

ARDEX RA 56 Part A Ardex (Ardex Australia)

Chemwatch: 5562-93 Version No: 2.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **17/10/2022** Print Date: **17/10/2022** L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	ARDEX RA 56 Part A
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Repairing concrete cracks and spalls when mixed with Part B.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Ardex (Ardex Australia)
Address	20 Powers Road Seven Hills NSW 2147 Australia
Telephone	1800 224 070
Fax	1300 780 102
Website	www.ardexaustralia.com
Email	technicalservices@ardexaustralia.com

Emergency telephone number

Association / Organisation	Ardex (Ardex Australia)		
Emergency telephone numbers	1800 224 070 (Mon-Fri, 9am-5pm)		
Other emergency telephone numbers	Not Available		

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Chemwatch Hazard Ratings

	Min	Max	
Flammability	1		
Toxicity	2		0 = Minimum
Body Contact	2	1	1 = Low
Reactivity	1		2 = Moderate
Chronic	2	i	3 = High 4 = Extreme

Poisons Schedule	S6
Classification ^[1]	Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 2A, Acute Toxicity (Inhalation) Category 4, Sensitisation (Respiratory) Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Carcinogenicity Category 2, Reproductive Toxicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

ARDEX RA 56 Part A

Issue Date: 17/10/2022 Print Date: 17/10/2022

Label elements

Signal word Danger

Hazard statement(s)

nazara statement(s)	
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H319	Causes serious eye irritation.
H332	Harmful if inhaled.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H335	May cause respiratory irritation.
H351	Suspected of causing cancer.
H361d	Suspected of damaging the unborn child.
H373	May cause damage to organs through prolonged or repeated exposure.
H412	Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P260	Do not breathe mist/vapours/spray.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P284	[In case of inadequate ventilation] wear respiratory protection.
P273	Avoid release to the environment.
P264	Wash all exposed external body areas thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P304+P340	INHALED: Remove person to fresh air and keep comfortable for breathing.				
P308+P313	IF exposed or concerned: Get medical advice/ attention.				
P342+P311	If experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.				
P302+P352	IF ON SKIN: Wash with plenty of water and soap.				
P305+P351+P338	EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.				
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.				
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.				
P337+P313	If eye irritation persists: Get medical advice/attention.				
P362+P364	Take off contaminated clothing and wash it before reuse.				

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

MIXTUIES		
CAS No	%[weight]	Name
9016-87-9	30-60	polymeric diphenylmethane diisocyanate
101-68-8	30-60	4.4'-diphenylmethane diisocyanate (MDI)
6846-50-0	15-40	2.2.4-trimethyl-1.3-pentanediol diisobutyrate
5873-54-1	1-5	2.4'-diphenylmethane diisocyanate
2536-05-2	0.1-1	2.2'-diphenylmethane diisocyanate
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4.		

Classification drawn from C&L; * EU IOELVs available

Page 3 of 17

ARDEX RA 56 Part A

Issue Date: 17/10/2022 Print Date: 17/10/2022

SECTION 4 First aid measures

Description of first aid measures

Eve Contact

Skin Contact

Inhalation

Ingestion

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes
- Transport to hospital or doctor without delay
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

If skin or hair contact occurs:

- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
- ▶ Transport to hospital, or doctor
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted.

► IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. ▶ For advice, contact a Poisons Information Centre or a doctor.

- Urgent hospital treatment is likely to be needed.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise

INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For sub-chronic and chronic exposures to isocyanates:

- This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.
- Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts
- Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- Some cross-sensitivity occurs between different isocyanates.
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
- Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

SECTION 5 Firefighting measures

Extinguishing media

- Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam.
- Presents additional hazard when fire fighting in a confined space
- Cooling with flooding quantities of water reduces this risk
- Water spray or fog may cause frothing and should be used in large quantities.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Chemwatch: 5562-93 Page 4 of 17 Issue Date: 17/10/2022 Version No: 2.1 Print Date: 17/10/2022

ARDEX RA 56 Part A

Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. ▶ Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Fire Fighting Avoid spraying water onto liquid pools. ▶ DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. - Combustible. - Moderate fire hazard when exposed to heat or flame. - When heated to high temperatures decomposes rapidly generating vapour which pressures and may then rupture containers with release of flammable and highly toxic isocyanate vapour. - Burns with acrid black smoke and poisonous fumes. - Due to reaction with water producing CO2-gas, a hazardous build-up of pressure could result if contaminated containers are re-sealed. - Combustion yields traces of highly toxic hydrogen cyanide HCN, plus toxic nitrogen oxides NOx and carbon monoxide. Combustion products include: Fire/Explosion Hazard carbon dioxide (CO2) isocyanates and minor amounts of hydrogen cyanide nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. May emit corrosive fumes When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur

SECTION 6 Accidental release measures

HAZCHEM

Personal precautions, protective equipment and emergency procedures

Not Applicable

See section 8

Environmental precautions

See section 12

Methods and material for conta	ainment and cleaning up
Minor Spills	Slippery when spilt. Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
	 Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be used inside encapsulating suit where this exposure may occur. For isocyanate spills of less than 40 litres (2 m2): Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible. Notify supervision and others as necessary. Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots). Control source of leakage (where applicable). Dike the spill to prevent spreading and to contain additions of decontaminating solution. Prevent the material from entering drains. Estimate spill pool volume or area.
Major Spills	 Absorb and decontaminate Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes Shovel absorbent/decontaminant solution mixture into a steel drum. Decontaminate surface Pour an equal amount of neutraliser solution over contaminated surface Scrub area with a stiff bristle brush, using moderate pressure Completely cover decontaminant with vermiculite or other similar absorbent After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above. Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
	Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove

- sely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
- Decontaminate and remove personal protective equipment.
- Return to normal operation.
- Conduct accident investigation and consider measures to prevent reoccurrence.

Decontamination:

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ("neutralising fluid"). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}.

Let stand for 24 hours

Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A:

liquid surfactant 0.2-2% sodium carbonate 5-10%

water to 100%

Page 5 of 17 ARDEX RA 56 Part A

Issue Date: 17/10/2022 Print Date: 17/10/2022

Formulation B

liquid surfactant 0.2-2% concentrated ammonia 3-8%

water to 100%

Formulation C

ethanol, isopropanol or butanol 50% concentrated ammonia 5% water to 100%

After application of any of these formulae, let stand for 24 hours.

