		STATUS_HANDL   ER
D51RPTOC2.ST.Str.dir   General	Direction General		STATUS_HANDL   ER
D51RPTOC2.ST.Op.ge   neral	Operate (51R Operated)		STATUS_HANDL   ER

## D49PTTR1

This section defines the logical node data for D49PTTR1 of the FPROProtection logical device.

Data Name	Description	$\begin{aligned} & \text { IEC61850 } \\ & \text { Index } \end{aligned}$	Source
D49PTTR1.MX.Tmp.mag .f	$\begin{gathered} 49 \text { Temperature ( \% } \\ \text { Thermal OL) } \end{gathered}$		METER
D49PTTR1.ST.Str.gener al	Start (49 Picked up)		STATUS_HAN DLER
D49PTTR1.ST.Str.phsA	Start (49 Picked up) Phase A		STATUS_HAN DLER
D49PTTR1.ST.Str.phsB	Start (49 Picked up) Phase B		$\begin{aligned} & \hline \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
D49PTTR1.ST.Str.phsC	Start (49 Picked up) Phase C		STATUS_HAN DLER
D49PTTR1.ST.AImThm. general	Alarm (49 AL Operated)		STATUS_HAN DLER
D49PTTR1.ST.Op.gener al	Operate (49 Operated)		STATUS_HAN DLER
D49PTTR1.ST.Op.phsA	Operate (49 Operated) Phase A		STATUS_HAN DLER
D49PTTR1.ST.Op.phsB	Operate (49 Operated) Phase B		STATUS_HAN DLER
D49PTTR1.ST.Op.phsC	Operate (49 Operated) Phase C		STATUS_HAN DLER

## D81H2PHAR1

This section defines the logical node data for D81H2PHAR1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D81H2PHAR1.ST.Str.g   eneral	Operate (81HBL2   Operated)		STATUS_HAN   DLER

## D81UPTUF1

This section defines the logical node data for D81UPTUF1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81UPTUF1.ST.Str.gener   al	Start (81UF-1 Picked   up)		STATUS_HAND   LER


D81UPTUF1.ST.Str.dirGe   neral	Direction General		STATUS_HAND   LER
D81UPTUF1.ST.Op.gener   al	Operate (81UF-1   Operated)		STATUS_HAND   LER

## D81UPTUF2

This section defines the logical node data for D81UPTUF2 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81UPTUF2.ST.Str.gener   al	Start (81UF-1 Picked   up)		STATUS_HAND   LER
D81UPTUF2.ST.Str.dirGe   neral	Direction General		STATUS_HAND   LER
D81UPTUF2.ST.Op.gener   al	Operate (81UF-1   Operated)		STATUS_HAND   LER

## D81UPTUF3

This section defines the logical node data for D81UPTUF3 of the FPROProtection logical device.

Data Name	Description	$\begin{array}{c}\text { IEC61850 } \\ \text { Index }\end{array}$	Source
$\begin{array}{l}\text { D81UPTUF3.ST.Str.gener } \\ \text { al }\end{array}$	Start (81UF-1 Picked up)		$\begin{array}{c}\text { STATUS_HAN } \\ \text { DLER }\end{array}$
$\begin{array}{l}\text { D81UPTUF3.ST.Str.dirGe } \\ \text { neral }\end{array}$	Direction General		$\begin{array}{c}\text { STATUS_HAN } \\ \text { DLER }\end{array}$
$\begin{array}{l}\text { D81UPTUF3.ST.Op.gener } \\ \text { al }\end{array}$			

Operated)\end{array} \quad \begin{array}{c}STATUS_HAN <br>

DLER\end{array}\right]\)|  |
| :--- |

## D81UPTUF4

This section defines the logical node data for D81UPTUF4 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81UPTUF4.ST.Str.gener   al	Start (81UF-1 Picked up)		STATUS_HAN   DLER
D81UPTUF4.ST.Str.dirGe   neral	Direction General		STATUS_HAN   DLER
D81UPTUF4.ST.Op.gener   al			

## D81UPTUF5

This section defines the logical node data for D81UPTUF5 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81UPTUF5.ST.Str.gener   al	Start (81UF-1 Picked up)		STATUS_HAN   DLER
D81UPTUF5.ST.Str.dirGe   neral	Direction General		STATUS_HAN   DLER
D81UPTUF5.ST.Op.gener   al	Operate (81UF-1   Operated)		STATUS_HAN   DLER

## D81UPTUF6

This section defines the logical node data for D81UPTUF6 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81UPTUF6.ST.Str.gener   al	Start (81UF-1 Picked up)		STATUS_HAN   DLER
D81UPTUF6.ST.Str.dirGe   neral	Direction General		STATUS_HAN   DLER
D81UPTUF6.ST.Op.gener   al	Operate (81UF-1   Operated)		STATUS_HAN   DLER

## D81UPTUF7

This section defines the logical node data for D81UPTUF7 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81UPTUF7.ST.Str.gener   al	Start (81UF-1 Picked up)		STATUS_HAN   DLER
D81UPTUF7.ST.Str.dirGe   neral	Direction General		STATUS_HAN   DLER
D81UPTUF7.ST.Op.gener   al	Operate (81UF-1   Operated)		STATUS_HAN   DLER

## D81UPTUF8

This section defines the logical node data for D81UPTUF8 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81UPTUF8.ST.Str.gener   al	Start (81UF-1 Picked up)		STATUS_HAN   DLER
D81UPTUF8.ST.Str.dirGe   neral	Direction General		STATUS_HAN   DLER
D81UPTUF8.ST.Op.gener   al			Operate (81UF-1   Operated)

## D81OPTOF1

This section defines the logical node data for D81OPTOF1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81OPTOF1.ST.Str.gene   ral	Start (81OF-1 Picked up)		STATUS_HAND   LER
D81OPTOF1.ST.Str.dirGe   neral	Direction General	STATUS_HAND   LER	
D81OPTOF1.ST.Op.gene   ral			

## D81OPTOF2

This section defines the logical node data for D81OPTOF2 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81OPTOF2.ST.Str.gene   ral	Start (81OF-2 Picked up)		STATUS_HAND   LER
D81OPTOF2.ST.Str.dirGe   neral	Direction General		STATUS_HAND   LER
D81OPTOF2.ST.Op.gene   ral	Operate (81OF-2   Operated)		STATUS_HAND   LER

## D81OPTOF3

This section defines the logical node data for D81OPTOF3 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81OPTOF3.ST.Str.gene   ral	Start (81OF-3 Picked   up)		STATUS_HAND   LER
D81OPTOF3.ST.Str.dirGe   neral	Direction General	STATUS_HAND   LER	
D81OPTOF3.ST.Op.gene   ral			
Operate (81OF-3   Operated)		STATUS_HAND   LER	

## D81OPTOF4

This section defines the logical node data for D81OPTOF4 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81OPTOF4.ST.Str.gene   ral	Start (81OF-4 Picked   up)		STATUS_HAND   LER
D81OPTOF4.ST.Str.dirGe   neral	Direction General	STATUS_HAND   LER	
D81OPTOF4.ST.Op.gene   ral			

## D810PTOF5

This section defines the logical node data for D81OPTOF5 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81OPTOF5.ST.Str.gene   ral	Start (81OF-5 Picked   up)		STATUS_HAND   LER
D81OPTOF5.ST.Str.dirGe   neral	Direction General		STATUS_HAND   LER
D81OPTOF5.ST.Op.gene	Operate (81OF-5   Operated)	STATUS_HAND   Lal	

## D81OPTOF6

This section defines the logical node data for D81OPTOF6 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81OPTOF6.ST.Str.gene   ral	Start (81OF-6 Picked   up)		STATUS_HAND   LER
D81OPTOF6.ST.Str.dirGe   neral	Direction General	STATUS_HAND   LER	
D81OPTOF6.ST.Op.gene   ral	Operate (81OF-6   Operated)		STATUS_HAND   LER

## D810PTOF7

This section defines the logical node data for D81OPTOF7 of the FPROProtection logical device.

