13M WINCH TOWER INSTALLATION MANUAL

18/13 Gibbens Road West Gosford NSW 2250
Phone 0243231113 Mobile 0407669313
Fax (02) 43231115 Email: sales@somapower.com.au

1. COMPONENT CHECKLIST

The 13 metre tower kit from Sunrise Solar contains the following parts:

DESCRIPTION	QTY	CHECKED
15 m of wire rope with one end crimped on thimble	4	
11 m of wire rope with one end crimped on thimble	4	
14 m of flex wire rope with one end crimped on thimble	1	
Turnbuckles	9	
Brake Winch	1	
Small D Shackles	26	
Large D Shackle for end of winch rope	1	
Wire rope grips	24	
Thimbles	8	
20 mm dia $\times 120 \mathrm{~mm}$ stainless steel bolt \& nut	2	
16 mm dia $\times 120 \mathrm{~mm}$ stainless steel bolt \& nut	4	
10 mm dia $\times 25 \mathrm{~mm}$ galvanised bolt \& nut	3	
10 mm dia $\times 90 \mathrm{~mm}$ galvanised bolt \& nut	2	
10 mm dia $\times 120 \mathrm{~mm}$ galvanised bolt \& nut	1	
Top guy sleeve	1	
Middle guy sleeve	1	
Base plate for poles	1	
12 mm dia steel wire loops	4	
Winch bracket	1	
Steel plate with six holes	1	
Installation manual	1	

Sunrise Solar have completed a checklist at the time of packing to minimise the chance of short supply.
However, check that all parts are present before going to site if possible.

TOWER POLES

The poles are supplied seperately from the tower kit.
If you have ordered poles as well, you should have recieved two 80 mm NB (nominal bore or inside diameter) 6.5 m lengths of galvanised pipe.
These are for the centre mast. Also you should have recieved one 65 mm NB 6.5 m length of galvanised pipe for the gin pole. This is used for leverage to raise the centre mast.
The three lengths of pipe will all be pre drilled and ready for installation.
A general idea of the location of these components is given in fig 1.

YOU SUPPLY :STEEL ROPE GREASE, LOCTITE 262, CONCRETE AND REINFORCING FOR THE CONCRETE.

For reinforcing you will need $48 \times 600 \mathrm{~mm}$ lengths of 12 mm reinforcing bar (12 in each outside hole) and $10 \times 900 \mathrm{~mm}$ lengths of 12 mm reinforcing bar for the centre hole. If you need to put foundations into rock then contact Sunrise Solar for advice on using chemical rock anchors.
When ordering concrete you will need at least $1.7 \mathrm{~m}^{3}$. You may need a little extra depending on how neat you dig the holes. Also, if the soil is very sandy you may need larger holes.
The Loctite 262 is required for some of the bolts both on the tower and the wind generator.
The grease is used to protect the ropes and fittings from corrosion, especially in coastal areas. The recommended grease is Rocol Wire Rope Lubricant, or equivalent. It should be applied at installation and annually thereafter.

2. FOUNDATIONS

2.1 Layout

The concrete foundations for the tower should be laid at least 2 days prior to installing the tower. Holes for the foundations should be dug in accordance with fig. 2. The centre hole should be $1 \mathrm{~m} \times 1 \mathrm{~m} \times 0.25 \mathrm{~m}$ deep. The 4 outside holes should each be $0.7 \mathrm{~m} \times 0.7 \mathrm{~m} \times 0.7 \mathrm{~m}$ for a SOMA1000 wind generator. If the soil is sandy, then go larger on the holes.

In laying out the foundations you must decide in which direction you wish to lower the mast then layout the holes accordingly.

Holes no. 2 \& 4 should be slightly forward and below the centre hole if possible. This will ensure that the guys slacken as soon as the tower begins to lower. If holes 2 \& 4 were to be a bit to the winch side of centre or a good deal higher than the centre hole then it is possible that the guys attached to these holes may tension and resist the the tower from being lowered. This would not be catastrophic, but would necessitate the slackening of the turnbuckles on these wires before lowering the tower, which is inconvenient.

Holes $1,3 \& 5$ should be in line with each other, but their relationship in the vertical direction is not terribly important, i.e. they don't have to lie in the same horizontal plane.

All guy ropes have a couple of metres of extra length to allow for uneven ground situations.

2.2 Concreting

Once the holes are dug you should place the steel wire loops, winch bracket, base plate and reinforcing rod near their respective holes.
Place some flexible or corrugated conduit in the centre hole so that after the concrete has set, you have a means of neatly bringing your cable up from it's trench into the inside of the mast.
Pour the concrete and place the reinforcement rod in during pouring.
Immediately after pouring a hole, while the concrete is still wet, push in the steel loop or bracket for that hole.
The steel loops should be angled towards the top of the pole.
The base plate should sit flush on top of the centre pad and the vertical fins should be in line with holes $1 \& 3$. The upper 22 mm hole in the baseplate fins should be closest to the winch.
The winch bracket should be angled slightly backwards away from the tower with the channel side facing away from the tower. Leave 400 mm of winch bracket protruding above the concrete.
Allow the concrete 2 days to set before connecting the poles to the base plate and raising the tower. After a few hours though, once the concrete has gone off, you can proceed to layout the poles in position and connect the guy wires to the outside steel loops if you wish.