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

Slippery when spilt.

- Avoid contamination with water, alkalies and detergent solutions.
- Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- ► DO NOT reseal container if contamination is suspected.
- Open all containers with care.
- DO NOT touch the spill material

Moderate hazard.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- ▶ Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

for commercial quantities of isocyanates:

- · Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- · Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken.
- · Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions)..
- · Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- · Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.

Other information

- · Ideal storage temperature range is dependent on the specific polymer due to viscosity and melting point differences between the polymers. Use 25 deg C (77 deg F) to 30 deg C (86 deg F) as a guideline to most liquid isocyanates for optimum storage temperature. If some isocyanates are stored at or below a temperature of 25 deg C (77 deg F), crystallization and settling of the isocyanate may occur. Storage in a cold warehouse can cause crystals to form. These crystals can settle to the bottom of the container. If crystals do form, they can be melted easily with moderate heat. It is suggested that a container the size of a drum be warmed for 16-24 hours at sufficient temperature to melt the crystals. When the crystals are melted, the container should be agitated by rolling or stirring, until the contents are homogenous. Since heated isocyanate will generate vapors more rapidly than product stored at 25 deg C (77 deg F), be sure to follow the precautions under the Personal Protection. Rotate all stock to prevent ageing. Use on FIFO (First In-First Out) basis
- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- ▶ Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

ARDEX RA 56 Part A

Issue Date: **17/10/2022**Print Date: **17/10/2022**

Conditions for safe storage, including any incompatibilities

Suitable container

Storage incompatibility

- Metal can or drun
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.
- Avoid cross contamination between the two liquid parts of product (kit).
- If two part products are mixed or allowed to mix in proportions other than manufacturer's recommendation, polymerisation with gelation and evolution of heat (exotherm) may occur.
- ▶ This excess heat may generate toxic vapour
- ▶ Esters react with acids to liberate heat along with alcohols and acids.
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- Heat is also generated by the interaction of esters with caustic solutions.
- Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- Esters may be incompatible with aliphatic amines and nitrates.
- Avoid reaction with water, alcohols and detergent solutions. Isocyanates are electrophiles, and as such they are reactive toward a variety of nucleophiles including alcohols, amines, and even water. Upon treatment with an alcohol, an isocyanate forms a urethane linkage. If a di-isocyanate is treated with a compound containing two or more hydroxyl groups, such as a diol or a polyol, polymer chains are formed, which are known as polyurethanes. Reaction between a di-isocyanate and a compound containing two or more amine groups, produces long polymer chains known as polyureas.
- · Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials.
- Isocyanates also can react with themselves. Aliphatic di-isocyanates can form trimers, which are structurally related to cyanuric acid. Isocyanates participate in Diels-Alder reactions, functioning as dienophiles
- Isocyanates participate in Diels-Alder reactions, functioning as dienophiles

 Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds.
- Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture.
- $\boldsymbol{\cdot}$ Do NOT reseal container if contamination is expected
- · Open all containers with care
- · Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence,
- · Isocyanates will attack and embrittle some plastics and rubbers.
- The isocyanate anion is a pseudohalide (syn pseudohalogen) whose chemistry, resembling that of the true halogens, allows it to substitute for halogens in several classes of chemical compounds.. The behavior and chemical properties of the several pseudohalides are identical to that of the true halide ions.
 - A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
- The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.
- For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	polymeric diphenylmethane diisocyanate	Isocyanates, all (as-NCO)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available
Australia Exposure Standards	4,4'-diphenylmethane diisocyanate (MDI)	Methylene bisphenyl isocyanate (MDI)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available
Australia Exposure Standards	2,4'-diphenylmethane diisocyanate	Isocyanates, all (as-NCO)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available
Australia Exposure Standards	2,2'-diphenylmethane diisocyanate	Isocyanates, all (as-NCO)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
polymeric diphenylmethane diisocyanate	0.15 mg/m3	3.6 mg/m3	22 mg/m3
4,4'-diphenylmethane diisocyanate (MDI)	0.45 mg/m3	Not Available	Not Available
4,4'-diphenylmethane diisocyanate (MDI)	29 mg/m3	40 mg/m3	240 mg/m3

Ingredient	Original IDLH	Revised IDLH
polymeric diphenylmethane diisocyanate	Not Available	Not Available
4,4'-diphenylmethane diisocyanate (MDI)	75 mg/m3	Not Available
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	Not Available	Not Available
2,4'-diphenylmethane diisocyanate	Not Available	Not Available
2,2'-diphenylmethane diisocyanate	Not Available	Not Available

Page 7 of 17

ARDEX RA 56 Part A

Issue Date: 17/10/2022 Print Date: 17/10/2022

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

Exposure controls

- All processes in which isocvanates are used should be enclosed wherever possible.
- Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure standards.
- If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed.
- ▶ Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards.
- Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard.

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

- Employers may need to use multiple types of controls to prevent employee overexposure.
- Foraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations (AS/NZS 4114, UNI EN 12215:2010, ANSI/AIHA Z9.3-2007 or national equivalent).
- Local exhaust ventilation with full face positive-pressure air supplied breathing apparatus (hood or helmet type) is required.
- Spraying should be performed in a spray booth fitted with an effective exhaust system which complies with local environmental legislation.
- The spray booth area must be isolated from unprotected personnel whilst spraying is in progress and until all spraying mist has cleared.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used

Personal protection

Appropriate engineering

controls

Eye and face protection

- Safety glasses with side shields.
- ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

Hands/feet protection

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when

making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be

washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and

Version No: 2.1

ARDEX RA 56 Part A

Issue Date: 17/10/2022 Print Date: 17/10/2022

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374. AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

- ► Do NOT wear natural rubber (latex gloves).
- Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- Protective gloves and overalls should be worn as specified in the appropriate national standard.
- Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates
- DO NOT use skin cream unless necessary and then use only minimum amount.
- Isocyanate vapour may be absorbed into skin cream and this increases hazard.

