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ABSTRACT 

In this study we use a wireless and standalone data glove to 
track hand shapes, orientation, position and dynamic move-
ment of children with non-verbal disabilities for the purpose 
of translating custom sign language hand gestures to speech. 
We apply recorded sensor data to train a personal K-Nearest 
Neighbours classifier using Dynamic Time Warping (DTW) 
for each user. 

We evaluate the accuracy of personal classifiers when 
trained with data collected through supervised training ses-
sions conducted at special schools with non-verbal students. 
We compare that with a general classifier trained by the 
group data. 

This study is part of a programme to develop and pro-
duce an affordable hardware technology solution to provide 
machine translation services from custom hand gestures 
to written languages, and then by extension to spoken lan-
guages in the form of audio output. The primary purpose is 
to facilitate daily communications between individuals with 
speech disabilities and the general public. 

CCS CONCEPTS 

• Social and professional topics —> People with disabil-
ities; Children; • Human-centered computing —> Ges-
tural input; • Computing methodologies —> Natural lan-
guage generation; • Hardware —> Sound-based input/output; 
Wireless devices. 
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1 INTRODUCTION 

A data glove is a human-computer interface with certain 
tactile or other sensory units that are attached to the fingers 
or joints of the glove, worn by the user. Tactile switches and 
resistive or capacitive bend/stretch sensors which measure 
the bending of different joints, offer measurements as to de-
termine if a hand is open or closed and some finger joints 
are straight or bent. These results are mapped to unique 
gestures and are interpreted by a computer. The advantage 
of such a simple device is that there is no requirement for 
any kind of preprocessing. With very limited computing 
processing power in the 1990s, such systems showed great 
promise despite the limited maneuverability due to the need 
for wired tethers that connected the glove to the computer 
[5]. While many modern data gloves still use wired connec-
tions to a computer, it is now possible to transmit the sensor 
data wirelessly, negating the need for a cumbersome physical 
connection. 

There are a number of problems with using such devices 
for signing. One of the major difficulties in accurate recog-
nition of hand gestures is the enormity of many sign lan-
guage vocabularies. Many feature extraction methods rely 
on searching for matches within these large vocabulary 
databases [5]. 

Even with advancements in computer vision, glove-based 
sign language recognition offers the widest vocabulary and 
the best possible recognition accuracy. However, no such 
recent systems have been reported with sufficiently high 
accuracy to be considered for commercialisation, possibly 
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because researchers are more focused on camera-based sys-
tems. There are many versions of data gloves that translate 
sign language to text and/or speech. Most of these gloves 
rely on a smart device for output and perhaps none have 
moved beyond prototyping. There is almost no published 
work showing evidence of sign language data gloves being 
tested by speech-disabled participants for daily communica-
tion, let alone children. This is possibly due to the complex 
programming and hardware required as well as the ethi-
cal considerations and other challenges encountered when 
working with such vulnerable groups. 

2 RELATED WORK 

One of the earliest systems to convert gestures to speech 
was demonstrated by Fels and Hinton [2], who produced a 
data glove-based system called Glove-Talk. They used a VPL 
Data-Glove in 1992 to convert hand gestures to speech via the 
DECtalk speech synthesizer. Their Glove-Talk vocabulary 
consisted of 66 root words, each with up to six different end-
ings. The total size of the vocabulary was 203 words. Most of 
these hand shapes represent the ASL alphabet. They also uti-
lized orientation differences and the varied hand shapes for 
semantically opposite words such as `come' and `go' which 
have a 180 degree orientation difference. Various endings for 
words were formed through different hand movements. 

In 2011, Oz and Leu developed an American Sign Lan-
guage (ASL) recognition system based on the CybergloveTm
sensor glove and artificial neural network (ANN) classifiers 
to translate ASL words into English [4]. The system consisted 
of a sensory glove and an electromagnetic motion tracker. 
They trained the ANN model for 50 ASL words with a dif-
ferent number of samples for every word. The final output 
of the system consisted of audio of recognized ASL words 
generated by a speech synthesizer. The classification results 
achieved 90% accuracy which demonstrated that the system 
could be used successfully for isolated word recognition. 