Data Name	Description	$\begin{array}{c}\text { IEC61850 } \\ \text { Index }\end{array}$	Source
$\begin{array}{l}\text { D81OPTOF7.ST.Str.gene } \\ \text { ral }\end{array}$	$\begin{array}{c}\text { Start (81OF-7 Picked } \\ \text { up) }\end{array}$		$\begin{array}{c}\text { STATUS_HAND } \\ \text { LER }\end{array}$
$\begin{array}{l}\text { D81OPTOF7.ST.Str.dirGe } \\ \text { neral }\end{array}$	Direction General		$\begin{array}{c}\text { STATUS_HAND } \\ \text { LER }\end{array}$
$\begin{array}{l}\text { D81OPTOF7.ST.Op.gene } \\ \text { ral }\end{array}$			

Operated)\end{array} \quad \begin{array}{c}STATUS_HAND <br>

LER\end{array}\right]\)|  |
| :--- |

## D810PTOF8

This section defines the logical node data for D81OPTOF8 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81OPTOF8.ST.Str.gene   ral	Start (81OF-8 Picked   up)		STATUS_HAND   LER
D81OPTOF8.ST.Str.dirGe   neral	Direction General		STATUS_HAND   LER
D81OPTOF8.ST.Op.gene   ral	Operate (81OF-8   Operated)		STATUS_HAND   LER

## D81RPFRC1

This section defines the logical node data for D81RPFRC1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81RPFRC1.ST.Str.gene   ral	Start (81ROCOF-1   Picked up)		STATUS_HAND   LER
D81RPFRC1.ST.Str.dirGe   neral	Direction General		STATUS_HAND   LER
D81RPFRC1.ST.Op.gene   ral			
Operate (81 ROCOF-1   Operated)	STATUS_HAND   LER		

## D81RPFRC2

This section defines the logical node data for D81RPFRC2 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81RPFRC2.ST.Str.gene   ral	Start (81ROCOF-2   Picked up)		STATUS_HAND   LER
D81RPFRC2.ST.Str.dirGe   neral	Direction General		STATUS_HAND   LER
D81RPFRC2.ST.Op.gene   ral	Operate (81 ROCOF-2   Operated)	STATUS_HAND   LER	

## D81RPFRC3

This section defines the logical node data for D81RPFRC3 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81RPFRC3.ST.Str.gene   ral	Start (81ROCOF-3 Picked   up)		STATUS_HAN   DLER
D81RPFRC3.ST.Str.dirGe   neral	Direction General		STATUS_HAN   DLER
D81RPFRC3.ST.Op.gene   ral	Operate (81ROCOF-3   Operated)		STATUS_HAN   DLER

## D81RPFRC4

This section defines the logical node data for D81RPFRC4 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
D81RPFRC4.ST.Str.gene   ral	Start (81ROCOF-4 Picked   up)		STATUS_HAN   DLER
D81RPFRC4.ST.Str.dirGe   neral	Direction General		STATUS_HAN   DLER
D81RPFRC4.ST.Op.gene   ral	Operate (81ROCOF-4   Operated)	STATUS_HAN   DLER	

## D32PDUP1

This section defines the logical node data for D32PDUP1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D32PDUP1.ST.Str.gen   eral	Start (32-1 Picked up)		STATUS_HAN   DLER
D32PDUP1.ST.Str.phs   A	Start (32-1 Picked up) Phase   A		TATUS_HAN   DLER
D32PDUP1.ST.Str.phs   B	Start (32-1 Picked up) Phase   B		STATUS_HAN   DLER
D32PDUP1.ST.Str.phs   C	Start (32-1 Picked up) Phase   C		STATUS_HAN   DLER
D32PDUP1.ST.Op.gen   eral	Operate (32-1 Operated)		STATUS_HAN   DLER
D32PDUP1.ST.Op.phs   A	Operate (32-1 Operated)   Phase A		STATUS_HAN   DLER
D32PDUP1.ST.Op.phs   B	Operate (32-1 Operated)   Phase B		STATUS_HAN   DLER
D32PDUP1.ST.Op.phs   C	Operate (32-1 Operated)   Phase C		STATUS_HAN   DLER

## D32PDUP2

This section defines the logical node data for D32PDUP2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D32PDUP2.ST.Str.gen   eral	Start (32-2 Picked up)		STATUS_HAN   DLER
D32PDUP2.ST.Str.phs   A	Start (32-2 Picked up)   Phase A		STATUS_HAN   DLER
D32PDUP2.ST.Str.phs   B	Start (32-2 Picked up)   Phase B		STATUS_HAN   DLER


D32PDUP2.ST.Str.phs   C	Start (32-2 Picked up)   Phase C		STATUS_HAN   DLER
D32PDUP2.ST.Op.gen   eral	Operate (32-2 Operated)		STATUS_HAN   DLER
D32PDUP2.ST.Op.phs   A	Operate (32-2 Operated)   Phase A		STATUS_HAN   DLER
D32PDUP2.ST.Op.phs   B	Operate (32-2 Operated)   Phase B		STATUS_HAN   DLER
D32PDUP2.ST.Op.phs   C	Operate (32-2 Operated)   Phase C		STATUS_HAN   DLER

## D32PDUP3

This section defines the logical node data for D32PDUP3 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D32PDUP3.ST.Str.gen   eral	Start (32-3 Picked up)		STATUS_HAN   DLER
D32PDUP3.ST.Str.phs   A	Start (32-3 Picked up)   Phase A		STATUS_HAN   DLER
D32PDUP3.ST.Str.phs   B	Start (32-3 Picked up)   Phase B		STATUS_HAN   DLER
D32PDUP3.ST.Str.phs   C	Start (32-3 Picked up)   Phase C		STATUS_HAN   DLER
D32PDUP3.ST.Op.gen   eral	Operate (32-3 Operated)		STATUS_HAN   DLER
D32PDUP3.ST.Op.phs   A	Operate (32-3 Operated)   Phase A		STATUS_HAN   DLER
D32PDUP3.ST.Op.phs   B	Operate (32-3 Operated)   Phase B		STATUS_HAN   DLER
D32PDUP3.ST.Op.phs   C	Operate (32-3 Operated)   Phase C		STATUS_HAN   DLER