Avoid contact with moisture.

Body protection

See Other protection below

All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential.

Other protection

Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known

- Overalls.
- P.V.C apron.
- Barrier cream.
- Skin cleansing cream.
- ▶ Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

ARDEX RA 56 Part A

Material	СРІ
PE/EVAL/PE	A

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory: may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- · Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

For spraying or operations which might generate aerosols:

Full face respirator with supplied air.

In certain circumstances, personal protection of the individual employee is

Page 9 of 17 ARDEX RA 56 Part A

Issue Date: **17/10/2022**Print Date: **17/10/2022**

necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.

- However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable.
- Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected.
- Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Appearance Clear dark brown liquid with slightly musty odour; does not mix with water.		
Physical state	Liquid	Relative density (Water = 1)	1.24 @25C
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Applicable	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	207.78	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	198.89 (PMCC)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Negligible	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. Presence of elevated temperatures.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhaled

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation hazard is increased at higher temperatures.

The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety

Chemwatch: 5562-93 Page 10 of 17 Issue Date: 17/10/2022 Version No: 2.1 Print Date: 17/10/2022

ARDEX RA 56 Part A

neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment.

Inhalation hazard is increased at higher temperatures.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.

Ingestion

Accidental ingestion of the material may be seriously damaging to the health of the individual; animal experiments indicate that ingestion of less than 40 gram may be fatal

High molecular weight material; on single acute exposure would be expected to pass through gastrointestinal tract with little change / absorption. Occasionally accumulation of the solid material within the alimentary tract may result in formation of a bezoar (concretion), producing discomfort.

The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either

- produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin Contact

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Eye

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis);

temporary impairment of vision and/or other transient eye damage/ulceration may occur. On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity

Chronic

Exposure to the material may cause concerns for humans owing to possible developmental toxic effects, generally on the basis that results in appropriate animal studies provide strong suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of other toxic effects. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Polyisocyanates still contain small amounts of monomeric isocyanate (typically <0.5 parts per weight) and both – the polyisocyanate and the monomer - have toxicological importance. In addition, solvents also contribute to the overall toxicity of these products.

Due to the higher molecular weight and the much lower vapor pressure the polyisocyanates exhibit a significantly reduced health hazard as compared to the corresponding monomers. Nevertheless they should only be handled under controlled conditions. They are not or only slightly irritating to the skin and eyes, but might be irritating to the respiratory tract (nose, throat, lung). Polyisocyanates might act as skin sensitisers On that basis there is clear evidence from sensitive animal models that aliphatic polyisocyanates and prepolymers (HDI-based as well as

IPDI-based, for example) may cause skin sensitisation. it is decided to classify all HDI-based and IPDI-based polyisocyanates and prepolymers as skin sensitisers. From animal models, however, there is no evidence that polyisocyanates are sensitising to the respiratory tract. Results from animal tests with repeated aerosol exposures indicate that under these conditions the respiratory tract is the primary target of aliphatic polyisocyanates, other organs are not significantly affected...

Available information does not provide evidence that polyisocyanates might either be mutagenic, carcinogenic or toxic to reproduction. Polymers based on isocyanate monomers (polyurethanes) are generally of low concern. However, in the majority of cases it is not possible to conclude from the chemical name of the polymer whether an individual polyurethane is, or is not, of low concern.

Finished polyurethane polymers used in the majority of household applications contain no unreacted isocyanate groups. The production of these polymers involves the use of an excess of the hydroxyl group-containing monomer or monomers leading to complete reaction of all of the isocvanate groups.

For certain applications, however, similar polymer chemistry can be used with the isocyanate group-containing monomer in excess. This results in the formation of a polyurethane 'pre-polymer', which is intended to be further reacted in its end use. Where the pre-polymer is identified as being 'blocked', it indicates that there are no free isocvanate groups.

The polymer contained in this product has a reactive group generally considered to be of high concern (US EPA). There are health concerns for isocyanates on the basis of their skin and respiratory sensitisation properties and other lung effects e.g TDI and MDI). Aromatic isocyanates may be potentially carcinogenic (e.g. TDI and DADI). Frequently new chemical isocyanates are manufactured with a significant excess of isocyanate monomer. Whilst it is generally accepted that polymers with a molecular weight exceeding 1000 are unlikely to pass through biological membranes, oligomers with lower molecular weight and specifically, those with a molecular weight below 500, may. Estimations based on a "highly" dispersed polymer population suggest that a polymer of approximate molecular weight 5000 could contain no more than one reactive

Page 11 of 17 ARDEX RA 56 Part A

Issue Date: **17/10/2022**Print Date: **17/10/2022**

group of high concern for it to be regulated as a polymer of low concern (a so-called PLC) Polymers with a molecular weight above 10000 are generally considered to be PLCs because these are not expected to be absorbed by biological systems. The choice of 10000 as a cut-off value is thought to provide a safety factor of 100, regarded as reasonable in light of limited data, duration of studies, dose levels at which effects are seen, and extrapolation from animals to humans.

Fully reacted polyurethane polymer is chemically inert. No exposure limits have been established in the U.S. by OSHA (Occupational Safety and Health Administration) or ACGIH (American Conference of Governmental Industrial Hygienists). It is not regulated by OSHA for carcinogenicity. Liquid resin blends containing residual isocyanates may contain hazardous or regulated components. Isocyanates are known skin and respiratory sensitizers. Additionally, amines, glycols, and phosphate present in spray polyurethane foams present risks.

The oral administration of polyurethane particles at 5 and 10 mg/kg/day for 10 days generated an inflammation response in mice. There was increased visceral fat accumulation in the treated mice in all groups (2, 5, 10 mg/kg/d) compared to controls. The lungs of mice in the 5 and 10 mg/kg/day groups showed inflammation, and inflammatory infiltrate was observed in all treatment groups.