A more recent study by a group of researchers in 2016 [3] 
demonstrated the additional usage of a sliding window to 
translate a pre-trained list of sign language hand gestures. 
Their system achieved continuous recognition of ASL signs 
using a glove, in real time, with an accuracy level of 98%. 

Although these models were technically very successful, 
none progressed beyond the research phase and no plans 
were made to go into production. Furthermore, no personal-
isation of signs was offered on a per-user level to accommo-
date differences in sign language libraries or motor abilities. 
This motivated us to introduce a customisable, wireless data 
glove to the assistive technology space and give a chance 
to speech disabled individuals, specifically children, to try 
it and use it both in a controlled environment such as an 
educational setting as well as at home. This allowed us to 
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better understand the challenges of producing a more refined 
wearable system that could be used for daily communication. 
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Figure 1: Early glove prototype, produced in 2016 

In 2016, we conducted a brief usability study to test an 
early prototype (as in Figure 1) of our proposed system to 
translate hand gestures to speech. At the time our system 
was preprogrammed with hard-coded sensor data to identify 
a limited vocabulary of ten signs based on static, dominant-
hand gestures using an accelerometer data glove. We tested 
the glove with 2 boys who had non-verbal autism and used 
the Makaton [8] sign language to communicate. The testing 
demonstrated that the system was capable of translating sign 
language to text and speech with an accuracy rate of 80-85% 
and with about 15% of attempts resulting in no words being 
spoken, due to a failure to detect the gesture performed. Rea-
sons for failed attempts included the fact that signs varied 
in timing and speed, even with the same user, particularly 
where slight changes of hand position occurred [5]. We ap-
plied the feedback from the children who participated in the 
study to redesign the hardware and software. In this paper 
we present a new approach to solving those issues by using 
a more child-friendly wearable device which implements 
dynamic time warping in order to build an on-body device 
for custom hand signal translation. 

3 SYSTEM 

Hardware 

The hardware for the glove consisted of three primary units; a 
micro-controller (a Raspberry Pi Zero W [9]), a custom circuit 
board featuring the speaker and display, and a hand-shaped, 
flexible PCB that contained the various sensors used. The 
board and Pi were soldered together on top of one another, 
with the flexible PCB connected to that main assembly via a 
short ribbon cable (see Figure 2). 

The flexible PCB featured 5 flex sensors, one per finger, 
1 accelerometer and 1 gyroscope. The accelerometer and 
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Figure 2: Glove hardware schematic 
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gyroscope were on the same physical integrated circuit in 
the centre of the back of the hand. The values from the flex 
sensors were transmitted to the Pi in raw form, with the 
accelerometer and gyroscope unit connected via an I2C bus. 

Software 

The training and classification system was largely written 
in Python, due to its convenience, and was based on a K-
Nearest Neighbours classifier using Dynamic Time Warping 
(DTW) to calculate a distance metric between time series 
recordings. 

Dynamic Time Warping is an algorithm that enables the 
calculation of similarity between temporal sequences while 
allowing for variations in speed and position in time. In our 
case, this means that differences in the speed of signs being 
performed, and small variations in the delay when recording, 
prior to the user performing each sign, will be ignored. 

An example of this can be seen in Figure 3. Recordings of 
the value of one axis of the accelerometer on the glove were 
taken as a user performed the sign for `Please' multiple times 
at different speeds. This value is graphed over time (with 
the raw value of the sensor on the vertical axis, and time on 
the horizontal axis) in the below chart in the form of two 
dark blue line plots. The orange lines represent the mapping 
between the points in the two series found by the DTW al-
gorithm. In this example, the algorithm has largely correctly 
identified the mapping between the macroscopic features 
of each series (namely the two consecutive spikes towards 
the start of the time series, followed by a slow decrease in 
value). 

Implentations of the DTW algorithm that guarantee the 
optimal match have at best quadratic (O(n2)) time complexity 
of computation. As such, alternative algorithms that will find 
good approximations of the optimum, such as FastDTW [6] 
and SparseDTW [1], can be used instead, some of which run 
in linear (O(n)) time. The FastDTW algorithm was selected 
to be used in our system. 