3 ASSEMBLY AND RAISING THE TOWER

1. Take the 80 mmNB pipe with the 22 mm hole in one end and lay it out on the ground in the direction that it will lower to, with the hole at the centre bracket.
2. Use a 20 mm dia. Stainless steel bolt to bolt it to the lower hole in the centre plate.
3. Feed the connecting cable up the conduit that you placed in the centre concrete pad and through this first length of pipe, pulling through an extra 7 m of cable beyond the end of the pipe.
4. Feed the centre sleeve down over the cable onto the top of this pipe.
5. Feed the excess cable through the second length of 80 mm pipe with the two 12 mm holes in this pipe being at the top of the mast.
6. Slide the centre sleeve over the first pipe and tighten the two bolts, making sure that the fins on the sleeve are in line with the outside foundations.
7. Slide the top sleeve down over the top of the mast until it lines up with the lower 18 mm holes in the mast, about 1.5 m from the top. Bolt the sleeve on using the high tensile bolt provided and Loctite on the nut. Use the spare 10 mm dia $\times 120 \mathrm{~mm}$ bolt and nut to bolt into the hole near the top of the mast. This can be used to anchor the electrical cable so that the wind generator connections are not bearing the weight of the cable inside the mast.
8. Rotate the top pole until the fins on the top sleeve line up with the outside foundations, then push the pipe into the centre sleeve and tighten the bolts.
9. Lay the 65 mm gin pole on top of the first 80 mm pipe and bolt it to the upper hole in the base plate using the remaining 20 mm stainless bolt.
10. Bolt the steel plate inside the free end of the gin pole.
11. Shackle the crimped end of the 15 m upper guy wires to the top sleeve.
12. Shackle the crimped end of the 11 m lower guy wires to the centre sleeve.
13. Measure off the top guys at 13 m and feed each of them around a thimble using one rope grip to secure temporarily. Repeat for the centre guys at 9 m length.
14. Shackle each thimble to a turnbuckle and adjust each turnbuckle to the midway point.
15. Shackle the other end of each turnbuckle to the appropriate steel loop on the outside foundations. The ropes that connect to the ginpole attach to the one shackle in one of the holes in the steel plate attached to the end of the gin pole.
16 Connect the flexible 14 m winch cable to the winch drum and using the large D shackle, connect the crimped end to the other hole in the steel plate at the end of the gin pole. Also feed the remaining turnbuckle onto this same shackle. This turnbuckle will be used for connecting the gin pole to the steel loop in the concrete next to the winch. Ensure this turnbuckle is in the midway position. While the tower is still on the ground, apply grease to all of the wire ropes, rope grips, thimbles and turnbuckles. This should be done annually to reduce corrosion.
16. Bolt the winch to the winch bracket then grease all ropes and fittings.
17. Winch the tower into the upright position checking that the guy ropes are not getting too tight on the way up. If any are, then loosen by releasing some rope through the rope grip. Shackle the turnbuckle on the end of the gin pole to the steel loop next to the winch bracket.
18. Check that the tower is straight and vertical and release each rope grip one at a time, taking up any slack in the ropes.
19. Attach the remaining rope grips making sure there are three on each guy, attaching the loose ends neatly up the guys. See fig 3 .
20. Adjust the turnbuckles to put tension on each guy.
21. To lower the tower, unscrew the turnbuckle attaching the gin pole to the winch foundation. Wind the winch handle backwards to lower, checking that the guy wires are getting looser. Raise and lower the tower a couple of times until you are happy that it is ready for the wind generator.
22. Lower the tower and allow the top of the mast to sit at comfortable working height above the ground, then attach the wind generator as per the manufacturer's instructions.
23. Raise the wind generator once wiring is completed to the battery.
24. Using fencing wire or something of similar strength, lock the turnbuckles in place so they cannot vibrate loose. Do this by passing a length of wire through one eye of the turnbuckle, through the body of the turnbuckle and then through the other eye, twisting the two loose ends together.

Sunrise Solar 13m
 Winch Tower

Fig 1

Fig 2. Plan view of 13 m Tower Foundations not to scale

Fig 3

Hinge Bracket

Fig 4. Raising the Tower

13 METRE TOWER - PIPE DRILLING DETAIL (dim. in mm)

65 mm NB med. wall gal pipe protruding 40 mm into

80mm NB GAL PIPE MEDIUM WALL 6.5M

NOTE: ALL HOLES THROUGH BOTH SIDES OF PIPE
Fig 5.