The material contains a substantial proportion of a polymer considered to be of low concern (PLC). The trend towards production of lower molecular weight polymers (thus reducing the required level of solvent use and creating a more "environmentally-friendly" material) has brought with it the need to define PLCs as those

having molecular weights of between 1000 and 10000 and containing less than 10% of the molecules with molecular weight below 500 and less than 25% of the molecules with a molecular weight below 1000. These may contain unlimited low concern functional groups or moderate concern reactive functional groups with a combined functional group equivalent weight (FGEW, a concept developed by the US EPA describing whether the reactive functional group is sufficiently diluted by polymeric material) of a 1000 or more (provided no high concern groups are present) or high concern reactive functional groups with a FGEW of 5000 or more (FGEW includes moderate concern groups if present).

having molecular weights exceeding 10000 (without restriction on reactive groups).

inhalation of polymers with molecular weights > 70,000 Da has been linked with irreversible lung damage due to lung overloading and impaired clearance of particles from the lung, particularly following repeated exposure. If the polymer is inhaled at low levels and/or infrequently, it is assumed that it will be cleared from the lungs.

Reactive functional groups are in turn classified as being of low, moderate or high concern Classification of the polymer as a PLC, in accordance with established criteria, does not mean that hazards will not be associated with the polymer (during its import, manufacture, use, storage, handling or disposal). The polymer may, for example, contain a large number of particles in the respirable range, a hazard which may need to assessed in the health and safety risk assessment. Similarly a polymer with low concern reactive may be released into the environment in large quantities and produce an environmental hazard.

Whilst it is generally accepted that polymers with a molecular weight exceeding 1000 are unlikely to pass through biological membranes, oligomers with lower molecular weight and specifically, those with a molecular weight below 500, may. Estimations based on a "highly" dispersed polymer population (polydispersity = 10) suggests that the molecular weight of the polymer carrying a reactive group of high concern must be 5000 to be considered a PLC; similarly a polymer of approximate molecular weight 1000 could contain no more than one reactive group of moderate concern (for two moderate concern groups, the molecular weight would be about 2500).

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocvanates.

The chemistry of reaction of isocyanates, as evidenced by MDI, in biological milieu is such that in the event of a true exposure of small MDI doses to the mouth, reactions will commence at once with biological macromolecules in the buccal region and will continue along the digestive tract prior to reaching the stomach. Reaction products will be a variety of polyureas and macromolecular conjugates with for example mucus, proteins and cell components.

This is corroborated by the results from an MDI inhalation study. Following an inhalation exposure of rats to radiolabelled MDI, 79% of the dose was excreted in faeces. The faecal excretion in these animals was considered entirely due to ingestion of radioactivity from grooming and ingestion of deposited material from the nasopharangeal region via the mucociliary escalator, i.e. not following systemic absorption. The faecal radioactivity was tentatively identified as mixed molecular weight polyureas derived from MDI. Diamine was not present. Thus, for MDI and diisocyanates in general the oral gavage dosing route is inappropriate for toxicological studies and risk assessment.

It is expected that oral gavage dosing will result in a similar outcome to that produced by TDI or MDI, that is (1) reaction with stomach contents and (2) polymerization to solid polyureas.

- Reaction with stomach contents is very plausibly described in case reports of accidental ingestion of polymeric MDI based glue in domestic animals. Extensive polymerization and CO2 liberation resulting in an expansion of the gastric content is described in the stomach, without apparent acute chemical toxicity
- Polyurea formation in organic and aqueous phases has been described. In this generally accepted chemistry of hydrolysis of an isocyanate the initially produced carbamate decarboxylates to an amine which. The amine, as a reactive intermediate, then reacts very readily with the present isocyanate to produce a solid and inert polyurea. This urea formation acts as a pH buffer in the stomach, thus promoting transformation of the diisocyanate into polyurea, even under the acidic conditions.

At the resorbtive tissues in the small intestine, these high molecular reaction products are likely to be of very low bioavailability, which is substantiated by the absence of systemic toxicity in acute oral bioassays with rats at the OECD limit dose (LC50>2 g/kg bw).

The respiratory tract may be regarded as the main entry for systemically available isocyanates as evidenced following MDI.exposures.

A detailed summary on urinary, plasma and in vitro metabolite studies is provided below. Taken together, all available studies provide convincing evidence that MDI-protein adduct and MDI-metabolite formation proceeds:

- via formation of a labile isocyanate glutathione (GSH)-adduct,
- $\label{eq:linear_problem}$ then transfer to a more stable adduct with larger proteins, and
- without formation of free MDA. MDA reported as a metabolite is actually formed by analytical workup procedures (strong acid or base hydrolysis) and is not an identified metabolite in urine or blood

A 90-day inhalation study in rats with polymeric MDI (6 hours/day, 5 days/week) produced moderate to severe hyperplastic inflammatory lesions in the nasal cavities and lungs at levels of 8 mg/m3 or greater.

Rats exposed for two years to a respirable aerosol of polymeric MDI exhibited chronic pulmonary irritation at high concentrations. Only at the highest level (6 mg/m3), was there a significant incidence of a benign tumour of the lung (adenoma) and one malignant tumour (adenocarcinoma). There were no lung tumours at 1 mg/m3 and no effects at 0.2 mg/m3. Overall, the tumour incidence, both benign and malignant and the number of animals with the tumours were not different from controls. The increased incidence of lung tumours is associated with prolonged respiratory irritation and the concurrent accumulation of yellow material in the lung, which occurred throughout the study. In the absence of prolonged exposure to high concentrations leading to chronic irritation and lung damage, it is highly unlikely that tumour formation will

Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, titching, hives and swelling of extremities.

Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material.