When DTW is used in situations where time-series data is 
multi-dimensional for each frame, two different variants are 
possible [7] - the dependent variant (DTWD) and the inde-
pendent variant (DT14//). DTW/ calculates a separate match 
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for each dimension of the data, whereas DTWD finds a sin-
gle shared optimal match between points for all dimensions 
simultaneously. 

When the children trained the glove, recordings for all 
sensors were stored for each sign, with multiple examples 
of each sign being recorded. These recordings were labelled 
with the name of their corresponding sign for example `Please' 
or `Thank You'. 

Children selected the label for the sign for which they 
wished to record a new sample, while wearing the glove, 
using the glove's on-screen display and pressed a button to 
start the recording of sensor data. They then performed the 
sign, before pressing the button again to cease recording. 

Our system, after receiving the raw data from the sen-
sors embedded in the glove, normalised them between 0 
and 1, based on values we recorded from each sensor as 
the maximum and minimum possible readings during nor-
mal use. This prevented any sensor from overly weighting 
the classification result. The sensor values were stored after 
normalisation. 

After pressing another button to begin recording a sign 
for classification, each child again performed the sign, and 
pressed the same button to cease recording. As during train-
ing, sensor values were immediately normalised to provide 
values between 0 and 1. 

The DTW algorithm was then applied to each of the pre-
recorded training samples in turn, with the new recording 
for classification. This provided the distance between each 
sample (and therefore its label) and the new recorded gesture. 

A K-nearest-neighbours algorithm was then used to select 
the output audio and text, based on the distances calculated 
in the previous step. K was set to different values to test its 
impact on classification accuracy. 

The label for the classified sign was ultimately displayed 
on the screen, with corresponding audio being output from 
the on-board speaker. 

Design & Enclosure 

To ensure the safety of the children wearing the technology 
and to comply with the ethical approval, all sensors were 
embedded within an inner lining of each glove. Insulating the 
sensors was a necessary design and safety solution to prevent 
direct contact with the children's skin and to make the glove 
appearance discreet for participants who did not wish to 
wear an obvious assistive technology device. The children 
were invited to communicate their desired glove designs. 
Each child received a right or left hand glove (corresponding 
to their dominant hand when signing) that was personalised 
to their preference, in terms of size, colour, and design. We 
show a plain glove (Figure 4) to preserve anonymity, as gloves 
also had the children's initials and/or names embroidered. 
We found that involving the children in designing their own 
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Figure 3: Example of Dynamic Time Warping to measure dis-
tance between two time series for the hand sign for ̀ Please'. 

gloves helped in overcoming their initial intimidation by the 
technology that we had faced in the previous study, where 
the gloves were more obtrusive and the design was unified 
across participants. 

Figure 4: The assembled glove, flexible PCB and hard enclo-
sure 

A hard-case wrist band was designed to house the micro-
controller, a custom circuit board featuring the speaker, screen 
and two buttons, and a battery (Figure 4). The case was sealed 
to ensure children were not able to access any of the elec-
tronic components. The two buttons were added to allow 
children to interact with the glove and use it for sign lan-
guage training and translation, a red button for training 
(record a new gesture) and a blue button for translation 
(recognise a gesture and output the corresponding audio). 
The battery was charged using a USE port without opening 
the case. An automatic fail-safe switch was added to disable 
the operation of the glove while charging as an additional 
safety feature. 

4 

4 METHOD 

Our system was programmed to record dynamic gestures' 
sensor data received from a right or left handed glove. In 
signs using both hands, only the participant's dominant hand 
was used for training. This was effective because in the ma-
jority of signs using both hands, either both hands are the 
same or one hand stays motionless in holding one position, 
while the other hand makes the sign. The data glove screen 
showed a list of words with a user interface menu for the 
user to scroll through them. Ten words were selected by the 
children from a list of 50 most used words in school, provided 
to us by attending teachers. Each word (label) corresponded 
to a notional gesture which initially had no data recorded for 
it. Gesture data was recorded by the children during training 
sessions (described below). We chose this method of a pre-
defined dictionary of words although our software supports 
the definition of personalised labels. This was due to school 
regulations and the granted ethics clearance which did not 
allow our technology to connect to the internet, in order to 
protect children's data and to ensure none of the testing data 
was sent to the cloud or stored on any external servers. 

