

Gamcorp (Melbourne) Pty Ltd A.C.N 141 076 904 A.B.N 73 015 060 240

www.gamcorp.com.au melbourne@gamcorp.com.au

innovation in design and construction

1/19 Anthony Drive, Mount Waverley VIC 3149. Tel: 03 9803 9533 Fax: 03 9802 9125

Structural Design Documentation

Foundation Analysis for Solar Terrace III All Wind Regions

For:

Clenergy Australia

Job Number: 24007 Date: August 3, 2012

COPYRIGHT: The concepts and information contained in this document are the property of Gamcorp (Melbourne) Pty Ltd. Use or copying of this document in whole or in part without the written permission of Gamcorp constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of Gamcorp (Melbourne) Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Gamcorp (Melbourne) Pty Ltd and its Client. Gamcorp (Melbourne) Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

innovation in design and construction Gamcorp (Melbourne) Pty Ltd A.C.N 141 076 904 A.B.N 73 015 060 240 www.gamcorp.com.au melbourne@gamcorp.com.au 1/19 Anthony Drive, Mount Waverley VIC 3149. Tel: 03 9803 9533 Fax: 03 9802 9125

Our Ref: 24007 3 August 2012

Clenergy Australia 18/20 Duerdin Street Clayton North VIC 3168

RE: Foundation Analysis for Solar Terrace III

Gamcorp (Melbourne) Pty Ltd, being Structural Engineers within the meaning of Australian Building Regulations, have carried out a structural design check of the *Solar Terrace III* Foundation within Australia. The design check has been based on the information in the *PV-ezRack SolarTerrace III Planning and Installation Guide* and schematic drawings of the system components by Xiamen Clenergy co.,Ltd, provide by Clenergy Australia.

Please refer Foundation Schedule for Solar Terrace III (24007-SK01).

The foundation analysis carried out based on the following conditions:

- Wind Loads to AS/NZ1170.2:2011
- Wind Terrain Categories 2
- Wind average recurrence interval of 100 years
- Wind region A, B, C & D
- Maximum Panel size 1800mm
- Minimum soil bearing pressure 100 KPA and concrete strength 25 MPa

This work was designed in accordance with the provisions of Australian Building Regulations and in accordance with sound, widely accepted engineering principles.

Yours faithfully, Gamcorp (Melbourne) Pty Ltd

<u>Martin Gamble</u> Director Gamcorp (Melbourne) Pty Ltd

elop

<u>Milan Bjelobrk</u> MIEAust No. 2210984 CPEng. NPER

Page 1 of 1 ISO 9001:2008 Registered Firm Certificate No: AU1222

1/19 Anthony Drive Mount Waverley VIC 3149 Tel: 03 9803 9533 Fax: 03 9802 9125 melbourne@gamcorp.com.au www.gamcorp.com.au

Certificate No: AU1222

ISO 9001:2008 Registered Firm

- Job No: 24007
- Client: Clenergy Australia
- Project: Foundation Analysis for Solar Terrace III
- Address: All Wind Region

Australian Standards

- AS 1170 Structural Design Actions
 - Part 0 General Principles

innovation in design and construction

- Part 1 Permanent imposed and other actions
- Part 2 Wind Actions
- Part 3 Snow and Ice Actions
- AS 3600 Concrete Structures
- AS 4100 Steel Structures

	Bearing Pressures:	Concrete Strengths:
Strips:	100 kPa	25 MPa
Pads:	100 kPa	25 MPa
Slabs:	100 kPa	25 MPa

Wind Terrain Category:

WTC 2

- Designed: M.S
- Date: Aug-12

S									
1170	Goveri	ning equation,							
Table 3	.1	V _{sit}	= \	/ _R *M _d *(N	∕l _{z,cat} *M _s *I	∕ I _t)			
For		V ₁₀₀	= 4	41	Non- cy	/clonic r	egion A		
Non-cy	clonic	V ₁₀₀	= 4	18	Non- cy	/clonic r	egion B		
Table 3	.2	V ₁₀₀	= 5	56	Cycloni	c regior	_l F	- c 1	
		V ₁₀₀	= 6	56	Cycloni	c regior	_l F	- D 1	
						M_{d}	1	Any d	rection
		V _A	= 3	37.31	m/s	$M_{_{z,cat}}$	0.91	Categ	2, z<=3
		V _B	= 4	43.68	m/s	M_{s}	1		
		V _c	= 5	50.96		M _h	1		
		V _D	= 6	50.06		K _a	1		
Ref		Р	= ().5*ρ _{air} *	{V _{des,Θ} } ² *C	K _c	1		
Table D	4(A)	C_{fig} -uphill	= 9	C _{pn} *K _a *K _i		K K	1.5 1	consic	lered on
coefficie	ont		- 2	-		ρ	1 2	N/m ³	
				Design P	Basic P	di	112	.,	
S		Pressure on Upł	= 1	1.67	1.11	Non- c	yclonic r	egion A	KN/m ²
1170		Pressure on Upł	= 2	2.28	1.52	Non- c	yclonic r	egion B	KN/m ²
		Pressure on Upl	= 3	3.11	2.07	Cyclon	c regior	n C	KN/m ²
		Pressure on Upł	= 4	1.32	2.88	Cycloni	c regior	ו D	KN/m ²
		Panel self weight =	().17	KN/m2				

	Results									
	Wind Zone			Α	В	С	D			
-	Wind speed (n	n/s)		41	48	56	66			
	Site wind spee	ed (m/s)		37.31	43.68	50.96	60.06			
	Maximum space	cing (mm)		3.1	2.8	2.2	1.5			
	R _{va -KN}	Down ward	1	5.36	6.36	6.59	6.08			
	R _{VB} -KN	Down ward	1	7.34	8.71	9.02	8.33			
	R _{HA} -KN		3.67	4.35	4.51	4.16				
	R _{VA} -KN	Uplift		-5.3	-6.84	-7.53	-7.29			
	R _{VB} -KN	Uplift		-7.26	-9.36	-10.31	-9.97			
	Continuous St	rip footing								
	Up-lift force			-7.26	-9.36	-10.31	-9.97			
Self we	W- Wid1600	D-Deptł	500	22.32	20.16	15.84	10.8			
	Bearing pressur	re (KPA)		20.39	24.19	25.06	23.14			
	Min A	רע)א <u>ר</u> 0 22*()2*(f cf/f ev	471	471	471	471			
	st Provide 2 layer	of SL 82 at	top and bott	om	-721	-721	721			
	A _{st} – provided		•	454	454	454	454			
	Continuous Tr	ansverse S	trip footing	12 56	16.2	17.02	17.26			
Solf woi		D-Doptk	500	10.2	10.2	10.2	10.2			
Sell we	Rearing pressur		500	7 0/	19.2	0.76	0.01			
	Reinforcemen	t			·		·			
	Min A _{st}	0.22*(D/d)2*(f cf/f sy	562	562	562	562			
	Provide 2 layer	of SL 92 at	top and bott	om						
	A _{st} – provided			580	580	580	580			
	Individual pad footing									
	Up-lift force	rooting		-7.26	-9.36	-10.31	-9.97			
	Down-ward for	ce		7.34	8.71	9.02	8.33			
Self wei	W- Wid1850	D-Depth	600	10.4	10.4	10.4	10.4			
-	Bearing pressur	re (KPA)		10.16	12.05	12.49	11.53			
	Reinforcement									
	Min A _{st}	 0.22*(D/d)2*(f cf/f sv	709	709	709	709			
	Provide 2 laver	of RL 718 at	t top and bo	ttom						
	A_{st} – provided			716	716	716	716			
	Continuous Pa	aving slab		-12 56	-16.2	-17 02	_17.26			
Colf	Slab thicknose	_ +	150	22.50	20.16	21 12	10			
Sell we		- L	200	22.32	20.10	21.12	10			
			250							
	Reinforcemen	t		1	1	1	I			
	Min A _{st}	0.22*(D/d)2*(f cf/f sy	248	248	311	375			
				SL 92	SL 92	SL 102	2xSL 82			
	A _{st} – provided			290	290	354	454			