## D32PDUP4

This section defines the logical node data for D32PDUP4 of the FPROProtection logical device.
$\left.\begin{array}{|c|c|c|c|}\hline \text { Data Name } & \text { Description } & \text { IEC61850 Index } & \text { Source } \\ \hline \begin{array}{c}\text { D32PDUP4.ST.Str.gene } \\ \text { ral }\end{array} & \text { Start (32-4 Picked up) } & & \begin{array}{c}\text { STATUS_HAN } \\ \text { DLER }\end{array} \\ \hline \begin{array}{c}\text { D32PDUP4.ST.Str.phs } \\ \text { A }\end{array} & \begin{array}{c}\text { Start (32-4 Picked up) } \\ \text { Phase A }\end{array} & & \begin{array}{c}\text { STATUS_HAN } \\ \text { DLER }\end{array} \\ \hline \begin{array}{c}\text { D32PDUP4.ST.Str.phs } \\ \text { B }\end{array} & \begin{array}{c}\text { Start (32-4 Picked up) } \\ \text { Phase B }\end{array} & & \begin{array}{c}\text { STATUS_HAN } \\ \text { DLER }\end{array} \\ \hline \begin{array}{c}\text { D32PDUP4.ST.Str.phs } \\ \text { C }\end{array} & \begin{array}{c}\text { Start (32-4 Picked up) } \\ \text { Phase C }\end{array} & & \begin{array}{c}\text { STATUS_HAN } \\ \text { DLER }\end{array} \\ \hline \begin{array}{c}\text { D32PDUP4.ST.Op.gen } \\ \text { eral }\end{array} & \begin{array}{c}\text { Operate (32-4 Operated) }\end{array} & & \begin{array}{c}\text { STATUS_HAN } \\ \text { DLER }\end{array} \\ \hline \begin{array}{c}\text { D32PDUP4.ST.Op.phs } \\ \text { A }\end{array} & \begin{array}{c}\text { Operate (32-4 Operated) } \\ \text { Phase A }\end{array} & & \text { STATUS_HAN } \\ \text { DLER }\end{array}\right]$

D32PDUP4.ST.Op.phs   B	Operate (32-4 Operated)   Phase B		STATUS_HAN   DLER
D32PDUP4.ST.Op.phs	Operate (32-4 Operated)		STATUS_HAN
C	Phase C		DLER

## D32PDOP1

This section defines the logical node data for D32PDOP1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D32PDOP1.ST.Str.g   eneral	Start (32-1 Picked up)		STATUS_HAN   DLER
D32PDOP1.ST.Str.p   hsA	Start (32-1 Picked up) Phase   A		STATUS_HAN   DLER
D32PDOP1.ST.Str.p   hsB	Start (32-1 Picked up) Phase   B		STATUS_HAN   DLER
D32PDOP1.ST.Str.p   hsC	Start (32-1 Picked up) Phase   C		STATUS_HAN   DLER
D32PDOP1.ST.Op.g   eneral	Operate (32-1 Operated)   DTAR		
D32PDOP1.ST.Op.p   hsA	Operate (32-1 Operated)   Phase A		STATUS_HAN   DLER
D32PDOP1.ST.Op.p   hsB	Operate (32-1 Operated)   Phase B		STATUS_HAN   DLER
D32PDOP1.ST.Op.p   hsC	Operate (32-1 Operated)   Phase C		

## D32PDOP2

This section defines the logical node data for D32PDOP2 of the FPROProtection logical device.
\(\left.\left.$$
\begin{array}{|c|c|c|c|}\hline \text { Data Name } & \text { Description } & \text { IEC61850 Index } & \text { Source } \\
\hline \begin{array}{c}\text { D32PDOP2.ST.Str.gen } \\
\text { eral }\end{array} & \text { Start (32-2 Picked up) } & & \begin{array}{c}\text { STATUS_HAN } \\
\text { DLER }\end{array} \\
\hline \begin{array}{c}\text { D32PDOP2.ST.Str.phs } \\
\text { A }\end{array} & \begin{array}{c}\text { Start (32-2 Picked up) } \\
\text { Phase A }\end{array} & & \begin{array}{c}\text { STATUS_HAN } \\
\text { DLER }\end{array} \\
\hline \begin{array}{c}\text { D32PDOP2.ST.Str.phs } \\
\text { B }\end{array} & \begin{array}{c}\text { Start (32-2 Picked up) } \\
\text { Phase B }\end{array} & & \begin{array}{c}\text { STATUS_HAN } \\
\text { DLER }\end{array} \\
\hline \begin{array}{c}\text { D32PDOP2.ST.Str.phs } \\
\text { C }\end{array} & \begin{array}{c}\text { Start (32-2 Picked up) } \\
\text { Phase C }\end{array} & & \begin{array}{c}\text { STATUS_HAN } \\
\text { DLER }\end{array} \\
\hline \begin{array}{c}\text { D32PDOP2.ST.Op.ge } \\
\text { neral }\end{array} & \begin{array}{c}\text { Operate (32-2 Operated) }\end{array} & & \begin{array}{c}\text { STATUS_HAN } \\
\text { DLER }\end{array} \\
\hline \begin{array}{c}\text { D32PDOP2.ST.Op.phs } \\
\text { A }\end{array} & \begin{array}{c}\text { Operate (32-2 Operated) } \\
\text { Phase A }\end{array} & & \text { DTER }\end{array}
$$\right] \begin{array}{c}STATUS_HAN <br>

DLER\end{array}\right]\)| D32PDOP2.ST.Op.phs | Operate (32-2 Operated) <br> Phase B |  |
| :---: | :---: | :---: |
| D32PDOP2.ST.Op.phs <br> C | Operate (32-2 Operated) <br> Phase C |  |

## D32PDOP3

This section defines the logical node data for D32PDOP3 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D32PDOP3.ST.Str.g   eneral	Start (32-3 Picked up)		STATUS_HAND   LER
D32PDOP3.ST.Str.p   hsA	Start (32-3 Picked up)   Phase A	STATUS_   HANDLER	
D32PDOP3.ST.Str.p   hsB	Start (32-3 Picked up)   Phase B	STATUS_HAND   LER	
D32PDOP3.ST.Str.p   hsC	Start (32-3 Picked up)   Phase C		STATUS_HAND   LER
D32PDOP3.ST.Op.g   eneral	Operate (32-3 Operated)		STATUS_HAND   LER
D32PDOP3.ST.Op.p   hsA	Operate (32-3 Operated)   Phase A		STATUS_HAND   LER
D32PDOP3.ST.Op.p   hsB	Operate (32-3 Operated)   Phase B		
D32PDOP3.ST.Op.p   hsC	Operate (32-3 Operated)   Phase C		

## D32PDOP4

This section defines the logical node data for D32PDOP4 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D32PDOP4.ST.Str.g   eneral	Start (32-4 Picked up)		STATUS_HAN   DLER
D32PDOP4.ST.Str.p   hsA	Start (32-4 Picked up)   Phase A		STATUS_HAN   DLER
D32PDOP4.ST.Str.p   hsB	Start (32-4 Picked up)   Phase B		STATUS_HAN   DLER
D32PDOP4.ST.Str.p   hsC	Start (32-4 Picked up)   Phase C		STATUS_HAN   DLER
D32PDOP4.ST.Op.g   eneral	Operate (32-4 Operated)		STATUS_HAN   DLER
D32PDOP4.ST.Op.p   hsA	Operate (32-4 Operated)   Phase A		STATUS_HAN   DLER
D32PDOP4.ST.Op.p   hsB	Operate (32-4 Operated)   Phase B		STATUS_HAN   DLER
D32PDOP4.ST.Op.p   hsC	Operate (32-4 Operated)   Phase C		

## D50BFRBRF1

This section defines the logical node data for D50BFRBRF1 of the FPROProtection logical device.