ARDEX RA 56 Part A

TOXICITY	IRRITATION
Not Available	Not Available

Page **12** of **17**

ARDEX RA 56 Part A

Issue Date: **17/10/2022**Print Date: **17/10/2022**

	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >9400 mg/kg ^[2]	Eye (rabbit): 100 mg - mild	
polymeric diphenylmethane diisocyanate	Inhalation(Rat) LC50; 0.49 mg/L4h ^[2]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Oral (Rat) LD50; 43000 mg/kg ^[2]		
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >6200 mg/kg ^[2]	Dermal Sensitiser *	
4,4'-diphenylmethane	Inhalation(Rat) LC50; 0.368 mg/L4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
diisocyanate (MDI)	Oral (Rat) LD50; >2000 mg/kg ^[1]	Skin (rabbit): 500 mg /24 hours	
		Skin: adverse effect observed (irritating) ^[1]	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye (rabbit): very slight**	
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	Oral (Rat) LD50; >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
unsobutyrate		Skin (guinea pig): 5000mg/kg-mild	
		Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
2,4'-diphenylmethane	Dermal (rabbit) LD50: >9400 mg/kg ^[1]	Not Available	
diisocyanate	Inhalation(Rat) LC50; 0.368 mg/L4h ^[1]		
	Oral (Rat) LD50; >2000 mg/kg ^[1]		
	TOXICITY	IRRITATION	
2,2'-diphenylmethane	Dermal (rabbit) LD50: >9400 mg/kg ^[1]	Not Available	
diisocyanate	Inhalation(Rat) LC50; 0.368 mg/L4h ^[1]		
	Oral (Rat) LD50; >2000 mg/kg ^[1]		
Legend:	Value obtained from Europe ECHA Registered Substances - Auspecified data extracted from RTECS - Register of Toxic Effect of	cute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise chemical Substances	
POLYMERIC DIPHENYLMETHANE DIISOCYANATE	product		
4,4'-DIPHENYLMETHANE DIISOCYANATE (MDI)	Inhalation (human) TCLo: 0.13 ppm/30 mins Eye (rabbit): 0.10 mg moderate		
2,2,4-TRIMETHYL- 1,3-PENTANEDIOL DIISOBUTYRATE	NOAEL oral (rat), 103 days = 1% in diet *** NOEL oral (dog), 90 days = 1% in diet *** Mutagenicity/Genotoxicity Data: *** Chromosomal aberration assay: Negative (+/- activation) CHO/HGPRT assay: Negative (+/- activation) Salmonella-E.coli reverse mutation assay (Ames test): Negative (+/- activation) **,**** Various suppliers MSDS Sensitization Species:Guinea pig: Result: sensitizing Effects on foetal development: Species: Rabbit Application Route: Oral Developmental Toxicity: NOAEL: 300 mg/kg body weight Reproductive toxicity; Assessment: Some evidence of adverse effects on development, based on animal experiments. * Eastman Benzoflex 6000 Plasticiser The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. For 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB) TXIB showed no genotoxic effects in bacteria and chromosomal aberration test <i>in vitro</i> . Reproductive/ developmental toxicity: In a combined repeat dose and reproductive/developmental toxicity screening test, increase of liver and kidney weights were observed in parental animals from the middle dose level (150 mg/kg/day). In the histopathological examinations, increases in grade of basophilic change of renal tubular epithelium and degeneration of hyaline droplet were observed from the same level. In addition, necrosis and other renal effects were also observed. From the view point of reproductive/developmental end-points, there were no effects observed related to mating, fertility and oestrus cycle and also for dams during the pregnancy and lactation period and for pups after their birth. Therefore, NOEL was 30 mg/kg/day for repeated dose toxicity as well as 750 mg/kg/day for reproductive toxicity. Genotoxicity: The chemical showed no genotoxic effects in bac		
POLYMERIC DIPHENYLMETHANE DIISOCYANATE & 4,4'-DIPHENYLMETHANE DIISOCYANATE (MDI) & 2,2,4- TRIMETHYL- 1,3-PENTANEDIOL DIISOBUTYRATE & 2,4'-DIPHENYLMETHANE DIISOCYANATE & 2,2'-DIPHENYLMETHANE DIISOCYANATE	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.		
POLYMERIC DIPHENYLMETHANE DIISOCYANATE & 4,4'-DIPHENYLMETHANE DIISOCYANATE (MDI) & 2,4'-DIPHENYLMETHANE DIISOCYANATE &	Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a		

Issue Date: 17/10/2022 Print Date: 17/10/2022

result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, hives and swelling of extremities.

Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material. for diisocyanates:

In general, there appears to be little or no difference between aromatic and aliphatic diisocyanates as toxicants. In addition, there are insufficient data available to make any major distinctions between polymeric (<1000 MW) and monomeric diisocyanates. Based on repeated dose studies in animals by the inhalation route, both aromatic and aliphatic diisocyanates appear to be of high concern for pulmonary toxicity at low exposure levels. Based upon a very limited data set, it appears that diisocyanate prepolymers exhibit the same respiratory tract effects as the monomers in repeated dose studies. There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route. Most members of the diisocyanate category have not been tested for carcinogenic potential. Though the aromatic diisocyanates tested positive and the one aliphatic diisocyanate tested negative in one species, it is premature to make any generalizations about the carcinogenic potential of aromatic versus aliphatic diisocyanates. In the absence of more human data, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Diisocyanates are moderate to strong dermal sensitisers in animal studies. Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates.

For monomers, effects on the respiratory tract (lungs and nasal cavities) were observed in animal studies at exposure concentrations of less than 0.005 mg/L. The experimental animal data available on prepolymeric diisocyanates show similar adverse effects at levels that range from 0.002 mg/L to 0.026 mg/L.

There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route

Oncogenicity: Most members of the diisocyanate category have not been tested for carcinogenic potential. Commercially available Poly-MDI was tested in a 2-year inhalation study in rats. The tested material contained 47% aromatic 4,4'-methylenediphenyl diisocyanate (MDI) and 53% higher molecular weight oligomers. Interim sacrifices at one year showed that males and females in the highest dose group (6 mg/m3) had treatment related histological changes in the nasal cavity, lungs and mediastinal lymph nodes. The incidence and severity of degeneration and basal cell hyperplasia of the olfactory epithelium and Bowman's gland hyperplasia were increased in males at the mid and high doses and in females at the high dose following the two year exposure period. Pulmonary adenomas were found in 6 males and 2 females, and pulmonary adenocarcinoma in one male in the high dose group. However, aliphatic hexamethylene diisocyanate (HDI) was found not to be carcinogenic in a two year repeated dose study in rats by the inhalation route. HDI has not been tested in mice by the inhalation route.