Figure 5: Two examples of participants performing signs 

We recruited ten non-verbal participants, between the 
ages of 5 and 15 years old. Teachers identified the students 
who would be good candidates for the study. Selection cri-
teria was based on familiarity with a form of sign language, 
consistency in signing and those who could benefit from us-
ing this technology to overcome communication challenges 
in school. A preliminary meeting was held at participating 
schools with children's parents and teachers to introduce the 
technology and describe all features. A usability guide was 
distributed to ensure adults who supervised children using 
the gloves, in school and at home, were aware of the safety 
regulations. Training sessions consisted of a two hour long 
task (described below) and were broken into four, fifteen 
minute segments. Training sessions were done with the re-
searcher and the participant's speech therapist in attendance. 
The first segment was reserved for getting the children famil-
iar with the glove and asking them if they wanted to wear 
it. Once they gave consent we helped them with putting 

Figure 3: Example ofDynamic TimeWarping tomeasure dis-
tance between two time series for the hand sign for ‘Please’.

gloves helped in overcoming their initial intimidation by the
technology that we had faced in the previous study, where
the gloves were more obtrusive and the design was unified
across participants.

Figure 4: The assembled glove, flexible PCB and hard enclo-
sure

A hard-case wrist band was designed to house the micro-
controller, a custom circuit board featuring the speaker, screen
and two buttons, and a battery (Figure 4). The case was sealed
to ensure children were not able to access any of the elec-
tronic components. The two buttons were added to allow
children to interact with the glove and use it for sign lan-
guage training and translation, a red button for training
(record a new gesture) and a blue button for translation
(recognise a gesture and output the corresponding audio).
The battery was charged using a USB port without opening
the case. An automatic fail-safe switch was added to disable
the operation of the glove while charging as an additional
safety feature.

4 METHOD
Our system was programmed to record dynamic gestures’
sensor data received from a right or left handed glove. In
signs using both hands, only the participant’s dominant hand
was used for training. This was effective because in the ma-
jority of signs using both hands, either both hands are the
same or one hand stays motionless in holding one position,
while the other hand makes the sign. The data glove screen
showed a list of words with a user interface menu for the
user to scroll through them. Ten words were selected by the
children from a list of 50 most used words in school, provided
to us by attending teachers. Each word (label) corresponded
to a notional gesture which initially had no data recorded for
it. Gesture data was recorded by the children during training
sessions (described below). We chose this method of a pre-
defined dictionary of words although our software supports
the definition of personalised labels. This was due to school
regulations and the granted ethics clearance which did not
allow our technology to connect to the internet, in order to
protect children’s data and to ensure none of the testing data
was sent to the cloud or stored on any external servers.

Figure 5: Two examples of participants performing signs

We recruited ten non-verbal participants, between the
ages of 5 and 15 years old. Teachers identified the students
who would be good candidates for the study. Selection cri-
teria was based on familiarity with a form of sign language,
consistency in signing and those who could benefit from us-
ing this technology to overcome communication challenges
in school. A preliminary meeting was held at participating
schools with children’s parents and teachers to introduce the
technology and describe all features. A usability guide was
distributed to ensure adults who supervised children using
the gloves, in school and at home, were aware of the safety
regulations. Training sessions consisted of a two hour long
task (described below) and were broken into four, fifteen
minute segments. Training sessions were done with the re-
searcher and the participant’s speech therapist in attendance.
The first segment was reserved for getting the children famil-
iar with the glove and asking them if they wanted to wear
it. Once they gave consent we helped them with putting
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the glove on and demonstrated how to use it. The child was 
always the one who pressed the buttons while wearing the 
glove. 

The glove has two modes: Training and Translating. Par-
ticipants were first shown how to use the glove to record 
signs (Figure 5). Each participant recorded up to 10 sign sam-
ples for each word by pressing the record button before and 
after making the hand gesture. This was necessary to train a 
personal classifier for each user. Gesture data was captured 
at 20 frames per second. To classify signs (translate), the 
participant then switched to Translating mode on the glove 
and made a sign. If the sign had a match it was displayed as 
text on the screen and spoken as speech though the speaker. 
Children had a list of male or female voices to choose from. If 
no match was found, the screen displayed a `failed' message 
and returned to Translating mode, waiting for new signs. If a 
sign continued to give a failed message it would be re-trained. 
The newly recorded samples would then replace the old ones 
for that sign. 
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Figure 6: Comparison of personalized and general classifier 
accuracy 

The results of our sessions with the children, in terms of 
the translation accuracy that they experienced have been 
summarised in the plot in Figure 6. 