Data Name	Description	$\begin{aligned} & \text { IEC61850 } \\ & \text { Index } \end{aligned}$	Source
D50BFRBRF1.ST.Opln. general	Operate (50BF D1 Operated)		$\begin{aligned} & \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
D50BFRBRRF1.ST.OpIn. phsA	Operate (50BF D1 Phase A Operated)		$\begin{aligned} & \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
D50BFRBRRF1.ST.OpIn. phsB	Operate (50BF D1 Phase B Operated)		STATUS_HAN DLER
D50BFRBRRF1.ST.OpIn. phsC	Operate (50BF D1 Phase C Operated)		$\begin{aligned} & \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
D50BFRBRF1.ST.OpEx. general	Operate (50BF D2 Operated)		STATUS_HAN DLER
D50BFRBRF1.ST.OpEx. phsA	Operate (50BF D2 Phase A Operated)		$\begin{aligned} & \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
D50BFRBRF1.ST.OpEx. phsB	Operate (50BF D2 Phase B Operated)		$\begin{aligned} & \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
D50BFRBRF1.ST.OpEx. phsC	Operate (50BF D2 Phase C Operated)		$\begin{aligned} & \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$

## DICBFRBRF2

This section defines the logical node data for DDICBFRBRF2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
DDICBFRBRF2.ST.OpIn   .general	Operate (CBF D1   Operated)		STATUS_HA   NDLER
DDICBFRBRF2.ST.OpE   x.general	Operate (CBF D2   Operated)		STATUS_HA   NDLER

## D46BCPTOC3

This section defines the logical node data for D46BCPTOC3 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D46BCPTOC3.ST.Op.g   eneral	Operate (46BC   Operated)		STATUS_HAND   LER

## D60PTSPTOV7

This section defines the logical node data for D60PTSPTOV7 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D60PTSPTOV7.ST.Op.   general	Operate (60PTS   Operated)		STATUS_HANDL   ER

## D60CTSPTOC4

This section defines the logical node data for D60CTSPTOC4 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D60CTSPTOC4.ST.Op.   general	Operate (60CTS   Operated)		STATUS_HANDL   ER

## 74TCSRTCS1

This section defines the logical node data for 74TCSRTCS1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
74TCSRTCS1.ST.Op.	Operate (74TCSRTCS-1		STATUS_HAN   general
Operated)		DLER	

## 74TCSRTCS2

This section defines the logical node data for 74TCSRTCS2 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
74TCSRTCS2.ST.Op.   general	Operate (74TCSRTCS-2   Operated)		STATUS_HAN   DLER

## I2TRCBC1

This section defines the logical node data for I2TRCBC1 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source
I2TRCBC1.MX.I2TAcc.   mag.f	I2T Accumulated	METER	
I2TRCBC1.MX.I2TLstO   p.mag.f	I2T Value - (Last   Operation)	METER	
I2TRCBC1.ST.Op.gener   al	Operate (I2T Operated)		STATUS_HAN   DLER

## THDRTHD1

This section defines the logical node data for THDRTHD1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
THDRTHD1.ST.Str.gen eral	Start (THD-1 Picked up)		$\underset{\text { ER }}{\text { STATUS_HANDL }}$
THDRTHD1.ST.Str.dirG eneral	Direction General		$\underset{\text { ER }}{\substack{\text { STATUS_HANDL } \\ \text { ER }}}$
THDRTHD1.ST.Str.Phs A	Start (THD-1 Picked up) Phase A		STATUS_HANDL ER
THDRTHD1.ST.Str.Phs B	Start (THD-1 Picked up) Phase B		$\begin{gathered} \hline \text { STATUS_HANDL } \\ E R \end{gathered}$
THDRTHD1.ST.Str.Phs C	Start (THD-1 Picked up) Phase C		$\begin{gathered} \text { STATUS_HANDL } \\ \text { ER } \end{gathered}$
THDRTHD1.ST.Op.gen eral	Operate (THD-1 Operated)		$\underset{E R}{\text { STATUS_HANDL }}$
THDRTHD1.ST.Op.Phs A	Operate(THD-1 Operated) Phase A		$\underset{E R}{\text { STATUS_HANDL }}$
THDRTHD1.ST.Op.Phs B	Operate(THD-1 Operated)   Phase B		STATUS_HANDL ER
THDRTHD1.ST.Op.Phs C	Operate(THD-1 Operated) Phase C		$\underset{E R}{\text { STATUS_HANDL }}$

## THDRTHD2

This section defines the logical node data for THDRTHD2 of the FPROProtection logical device.

Data Name	Description	IEC61850   Index	Source

## UVCRUVC1

This section defines the logical node data for UVCRUVC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
UVCRUVC1.ST.Op.gen   eral	Operate (Under Voltage   Counter exceeded)		STATUS_HAN   DLER
UVCRUVC1.MX.UVCAc   c.mag.f			

## OVCROVC1

This section defines the logical node data for OVCROVC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
OVCROVC1.ST.Op.gen   eral	Operate (Under Voltage   Counter exceeded)		STATUS_HAN   DLER
OVCROVC1.MX.OVCA   cc.mag.f			

## UFCRUFC1

This section defines the logical node data for UFCRUFC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
UFCRUFC1.ST.Op.gen   eral	Operate (Under Frequency   Counter exceeded)		STATUS_HAN   DLER
UFCRUFC1.MX.UFCAc   c.mag.f			

## OFCROFC1

This section defines the logical node data for OFCROFC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
OFCROFC1.ST.Op.gen   eral	Operate (Over Frequency   Counter exceeded)		STATUS_HAN   DLER
OFCROFC1.MX.OFCAc   c.mag.f			

## EICREIC1

This section defines the logical node data for EICREIC1 of the FPROProtection logical device

Data Name	Description	IEC61850 Index	Source
EICREIC1.ST.Op.gener   al	Operate (External Input   Counter exceeded)		STATUS_HAN   DLER
EICREIC1.MX.OFCAcc.   mag.f			

## D79RREC1

This section defines the logical node data for D79RREC1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D79RREC1.ST.OpCls.ge   neral	AR Operation (79   Operated)		STATUS_HAN   DLER
D79RREC1.ST.AutoRec   St.stVal	AR Multiple Operation		STATUS_HAN   DLER

## D79GGIO1

This section defines the logical node data for D79GGIO1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
D79GGIO1.ST.CntRs1.a   ctVal	79 Cumulative Count   Operated		STATUS_HAN   DLER
D79GGIO1.ST.Ind1.stVal	79 Block Status		STATUS_HAN   DLER
D79GGIO1.ST.Ind2.stVal	ExternalSwitchStatus   (79 IN function output)		STATUS_HAN   DLER

## Logical Nodes for Control (LN Group C...)

## TRCALH1

This section defines the logical node data for TRCALH1 of the FPROProtection logical device.

Data Name	Description	IEC61850 Index	Source
TRCALH1.ST.GrAlm.stV   al	Function(s) Starter   Picked up		EVENT_HANDL
TRCALH1.ST.GrWrn.st   Val	Function(s) Trip   Operated		EVENT_HANDL
ER			

## Logical Nodes for Measurements \& DR (LN Group M.., R...)

## ANAMMXU1

This section defines the logical node data for ANAMMXU1 of the FPROMeasurements logical device.