Though the oral route is not an expected route of exposure to humans, it should be noted that in two year repeated dose studies by the oral route, aromatic toluene diisocyanate (TDI) and 3,3'-dimethoxy-benzidine-4,4'-diisocyanate (dianisidine diisocyanate, DADI) were found to be carcinogenic in rodents. TDI induced a statistically significant increase in the incidence of liver tumors in rats and mice as well as dose-related hemangiosarcomas of the circulatory system and has been classified by the Agency as a B2 carcinogen. DADI was found to be carcinogenic in rats, but not in mice, with a statistically increase in the incidence of pancreatic tumors observed.

Respiratory and Dermal Sensitization: Based on the available toxicity data in animals and epidemiologic studies of humans, aromatic diisocyanates such as TDI and MDI are strong respiratory sensitisers. Aliphatic diisocyanates are generally not active in animal models for respiratory sensitization. However, HDI and possibly isophorone diisocyanate (IPDI), are reported to be associated with respiratory sensitization in humans. Symptoms resulting from occupational exposure to HDI include shortness of breath, increased bronchoconstriction reaction to histamine challenges, asthmatic reactions, wheezing and coughing. Two case reports of human exposure to IPDI by inhalation suggest IPDI is a respiratory sensitiser in humans. In view of the information from case reports in humans, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Studies in both human and mice using TDI, HDI, MDI and dicyclohexylmethane-4,4'-diisocyanate (IHMDI) suggest cross-reactivity with the other diisocyanates, irrespective of whether the challenge compound was an aliphatic or aromatic diisocyanate. Diisocyanates are moderate to strong dermal sensitisers in animal studies. There seems to be little or no difference in the level of reactivity between aromatic and aliphatic diisocyanates.

Dermal Irritation: Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates. The level of irritation ranged from slightly to severely irritating to the skin. One chemical, hydrogenated MDI (1,1-methylenebis-4-isocyanatocyclohexane), was found to be corrosive to the skin in guinea pigs.

POLYMERIC DIPHENYLMETHANE DIISOCYANATE & 4,4'-DIPHENYLMETHANE DIISOCYANATE (MDI)

2.2'-DIPHENYLMETHANE

DIISOCYANATE

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The substance is classified by IARC as Group 3: **NOT** classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

2,4'-DIPHENYLMETHANE DIISOCYANATE & 2,2'-DIPHENYLMETHANE DIISOCYANATE

No significant acute toxicological data identified in literature search.

Acute Toxicity	✓	Carcinogenicity	~
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend:

X − Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Page **14** of **17**

ARDEX RA 56 Part A

Issue Date: 17/10/2022 Print Date: 17/10/2022

Toxicity

	Endpoint	Test Duration (hr)		Species		Value	Source
ARDEX RA 56 Part A	Not Available	Not Available		Not Available		Not Available	Not Available
polymeric diphenylmethane diisocyanate	Endpoint	Test Duration (hr)		Species		Value	Source
	Not Available	Not Available		Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	s	pecies	Value		Source
	EC50	72h	A	lgae or other aquatic plants	>1640	Dmg/l	2
4,4'-diphenylmethane	BCF	672h	Fi	ish	61-15	0	7
diisocyanate (MDI)	NOEC(ECx)	504h	С	rustacea	>=10	mg/l	2
	LC50	96h	Fi	ish	95.24	-134.37mg/l	Not Available
	Endpoint	Test Duration (hr)		Species		Value	Source
	BCF	1008h		Fish		0.6-0.8	7
2,2,4-trimethyl-1,3-pentanediol	NOEC(ECx)	504h		Crustacea		0.7mg/l	2
diisobutyrate	EC50	72h		Algae or other aquatic plants		>7.49mg/l	2
	EC50	48h		Crustacea		>1.46mg/l	1
	LC50	96h		Fish		>1.55mg/l	2
	Endpoint	Test Duration (hr)		Species		Value	Source
2,4'-diphenylmethane	NOEC(ECx)	504h		Crustacea		>=10mg/l	2
diisocyanate	EC50	72h		Algae or other aquatic plants		>1640mg/l	2
	LC50	96h		Fish		>1000mg/l	2
	Endpoint	Test Duration (hr)		Species		Value	Source
2,2'-diphenylmethane diisocyanate	EC50	72h		Algae or other aquatic plants		>1640mg/l	2
	NOEC(ECx)	504h		Crustacea		>=10mg/l	2
	LC50	96h		Fish		>1000mg/l	2
Legend:	Ecotox databas			d Substances - Ecotoxicological Inform rd Assessment Data 6. NITE (Japan) -			

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
4,4'-diphenylmethane diisocyanate (MDI)	LOW (Half-life = 1 days)	LOW (Half-life = 0.24 days)
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	нівн	HIGH
2,4'-diphenylmethane diisocyanate	HIGH	HIGH
2,2'-diphenylmethane diisocyanate	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
4,4'-diphenylmethane diisocyanate (MDI)	LOW (BCF = 15)
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	LOW (BCF = 1)
2,4'-diphenylmethane diisocyanate	HIGH (LogKOW = 5.4481)
2,2'-diphenylmethane diisocyanate	HIGH (LogKOW = 5.4481)

Mobility in soil

•	
Ingredient	Mobility
4,4'-diphenylmethane diisocyanate (MDI)	LOW (KOC = 376200)
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	LOW (KOC = 607.5)

ARDEX RA 56 Part A

Issue Date: **17/10/2022**Print Date: **17/10/2022**

Ingredient	Mobility
2,4'-diphenylmethane diisocyanate	LOW (KOC = 384000)
2,2'-diphenylmethane diisocyanate	LOW (KOC = 392000)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- Product / Packaging disposal
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- DO NOT recycle spilled material.
- Consult State Land Waste Management Authority for disposal.
- ▶ Neutralise spill material carefully and decontaminate empty containers and spill residues with 10% ammonia solution plus detergent or a proprietary decontaminant prior to disposal.
- ▶ DO NOT seal or stopper drums being decontaminated as CO2 gas is generated and may pressurise containers.
- ▶ Puncture containers to prevent re-use.
- ▶ Bury or incinerate residues at an approved site.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group	
polymeric diphenylmethane diisocyanate	Not Available	
4,4'-diphenylmethane diisocyanate (MDI)	Not Available	
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	Not Available	
2,4'-diphenylmethane diisocyanate	Not Available	
2,2'-diphenylmethane diisocyanate	Not Available	