Between thirty and forty test signs were performed by 
each child, with the number dependent on when the child 
wished to stop. 8 out of 10 participants had 100% accuracy 
of sign classification when their recorded sample data was 
trained with their own personally trained classifier. The re-
maining 2 participants had a 95% accuracy level. 

For comparison, we also trained an identical classifier with 
the aggregate of all of the participants' data, excluding the 
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user whose data was being classified in each instance. This 
acted as a general, non-personalised classifier, representing 
a pre-trained solution that would require and allow no indi-
vidual customisation or training. 

All participants achieved lower accuracy results using this 
generalised classifier, although some had more success than 
others. Those who had relatively poor accuracy results using 
their own personally trained classifier, also tended to have 
worse results when using the generalised one. 

There are a number of factors that affected the results, the 
primary one being the number of training samples recorded 
for each sign. This was closely followed in impact by the 
participant's consistency of signing and unsurprisingly, the 
age of the child. The more consistent the child was with their 
signing, the higher the accuracy of the classification. Both 
of these two factors were significantly affected by the age of 
the child, as younger participants tended to be less willing 
to record larger numbers of training samples, and were also 
substantially less consistent due to their lesser experience 
using sign language. The children with the lowest accuracy 
levels tended to also be those of the youngest age. We be-
lieve this was due to both a lower-than-average proficiency 
and consistency in sign language, as well as the fact that 
some were distracted by the technology during the training 
session. 

6 DISCUSSION 

Figure 7: Four different users' signs for ̀ Good Morning' 

Gesture data was analyzed to show individual differences 
and variance across participants. Figure 7 is a draft of hand 
gesture sensor data for `Good Morning' being signed by four 
different children. Overall the sign shape and orientation 
are similar but a closer look reveals variation in speed and 
duration between participants. 

In comparison, multiple sign samples from the same user 
(Figure 8) reflect relatively minor differences which in turn 
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age of the child. The more consistent the child was with their
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to record larger numbers of training samples, and were also
substantially less consistent due to their lesser experience
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Figure 8: Two examples of the sign for `Thank You' by the 
same user 

enables the classifier to produce a match with a high level of 
accuracy. 

Figure 9: An example of similar gestures with differing du-
ration 

When participants trained signs that were different only in 
orientation or duration, issues with accuracy were observed. 

The signs `Please' and `Thank you' utilize the same hand 
shape, and differ largely solely in duration (Figure 9). The 
classifier was successful in distinguishing the difference be-
tween the two signs in all cases, though the confidence pro-
vided by the classifier in such cases was lower than the 
average. 

Figure 10: An example of similar gestures, differing only in 
orientation 

The signs `Please' and `Stop' utilize the same hand shape 
and motion, with only a difference in rotation about a vertical 
axis (Figure 10). 

There are sensors readily available in the market that can 
identify such differences (such as a magnetometer), however, 
no such sensors were used in our design. The classifier was 
not able to reliably distinguish the difference between those 
two signs. 
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7 CONCLUSION 

We have proposed to train personal classifiers to recognise 
custom dynamic hand gestures using DTW. Our data shows 
that personal classifiers universally produced more accurate 
results than general classifiers due to individual differences 
in hand movements and motor abilities, with a confidence 
of 99.97% (a z-score of 3.42). 

Recognising custom hand gestures widens the application 
of this technology to extend beyond the sign language com-
munity to include individuals who do not use a standard 
library of sign language due to their personal disabilities and 
physical limitations of hand movement, such as those seen 
in stroke victims and in those with other neural disorders. 

8 FUTURE WORK 

We plan to take this project further in a number of ways, the 
principle one being the ability to sign continuously with the 
speech output occurring during, rather than after the sen-
tence has been completed. This would allow users to chain 
signs together in quick succession to combine individual 
phrases into full sentences. We also intend to adapt the glove 
for connection to a smart device in order to provide further 
customisation. 