Data Name	Description	$\begin{gathered} \hline \text { IEC61850 } \\ \text { Index } \\ \hline \end{gathered}$	Source
ANAMMXU1.MX.PhV.phsA.cVa I.mag.f	VA - Magnitude		METER
ANAMMXU1.MX.PhV.phsA.cVa l.ang.f	VA - Angle		METER
ANAMMXU1.MX.PhV.phsB.cVa I.mag.f	VB - Magnitude		METER
ANAMMXU1.MX.PhV.phsB.cVa I.ang.f	VB - Angle		METER
ANAMMXU1.MX.PhV.phsC.cVa I.mag.f	VC - Magnitude		METER
ANAMMXU1.MX.PhV.phsC.cVa I.ng.f	VC - Angle		METER
ANAMMXU1.MX.PhV.Neut.cVal .mag.f	VN - Magnitude		METER
ANAMMXU1.MX.PhV.Neut.cVal .ang.f	VN - Angle		METER
ANAMMXU1.MX.PhV.phsAB.cV al.mag.f	VAB - Magnitude		METER
ANAMMXU1.MX.PhV.phsAB.cV al.ang.f	VAB - Angle		METER
ANAMMXU1.MX.PhV.phsBC.cV al.mag.f	VBC - Magnitude		METER
ANAMMXU1.MX.PhV.phsBC.cV al.ang.f	VBC - Angle		METER
ANAMMXU1.MX.PhV.phsCA.cV al.mag.f	VCA - Magnitude		METER
ANAMMXU1.MX.PhV.phsCA.cV al.ng.f	VCA - Angle		METER
ANAMMXU1	V/F (\%)		METER
ANAMMXU1	THD (\%)		METER
ANAMMXU1.MX.A.phsA.cVal.m ag.f	IA - Magnitude		METER
ANAMMXU1.MX.A.phsA.cVal.a ng.f	IA - Angle		METER
ANAMMXU1.MX.A.phsB.cVal.m ag.f	IB - Magnitude		METER
ANAMMXU1.MX.A.phsB.cVal.a ng.f	IB - Angle		METER
ANAMMXU1.MX.A.phsC.cVal.m ag.f	IC - Magnitude		METER
ANAMMXU1.MX.A.phsC.cVal.a ng.f	IC - Angle		METER
ANAMMXU1.MX.A.neut.cVal.m ag.f	IN - Magnitude		METER


| ANAMMXU1.MX.A.neut.cVal.an <br> g.f | IN - Angle | METER |
| :---: | :---: | :---: | :---: |
| ANAMMXU1.MX.TotW.cVal.ma <br> g.f | Real Power | METER |
| ANAMMXU1.MX.TotVAr.cVal.m <br> ag.f | Reactive Power | METER |
| ANAMMXU1.MX.Hz.cVal.mag.f | Frequency | METER |
| ANAMMXU1.MX.TotPF.cVal.ma <br> g.f | Power Factor | METER |

## ANAMMXU2

This section defines the logical node data for ANAMMXU2 of the FPROMeasurements logical device.

Data Name	Description	IEC61850 Index	Source
ANAMMXU2.MX.A.res.cVal.m   ag.f	ISEF - Magnitude		METER
ANAMMXU2.MX.A.res.cVal.an   g.f	ISEF - Angle	METER	

## SEQMSQI1

This section defines the logical node data for SEQMSQI1 of the FPROMeasurements logical device.

Data Name	Description	IEC61850 Index	Source
SEQMSQI1.MX.SeqV.c1.cV   al.mag.f	V1 - Pos. Seq.   Magnitude		METER
SEQMSQI1.MX.SeqV.c2.cV   al.mag.f	V2 - Neg. Seq.   Magnitude	METER	
SEQMSQI1.MX.SeqV.c3.cV   al.mag.f	V0 - Zero Seq.   Magnitude	METER	
SEQMSQI1.MX.SeqA.c1.cV   al.mag.f	I1 - Pos. Seq.   Magnitude		METER
SEQMSQI1.MX.SeqA.c2.cV   al.mag.f	I2 - Neg. Seq.   Magnitude	METER	
SEQMSQI1.MX.SeqA.c3.cV   al.mag.f	IO - Zero Seq.   Magnitude	METER	
SEQMSQI1.MX.SeqA	I2/I1 (\%)	METER	

## MMMTHR1

This section defines the logical node data for MMMTHR1 of the FPROMeasurements logical device.

Data Name	Description	IEC61850 Index	Source
MMMTHR1\$MX\$Tmp01\$m   ag\$i	79 Count		METER
MMMTHR1\$MX\$Tmp02\$m   ag\$i	79Cumm Count	METER	

## DRRDRE1

This section defines the logical node data for DRRDRE1 of the FPROMeasurements logical device.

Data Name	Description	IEC61850 Index	Source
DRRDRE1.ST.RcdMade.st   Val	Record made		RECORD
DRRDRE1.ST.FItNum.stVal	Fault Record number		RECORD
DRRDRE1.ST.RcdStr.stVal	Record Start		RECORD
DRRDRE1.ST.MemUsed.st   Val	Memory used		RECORD

## HEALTHGGIO8

This section defines the logical node data for HEALTHGGIO8 of the FPROSystem logical device.

Data Name	Description	IEC61850 Index	Source
HEALTHGGIO8.ST.Ind   1.stVal	Relay Healthy Status Info.		STATUS_HAN   DLER

## IRIGGGIO6

This section defines the logical node data for IRIGGGIO6 of the FPROSystem logical device.

Data Name	Description	IEC61850 Index	Source
IRIGGGIO6.ST.Ind1.stV   al	IRIG-B Status Info.		STATUS_HAN   DLER

## SNTPGGIO7

This section defines the logical node data for SNTPGGIO7 of the FPROSystem logical device.

Data Name	Description	IEC61850 Index	Source
SNTPGGIO7.ST.Ind1.st   Val	SNTP Status Info.		STATUS_HAN   DLER

## ComAlmGGIO9

This section defines the logical node data for ComAlmGGIO9 of the FPROSystem logical device.

Data Name	Description	IEC61850 Index	Source
ComAImGGIO9.ST.Ind   1.stVal	IEC61850 Comm. Alarm   Status Info.		STATUS_HAN   DLER

## LEDGGIO4

This section defines the logical node data for LEDGGIO4 of the FPROSystem logical device.