Transport in bulk in accordance with the ICG Code

Product name	Ship Type	
polymeric diphenylmethane diisocyanate	Not Available	
4,4'-diphenylmethane diisocyanate (MDI)	Not Available	
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	Not Available	
2,4'-diphenylmethane diisocyanate	Not Available	
2,2'-diphenylmethane diisocyanate	Not Available	

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

Version No: 2.1

Issue Date: 17/10/2022 Page 16 of 17 Print Date: 17/10/2022 ARDEX RA 56 Part A

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

4,4'-diphenylmethane diisocyanate (MDI) is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

2,2,4-trimethyl-1,3-pentanediol diisobutyrate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

2,4'-diphenylmethane diisocyanate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Australian Inventory of Industrial Chemicals (AIIC)

2,2'-diphenylmethane diisocyanate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (polymeric diphenylmethane diisocyanate; 4,4'-diphenylmethane diisocyanate (MDI); 2,2,4-trimethyl-1,3-pentanediol diisobutyrate; 2,4'-diphenylmethane diisocyanate; 2,2'-diphenylmethane diisocyanate)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (polymeric diphenylmethane diisocyanate)
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
JSA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (2,4'-diphenylmethane diisocyanate; 2,2'-diphenylmethane diisocyanate)
Vietnam - NCI	Yes
Russia - FBEPH	No (2,2'-diphenylmethane diisocyanate)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	17/10/2022
Initial Date	17/10/2022

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limita

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors Chemwatch: 5562-93 Page 17 of 17 Issue Date: 17/10/2022 Version No: 2.1 Print Date: 17/10/2022 ARDEX RA 56 Part A

BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

ARDEX RA 56 Part B Ardex (Ardex Australia)

Chemwatch: 5562-94 Version No: 3.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **10/03/2023** Print Date: **15/06/2023** L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	ARDEX RA 56 Part B
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Repairing concrete cracks and spalls when mixed with Dunlop Ardit Crack Filler Part A.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Ardex (Ardex Australia)		
Address	20 Powers Road Seven Hills NSW 2147 Australia		
Telephone	1800 224 070		
Fax	1300 780 102		
Website	www.ardexaustralia.com		
Email	technicalservices@ardexaustralia.com		

Emergency telephone number

Association / Organisation	Ardex (Ardex Australia)
Emergency telephone numbers	1800 224 070 (Mon-Fri, 9am-5pm)
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Chemwatch Hazard Ratings

	Min	Max	
Flammability	1		
Toxicity	1		0 = Minimum
Body Contact	2	1	1 = Low
Reactivity	1		2 = Moderate
Chronic	2		3 = High 4 = Extreme

Poisons Schedule	Not Applicable
Classification ^[1]	Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 2A, Reproductive Toxicity Category 2, Hazardous to the Aquatic Environment Acute Hazard Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Issue Date: **10/03/2023**Print Date: **15/06/2023**

Signal word	Warning
Oigilai Word	***************************************

Hazard statement(s)

H317	May cause an allergic skin reaction.	
H319	Causes serious eye irritation.	
H361fd	Suspected of damaging fertility. Suspected of damaging the unborn child.	
H412	Harmful to aquatic life with long lasting effects.	

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.	
P280	Vear protective gloves, protective clothing, eye protection and face protection.	
P261	Avoid breathing mist/vapours/spray.	
P273	Avoid release to the environment.	
P264	Wash all exposed external body areas thoroughly after handling.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.	
P302+P352	IF ON SKIN: Wash with plenty of water.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
6846-50-0	15-40	2.2.4-trimethyl-1,3-pentanediol diisobutyrate
111-46-6	5-10	diethylene glycol
111-76-2	1-5	2-Butoxyethanol
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

If this product comes in contact with the eyes:

Eye Contact

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

- Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - ► Seek medical attention in event of irritation.

Skin Contact

▶ If fumes or combustion products are inhaled remove from contaminated area.

Inhalation

- Lay patient down. Keep warm and rested.
 Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.

Chemwatch: 5562-94 Page 3 of 12 Issue Date: 10/03/2023 Version No: 3.1

ARDEX RA 56 Part B

Transport to hospital, or doctor, without delay ▶ If swallowed do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. ► Observe the patient carefully. Ingestion ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically

For acute or short term repeated exposures to ethylene glycol:

- Early treatment of ingestion is important. Ensure emesis is satisfactory.
- Test and correct for metabolic acidosis and hypocalcaemia.
- Apply sustained diuresis when possible with hypertonic mannitol.
- Evaluate renal status and begin haemodialysis if indicated. [I.L.O]
- Rapid absorption is an indication that emesis or lavage is effective only in the first few hours. Cathartics and charcoal are generally not effective.
- Correct acidosis, fluid/electrolyte balance and respiratory depression in the usual manner. Systemic acidosis (below 7.2) can be treated with intravenous sodium bicarbonate
- ▶ Ethanol therapy prolongs the half-life of ethylene glycol and reduces the formation of toxic metabolites.
- Pyridoxine and thiamine are cofactors for ethylene glycol metabolism and should be given (50 to 100 mg respectively) intramuscularly, four times per day for 2 days.
- Magnesium is also a cofactor and should be replenished. The status of 4-methylpyrazole, in the treatment regime, is still uncertain. For clearance of the material and its metabolites, haemodialysis is much superior to peritoneal dialysis.

[Ellenhorn and Barceloux: Medical Toxicology]

It has been suggested that there is a need for establishing a new biological exposure limit before a workshift that is clearly below 100 mmol ethoxy-acetic acids per mole creatinine in morning urine of people occupationally exposed to ethylene glycol ethers. This arises from the finding that an increase in urinary stones may be associated with such exposures. Laitinen J., et al: Occupational & Environmental Medicine 1996; 53, 595-600

SECTION 5 Firefighting measures

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Fire Fighting Avoid spraying water onto liquid pools
 - ▶ DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard

- Combustible. Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include:

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

May emit poisonous fumes May emit corrosive fumes

HAZCHEM

Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

Slippery when spilt

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Print Date: 15/06/2023

Chemwatch: 5562-94 Page 4 of 12 Issue Date: 10/03/2023 Version No: 3.1 Print Date: 15/06/2023

ARDEX RA 56 Part B

Moderate hazard ▶ Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves

Prevent, by any means available, spillage from entering drains or water course.