Hardware Design 

Based on the hours of training carried out with the children, 
it was very clear to us that a less bulky, but still wearable 
solution would make usage substantially easier. We therefore 
are looking to minimise the on-body embedded device. We 
also plan to add a Bluetooth Low Energy (BLE) chip to the 
flexible glove hand PCB in order to send gesture data to 
smart devices for wider applications, and provide further 
personalisation options as detailed below. 

Software 

In order to give users more control, an app would need to 
be developed for use on such smart devices. The app would 
enable users to save their gesture data under a label of their 
choice, allowing them to build and edit a personal library of 
signs and could support the ability for the user to modify 
the language and age of the voice produced by the speech 
synthesizer. 

As described above, the classifier currently waits until the 
end of the sign before being applied to the entire duration of 
it. We instead plan to carry out classification continuously on 
a sliding window over the incoming data. We believe that pre-
vious researchers results [3] show great promise and could 
be applied to our users' custom libraries of hand gestures, 
while still allowing them to train personalized classifiers. To 
improve accuracy, this could be combined with a Bayesian 
model to predict future words based on those already signed. 
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tween the two signs in all cases, though the confidence pro-
vided by the classifier in such cases was lower than the
average.
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The signs ‘Please’ and ‘Stop’ utilize the same hand shape
andmotion, with only a difference in rotation about a vertical
axis (Figure 10).

There are sensors readily available in the market that can
identify such differences (such as a magnetometer), however,
no such sensors were used in our design. The classifier was
not able to reliably distinguish the difference between those
two signs.

7 CONCLUSION
We have proposed to train personal classifiers to recognise
custom dynamic hand gestures using DTW. Our data shows
that personal classifiers universally produced more accurate
results than general classifiers due to individual differences
in hand movements and motor abilities, with a confidence
of 99.97% (a z-score of 3.42).

Recognising custom hand gestures widens the application
of this technology to extend beyond the sign language com-
munity to include individuals who do not use a standard
library of sign language due to their personal disabilities and
physical limitations of hand movement, such as those seen
in stroke victims and in those with other neural disorders.

8 FUTUREWORK
We plan to take this project further in a number of ways, the
principle one being the ability to sign continuously with the
speech output occurring during, rather than after the sen-
tence has been completed. This would allow users to chain
signs together in quick succession to combine individual
phrases into full sentences. We also intend to adapt the glove
for connection to a smart device in order to provide further
customisation.

Hardware Design
Based on the hours of training carried out with the children,
it was very clear to us that a less bulky, but still wearable
solution would make usage substantially easier. We therefore
are looking to minimise the on-body embedded device. We
also plan to add a Bluetooth Low Energy (BLE) chip to the
flexible glove hand PCB in order to send gesture data to
smart devices for wider applications, and provide further
personalisation options as detailed below.

Software
In order to give users more control, an app would need to
be developed for use on such smart devices. The app would
enable users to save their gesture data under a label of their
choice, allowing them to build and edit a personal library of
signs and could support the ability for the user to modify
the language and age of the voice produced by the speech
synthesizer.

As described above, the classifier currently waits until the
end of the sign before being applied to the entire duration of
it. We instead plan to carry out classification continuously on
a sliding window over the incoming data.We believe that pre-
vious researchers results [3] show great promise and could
be applied to our users’ custom libraries of hand gestures,
while still allowing them to train personalized classifiers. To
improve accuracy, this could be combined with a Bayesian
model to predict future words based on those already signed.
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Signs could also be separated into sub-libraries to reduce the 
number of possible matches. 

9 SELECTION AND PARTICIPATION OF 
CHILDREN 

Speech therapists at participating schools selected children 
who are non-verbal and used sign language to communi-
cate. Children gave consent by nodding or making the hand 
sign for `Yes' when asked if they wanted to wear the glove. 
All testing sessions were supervised by a member of school 
staff and with a guardian present, both of whom also pro-
vided consent. Ethical approval for this study was issued 
by the University of London ethics committee. Testing data 
was stored locally on the glove and was not accessible re-
motely. Measures were implemented to ensure the safety of 
our wearable device by encapsulating electronic components 
and adding a fail-safe switch, which turns the battery off 
while charging. Public liability insurance was in place to 
protect all participating children. 
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