Data Name	Description	IEC61850 Index	Source
LEDGGIO4.ST.Ind1.st   Val	LED Status-1		$\begin{gathered} \hline \text { STATUS_HAN } \\ \text { DLER } \end{gathered}$
LEDGGIO4.ST.Ind2.st Val	LED Status- 2		$\begin{aligned} & \hline \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
LEDGGIO4.ST.Ind3.st Va	LED Status- 3		$\underset{\text { DTER }}{\substack{\text { STATUS } \\ \text { DAN }}}$
LEDGGIO4.ST.Ind4.st Val	LED Status- 4		STATUS_HAN DLER
LEDGGIO4.ST.Ind5.st Val	LED Status- 5		STATUS_HAN DLER
LEDGGIO4.ST.Ind6.st Val	LED Status- 6		$\begin{aligned} & \hline \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
LEDGGIO4.ST.Ind7.st Val	LED Status- 7		$\begin{gathered} \text { STATUS_HAN } \\ \text { DLER } \end{gathered}$
LEDGGIO4.ST.Ind8.st Val	LED Status-8		$\begin{aligned} & \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
LEDGGIO4.ST.Ind9.st   Val	LED Status- 9		$\begin{aligned} & \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
LEDGGIO4.ST.Ind10. stVal	LED Status-10		$\begin{aligned} & \hline \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
LEDGGIO4.ST.Ind11. stVal	LED Status-11		STATUS_HAN DLER
LEDGGIO4.ST.Ind12. stVal	LED Status-12		$\begin{gathered} \text { STATUS_HAN } \\ \text { DLER } \end{gathered}$
LEDGGIO4.ST.Ind13. stVal	LED Status-13		$\begin{aligned} & \text { STATUS_HAN } \\ & \text { DLER } \end{aligned}$
LEDGGIO4.ST.Ind14. stVal	LED Status-14		STATUS_HAN DLER

## EIGGIO1

This section defines the logical node data for EIGGIO1 of the FPROSystem logical device.

Data Name	Description	IEC61850 Index	Source
EIGGIO1.ST.Ind1.stV al	External Input - 1		STATUS_HANDLE
EIGGIO1.ST.Ind2.stV al	External Input - 2		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$
EIGGIO1.ST.Ind3.stV al	External Input - 3		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$
EIGGIO1.ST.Ind4.stV al	External Input - 4		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$
EIGGIO1.ST.Ind5.stV al	External Input - 5		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$
EIGGIO1.ST.Ind6.stV al	External Input - 6		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$
EIGGIO1.ST.Ind7.stV   al	External Input - 7		STATUS_HANDLE
EIGGIO1.ST.Ind8.stV al	External Input - 8		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$
EIGGIO1.ST.Ind9.stV al	External Input - 9		STATUS_HANDLE
EIGGIO1.ST.Ind10.st Val	External Input - 10		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$
EIGGIO1.ST.Ind11.st Val	External Input - 11		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$
EIGGIO1.ST.Ind12.st Val	External Input - 12		STATUS_HANDLE
EIGGIO1.ST.Ind13.st Val	External Input - 13		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$
EIGGIO1.ST.Ind14.st Val	External Input - 14		$\underset{\mathrm{R}}{\text { STATUS_HANDLE }}$

## OCGGIO2

This section defines the logical node data for OCGGIO2 of the FPROSystem logical device.

Data Name	Description	IEC61850 Index	Source
OCGGIO2.ST.Ind1.st   Val	Output Contact -1		STATUS_HANDL   ER
OCGGIO2.ST.Ind2.st   Val	Output Contact - 2		STATUS_HANDL   ER
OCGGIO2.ST.Ind3.st   Val	Output Contact -3		STATUS_HANDL   ER
OCGGIO2.ST.Ind4.st   Val	Output Contact-4	STATUS_HANDL   ER	



## PLGGIO3

This section defines the logical node data for PLGGIO3 of the FPROSystem logical device.

Data Name	Description	IEC61850 Index	Source
$\begin{gathered} \hline \text { PLGGIO3.ST.Ind1.st } \\ \text { Val } \end{gathered}$	Prologic - 1		STATUS_HANDLER
$\begin{gathered} \hline \text { PLGGIO3.ST.Ind2.st } \\ \text { Val } \end{gathered}$	Prologic - 2		STATUS_HANDLER
$\begin{gathered} \hline \text { PLGGIO3.ST.Ind3.st } \\ \text { Val } \\ \hline \end{gathered}$	Prologic - 3		STATUS_HANDLER
PLGGIO3.ST.Ind4.st   Val	Prologic - 4		STATUS_HANDLER
$\begin{gathered} \hline \text { PLGGIO3.ST.Ind5.st } \\ \text { Val } \end{gathered}$	Prologic - 5		STATUS_HANDLER
PLGGIO3.ST.Ind6.st Val	Prologic - 6		STATUS_HANDLER
PLGGIO3.ST.Ind7.st Val	Prologic - 7		STATUS_HANDLER
PLGGIO3.ST.Ind8.st Val	Prologic-8		STATUS_HANDLER
$\begin{gathered} \hline \text { PLGGIO3.ST.Ind9.st } \\ \text { Val } \\ \hline \end{gathered}$	Prologic - 9		STATUS_HANDLER
$\begin{gathered} \text { PLGGIO3.ST.Ind10.s } \\ \text { tVal } \end{gathered}$	Prologic - 10		STATUS_HANDLER
$\begin{gathered} \hline \text { PLGGIO3.ST.Ind11.s } \\ \text { tVal } \end{gathered}$	Prologic - 11		STATUS_HANDLER
$\begin{gathered} \text { PLGGIO3.ST.Ind12.s } \\ \text { tVal } \end{gathered}$	Prologic - 12		STATUS_HANDLER
$\begin{gathered} \hline \text { PLGGIO3.ST.Ind13.s } \\ \text { tVal } \\ \hline \end{gathered}$	Prologic - 13		STATUS_HANDLER
$\begin{gathered} \text { PLGGIO3.ST.Ind14.s } \\ \text { tVal } \end{gathered}$	Prologic - 14		STATUS_HANDLER


PLGGIO3.ST.Ind15.s   tVal	Prologic -15	STATUS_HANDLER	
PLGGIO3.ST.Ind16.s   tVal	Prologic - 16	STATogic -17	STATUS_HANDLER
PLGGIO3.ST.Ind17.s   tVal	Prologic -18	STATUS_HANDLER	
PLGGIO3.ST.Ind18.s   tVal	Prologic -19		STATUS_HANDLER
PLGGIO3.ST.Ind19.s   tVal	Prologic - 20	STATUS_HANDLER	
PLGGIO3.ST.Ind20.s   tVal			

## VIGGIO5

This section defines the logical node data for VIGGIO5 of the FPROSystem logical device.

Data Name	Description	IEC61850 Index	Source
VIGGIO5.ST.Ind1.stVa I	Virtual Input - 1		STATUS_HANDLER
$\begin{gathered} \hline \text { VIGGIO5.ST.Ind2.stVa } \\ \text { I } \\ \hline \end{gathered}$	Virtual Input - 2		STATUS_HANDLER
$\begin{gathered} \text { VIGGIO5.ST.Ind3.stVa } \\ \text { I } \end{gathered}$	Virtual Input - 3		STATUS_HANDLER
VIGGIO5.ST.Ind4.stVa I	Virtual Input - 4		STATUS_HANDLER
VIGGIO5.ST.Ind5.stVa I	Virtual Input - 5		STATUS_HANDLER
VIGGIO5.ST.Ind6.stVa I	Virtual Input - 6		STATUS_HANDLER
VIGGIO5.ST.Ind7.stVa I	Virtual Input - 7		STATUS_HANDLER
$\begin{aligned} & \text { VIGGIO5.ST.Ind8.stVa } \\ & \text { I } \end{aligned}$	Virtual Input - 8		STATUS_HANDLER
VIGGIO5.ST.Ind9.stVa I	Virtual Input - 9		STATUS_HANDLER
VIGGIO5.ST.Ind10.stV al	Virtual Input - 10		STATUS_HANDLER
$\begin{aligned} & \text { VIGGIO5.ST.Ind11.stV } \\ & \text { al } \\ & \hline \end{aligned}$	Virtual Input - 11		STATUS_HANDLER
VIGGIO5.ST.Ind12.stV al	Virtual Input - 12		STATUS_HANDLER
VIGGIO5.ST.Ind13.stV al	Virtual Input - 13		STATUS_HANDLER
VIGGIO5.ST.Ind14.stV al	Virtual Input - 14		STATUS_HANDLER
VIGGIO5.ST.Ind15.stV al	Virtual Input - 15		STATUS_HANDLER
VIGGIO5.ST.Ind16.stV al	Virtual Input - 16		STATUS_HANDLER
VIGGIO5.ST.Ind17.stV al	Virtual Input - 17		STATUS_HANDLER
VIGGIO5.ST.Ind18.stV   al	Virtual Input - 18		STATUS_HANDLER


VIGGIO5.ST.Ind19.stV   al	Virtual Input - 19		STATUS_HANDLER
VIGGIO5.ST.Ind20.stV   al	Virtual Input - 20		STATUS_HANDLER
VIGGIO5.ST.Ind21.stV   al	Virtual Input - 21		STATUS_HANDLER
VIGGIO5.ST.Ind22.stV   al	Virtual Input - 22		STATUS_HANDLER
VIGGIO5.ST.Ind23.stV   al	Virtual Input - 23		STATUS_HANDLER
VIGGIO5.ST.Ind24.stV   al	Virtual Input - 24		STATUS_HANDLER
VIGGIO5.ST.Ind25.stV   al	Virtual Input - 25		STATUS_HANDLER
VIGGIO5.ST.Ind26.stV   al	Virtual Input - 26		STATUS_HANDLER
VIGGIO5.ST.Ind27.stV   al	Virtual Input - 27		STATUS_HANDLER
VIGGIO5.ST.Ind28.stV   al	Virtual Input - 28		STATUS_HANDLER
VIGGIO5.ST.Ind29.stV   al	Virtual Input - 29		Virtual Input - 30

## SUBSCRGGIO1

This section defines the logical node data SUBSCRGGIO1 of the FPROVirtualElements logical device.

Data Name	Description	IEC61850 Index	Source
SUBSCRGGIO1.ST.Ind1 .stVal	Virtual Input - 1		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind2 stVal	Virtual Input - 2		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind3 .stVal	Virtual Input - 3		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind4 stVal	Virtual Input - 4		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind5 .stVal	Virtual Input - 5		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind6 .stVal	Virtual Input - 6		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind7 stVal	Virtual Input - 7		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind8 .stVal	Virtual Input - 8		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind9 .stVal	Virtual Input - 9		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind1 $0 . \mathrm{st} \mathrm{Va}$	Virtual Input 10		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind1 1.stVal	Virtual Input 11		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind1 2.stVal	Virtual Input 12		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind1 3.stVal	Virtual Input 13		SERVER_GOOSE
SUBSCRGGIO1.ST.Ind1 4.stVal	Virtual Input 14		SERVER_GOOSE



## Logical Nodes for Fault Data (LN Group G...)

This section defines the logical nodes for FPROFaultData logical device.

Logical Node Data Objects	Functions Defined
FLTMMXU1.MX.PhV	Fault Voltages (VA, VB, VC, VN)
FLTMMXU1.MX.PhV	Fault Voltages (VAB, VBC, VCA)
FLTMMXU1.MX.A	Fault Currents (IA, IB, IC, IG, IN)
FLTMMXU1.MX.Hz	Total Real Power
FLTMMXU1.MX.TotW	Total Reactive Power
FLTMMXU1.MX.TotVAr	Phase-Wise Real Power
FLTMMXU1.MX.W	Phase-Wise Reactive Power
FLTMMXU1.MX.VAr	Fault Voltage(V2)
FLTMSQI1.MX.SeqV	Fault Currents (I2, I2/I1)
FLTMSQI1.MX.SeqA	Fault Location \& Impedance
FLTMTHR1.MX.Tmp*	

## FLTMMXU1

This section defines the logical node data for FLTMMXU1 of the FPROFaultData logical device.

Data Name	Description	IEC6185   0 Index	Source
FLTMMXU1.MX.PhV.phsA.cVal. mag.f	VA - Magnitude		$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.PhV.phsA.cVal. ang.f	VA - Angle		$\begin{gathered} \text { FAULT_ } \\ \text { LOG } \\ \hline \end{gathered}$
FLTMMXU1.MX.PhV.phsB.cVal. mag.f	VB - Magnitude		$\begin{gathered} \text { FAULT_- } \\ \text { LOG } \end{gathered}$
FLTMMXU1.MX.PhV.phsB.cVal. ang.f	VB - Angle		$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG_ } \\ \hline \end{gathered}$
FLTMMXU1.MX.PhV.phsC.cVal. mag.f	VC - Magnitude		$\begin{gathered} \text { FAULT_- } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.PhV.phsC.cVal. ang.f	VC - Angle		$\begin{gathered} \text { FAULT_ } \\ \text { LOG } \end{gathered}$
FLTMMXU1.MX.PhV.neut.cVal. mag.f	VN - Magnitude		$\begin{gathered} \text { FAULT_- } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.PhV.neut.cVal. ang.f	VN - Angle		$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG_ } \end{gathered}$
FLTMMXU1.MX.PPV.phsAB.cV al.mag.f	VAB - Magnitude		$\begin{gathered} \text { FAULT_- } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.PPV.phsAB.cV al.ang.f	VAB - Angle		$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.PPV.phsBC.cV al.mag.f	VBC - Magnitude		$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG } \end{gathered}$


FLTMMXU1.MX.PPV.phsBC.cV al.ang.f	VBC - Angle	$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG_ } \end{gathered}$
FLTMMXU1.MX.PPV.phsCA.cV al.mag.f	VCA - Magnitude	$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG_ } \\ \hline \end{gathered}$
FLTMMXU1.MX.PPV.phsCA.cV al.ang.f	VCA - Angle	$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.A.phsA.cVal.ma g.f	IA - Magnitude	$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.A.phsA.cVal.an g.f	IA - Angle	$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.A.phsB.cVal.ma g.f	IB - Magnitude	$\begin{gathered} \text { FAULT_- } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.A.phsB.cVal.an g.f	IB - Angle	$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.A.phsC.cVal.m ag.f	IC - Magnitude	$\begin{gathered} \text { FAULT_ }_{-} \\ \text {LOG }^{2} \end{gathered}$
FLTMMXU1.MX.A.phsC.cVal.an g.f	IC - Angle	$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.A.neut.cVal.ma g.f	IN - Magnitude	$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG_ } \end{gathered}$
FLTMMXU1.MX.A.neut.cVal.ang .f	IN - Angle	$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG }^{\prime} \end{gathered}$
FLTMMXU1.MX.A.res.cVal.mag. f	IG - Magnitude	$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG_ } \\ \hline \end{gathered}$
FLTMMXU1.MX.A.res.cVal.ang.f	IG - Angle	$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG_ } \end{gathered}$
FLTMMXU1.MX.Hz.mag.f	Frequency	$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG } \\ \hline \end{gathered}$
FLTMMXU1.MX.TotW.mag.f	Total Real Power	$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG_ } \\ \hline \end{gathered}$
FLTMMXU1.MX.TotVAr.mag.f	Total Reactive Power	$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG }^{2} \end{gathered}$
FLTMMXU1.MX.W.phsA.cVal.m ag.f	A Phase Real Power	$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG }^{2} \\ \hline \end{gathered}$
FLTMMXU1.MX.W.phsB.cVal.m ag.f	B Phase Real Power	$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG }^{\prime} \end{gathered}$
FLTMMXU1.MX.W.phsC.cVal.m ag.f	C Phase Real Power	$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG_ } \end{gathered}$
FLTMMXU1.MX.VAr.phsA.cVal. mag.f	A Phase Reactive Power	$\begin{gathered} \hline \text { FAULT_- } \\ \text { LOG } \\ \hline \end{gathered}$
FLTMMXU1.MX.VAr.phsB.cVal. mag.f	B Phase Reactive Power	$\begin{gathered} \hline \text { FAULT_ } \\ \text { LOG } \\ \hline \end{gathered}$
FLTMMXU1.MX.VAr.phsC.cVal. mag.f	C Phase Reactive Power	$\begin{gathered} \text { FAULT_ }_{-} \\ \text {LOG }^{2} \end{gathered}$

## FLTMSQI1

This section defines the logical node data for FLTMSQI1 of the FPROFaultData logical device.

Data Name	Description	IEC6185   $\mathbf{0}$ Index	Source
FLTMSQI1.MX.SeqA.c1.cVal.m   ag.f	46BC I2/I1 Magnitude		FAULT_ $_{\text {LOG }}$
FLTMSQI1.MX.SeqA.c2.cVal.m   ag.f	Neg. Seq. Magnitude (46/50, 46/   $51)$	FAULT_   LOG 2	


FLTMSQI1.MX.SeqA.c2.cVal.an   g.f	Neg. Seq. Angle (46/50, 46/51)		FAULT_ $^{\text {LOG }}$
FLTMSQI1.MX.SeqV.c2.cVal.m   ag.f	Neg. Seq. Magnitude (47DT,   47IT)	FAULT_   LOG 2	

## FLTMTHR1

This section defines the logical node data for FLTMTHR1 of the FPROFaultData logical device.

Data Name	Description	IEC61850   Index	Source
FLTMTHR1.MX.Tmp01.mag.f	Fault location		FAULT__ $^{\text {LOG }}$
FLTMTHR1.MX.Tmp02.mag.f	Fault - Magnitude		FAULT__   LOG_ 2
FLTMTHR1.MX.Tmp03.mag.f	Fault - Angle		FAULT_-   LOG 2

## SPCSOPULGGIO1

This section defines the logical node data for SPCSOPULGGIO1 of the FPROControl logical device.

Data Name	Description	$\begin{aligned} & \text { IEC61850 } \\ & \text { Index } \end{aligned}$	Source
SPCSOPULGGIO1.CO.   SPCSO1.Oper.ctlVal	Single Point Pulse Type Control Input - 1		$\begin{gathered} \text { RELAY_CONT } \\ \text { ROL } \end{gathered}$
SPCSOPULGGIO1.ST. SPCSO1.stVal	Single Point Status output - 1		
SPCSOPULGGIO1.CO.   SPCSO2.Oper.ctlVal	Single Point Pulse Type Control Input - 2		$\begin{gathered} \text { RELAY_CONT } \\ \text { ROL } \end{gathered}$
SPCSOPULGGIO1.ST. SPCSO2.stVal	Single Point Status output - 2		
SPCSOPULGGIO1.CO.   SPCSO3.Oper.ctlVal	Single Point Pulse Type Control Input - 3		$\begin{gathered} \hline \text { RELAY_CONT } \\ \text { ROL } \end{gathered}$
SPCSOPULGGIO1.ST.   SPCSO3.stVal	Single Point Status output - 3		
SPCSOPULGGIO1.CO.   SPCSO4.Oper.ctlVal	Single Point Pulse Type Control Input - 4		$\begin{gathered} \text { RELAY_CONT } \\ \text { ROL } \end{gathered}$
SPCSOPULGGIO1.ST. SPCSO4.stVal	Single Point Status output - 4		
SPCSOPULGGIO1.CO.   SPCSO5.Oper.ctlVal	Single Point Pulse Type Control Input - 5		$\begin{gathered} \text { RELAY_CONT } \\ \text { ROL } \end{gathered}$
SPCSOPULGGIO1.ST. SPCSO5.stVal	Single Point Status output - 5		
SPCSOPULGGIO1.CO.   SPCSO6.Oper.ctlVal	Single Point Pulse Type Control Input - 6		$\begin{gathered} \text { RELAY_CONT } \\ \text { ROL } \end{gathered}$
SPCSOPULGGIO1.ST. SPCSO6.stVal	Single Point Status output - 6		

## Logical Nodes for Control Object's

## SPCSOLATGGIO2

This section defines the logical node data for SPCSOLATGGIO2 of the FPROControl logical device.

Data Name	Description	IEC61850   Index	Source
SPCSOLATGGIO2.CO.   SPCSO7.Oper.ctIVal	Single Point Latch Type   Control Input - 7		RELAY_CONT   ROL
SPCSOLATGGIO2.ST.   SPCSO7.stVal	Single Point Status output - 7		
SPCSOLATGGIO2.CO.   SPCSO8.Oper.ctIVal	Single Point Latch Type   Control Input -		RELAY_CONT
ROL			

## DPCSOPULGGIO3

This section defines the logical node data for DPCSOPULGGIO3 of the FPROControl logical device.

Data Name	Description	$\begin{array}{c}\text { IEC61850 } \\ \text { Index }\end{array}$	Source
DPCSOPULGGIO3.CO.	$\begin{array}{c}\text { Double Point Pulse Type } \\ \text { Control Input - 1 }\end{array}$		$\begin{array}{c}\text { RELAY_CONT } \\ \text { ROL }\end{array}$
DPCSO1.Oper.ctIVal	1		


DPCSOPULGGIO3.ST.   DPCSO3.stVal	Double Point Status output - $3$	
DPCSOPULGGIO3.CO.   DPCSO4.Oper.ctlVal	Double Point Pulse Type Control Input - 4	$\begin{gathered} \hline \text { RELAY_CONT } \\ \text { ROL } \end{gathered}$
DPCSOPULGGIO3.ST.   DPCSO4.stVal	Double Point Status output -   4	

## CtIModGGIO4

This section defines the logical node data for CtlModGGIO4 of the FPROControl logical device.

Data Name	Description	IEC61850   Index	Source
CtIModGGIO4.ST.Ind1.s   tVal	Control Mode Status - OFF		STATUS_HAN   DLER
CtIModGGIO4.ST.Ind2.s   tVal	Control Mode Status -   LOCAL	STATUS_HAN   DLER	
CtIModGGIO4.ST.Ind3.s   tVal	Control Mode Status -   REMOTE	STATUS_HAN   DLER	


[^0]:    Ensure the power supply input and the AC and DC wires are de-energized before working on the wiring. Failure to do so could result in electric shock.

    CT circuits shall be short-circuited before working on the current input wires.

[^1]:    1. The version shown in the user manual differs slightly in formatting to the official released version.
[^2]:    1. The formatting of the official version of this document differs slightly from the version shown here in the user manual, but the content is the same.
[^3]:    1. The formatting of the official version of this document differs slightly from the version shown here in the user manual, but the content is the same.