No smoking, naked lights or ignition sources.

Major Spills Increase ventilation.

Slippery when spilt.

Stop leak if safe to do so.

- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

- ► DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Safe handling
- Avoid contact with incompatible materials.
 - When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

- Store in original containers. Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Other information Store in a cool, dry, well-ventilated area.
 - Store away from incompatible materials and foodstuff containers.
 - Protect containers against physical damage and check regularly for leaks.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- Metal can or drum
- Packaging as recommended by manufacturer.
- ▶ Check all containers are clearly labelled and free from leaks.

Storage incompatibility

- Figure Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water.
- Esters react with acids to liberate heat along with alcohols and acids.
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- Heat is also generated by the interaction of esters with caustic solutions. Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- Esters may be incompatible with aliphatic amines and nitrates.

Alcohols

- real are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen
- react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium
- should not be heated above 49 deg. C. when in contact with aluminium equipment

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	diethylene glycol	2,2'-Oxybis[ethanol]	23 ppm / 100 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	2-Butoxyethanol	2-Butoxyethanol	20 ppm / 96.9 mg/m3	242 mg/m3 / 50 ppm	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3	
diethylene glycol	6.9 ppm	140 ppm	860 ppm	
2-Butoxyethanol	60 ppm	120 ppm	700 ppm	

Page **5** of **12**

Issue Date: **10/03/2023**Print Date: **15/06/2023**

ARDEX RA 56 Part B

Ingredient	Original IDLH	Revised IDLH
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	Not Available	Not Available
diethylene glycol	Not Available	Not Available
2-Butoxyethanol	700 ppm	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a	

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

range of exposure concentrations that are expected to protect worker health.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

- ► Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

Hands/feet protection

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when

Page 6 of 12 ARDEX RA 56 Part B

Issue Date: **10/03/2023**Print Date: **15/06/2023**

making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374. AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
 Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- Good when breakthrough time > 400 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

Other protection

- Overalls
- P.V.C apron.
- ► Barrier cream.
- Skin cleansing cream.
- Eye wash unit

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

ARDEX RA 56 Part B

Material	СРІ
BUTYL	А
NITRILE	В
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NEOPRENE	С
PE/EVAL/PE	С
PVA	С
PVC	С
SARANEX-23	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

miorination on Sacio physical and chemical proportion			
Appearance	Clear black liquid with slight characteristic odour. Clear		
Physical state	Liquid	Relative density (Water = 1)	1.015-1.020

Page 7 of 12

ARDEX RA 56 Part B

Issue Date: **10/03/2023**Print Date: **15/06/2023**

	1		
Odour	Characteristic	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Applicable	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	129.44 (TCC)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	0.013 @25C	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well.

Inhalation hazard is increased at higher temperatures.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Accidental ingestion of the material may be damaging to the health of the individual.

Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at doses otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased.

Within the homologous series of aliphatic alcohols, narcotic potency may increase even faster than lethality

Only scanty toxicity information is available about higher homologues of the aliphatic alcohol series (greater than C7) but animal data establish that lethality does not continue to increase with increasing chain length. Aliphatic alcohols with 8 carbons are less toxic than those immediately preceding them in the series. 10 -Carbon n-decyl alcohol has low toxicity as do the solid fatty alcohols (e.g. lauryl, myristyl, cetyl and stearyl). However the rat aspiration test suggests that decyl and melted dodecyl (lauryl) alcohols are dangerous if they enter the trachea. In the rat even a small quantity (0.2 ml) of these behaves like a hydrocarbon solvent in causing death from pulmonary oedema.

Primary alcohols are metabolised to corresponding aldehydes and acids; a significant metabolic acidosis may occur. Secondary alcohols are converted to ketones, which are also central nervous system depressants and which, in he case of the higher homologues persist in the blood for many hours. Tertiary alcohols are metabolised slowly and incompletely so their toxic effects are generally persistent.

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

 $Skin\ contact\ with\ the\ material\ may\ damage\ the\ health\ of\ the\ individual;\ systemic\ effects\ may\ result\ following\ absorption.$

Skin Contact

Ingestion

The material may produce mild skin irritation; limited evidence or practical experience suggests, that the material either:

- roduces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Chemwatch: 5562-94 Page 8 of 12 Version No: 3.1

ARDEX RA 56 Part B

Issue Date: 10/03/2023 Print Date: 15/06/2023

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (non allergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Chronic

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Exposure to the material may cause concerns for humans owing to possible developmental toxic effects, generally on the basis that results in appropriate animal studies provide strong suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of other toxic effects. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

TOXICITY IRRITATION ARDEX RA 56 Part B Not Available Not Available TOXICITY IRRITATION Eye (rabbit): very slight** **[Eastman] *[Patty] Dermal (rabbit) LD50: >2000 mg/kg^[1] 2,2,4-trimethyl-1,3-pentanediol Oral (Rat) LD50: >2000 mg/kg[1] Eye: no adverse effect observed (not irritating)[1]diisobutyrate Skin (guinea pig): 5000mg/kg-mild Skin: no adverse effect observed (not irritating)^[1] TOXICITY IRRITATION Dermal (rabbit) LD50: 11890 mg/kg^[2] Eye (rabbit) 50 mg mild Eye: no adverse effect observed (not irritating)[1]Inhalation(Rat) LC50: >4.6 mg/l4h[1] diethylene glycol Oral (Rat) LD50: 12565 mg/kg^[2] Skin (human): 112 mg/3d-I mild Skin (rabbit): 500 mg mild Skin: no adverse effect observed (not irritating)^[1] TOXICITY Eye (rabbit): 100 mg SEVERE * [Union Carbide] dermal (guinea pig) LD50: 210 mg/kg^[2] Inhalation(Rat) LC50: 2.21 mg/l4h^[2] Eye (rabbit): 100 mg/24h-moderate Oral (Rat) LD50: 300 mg/kg^[2] Eye: adverse effect observed (irritating)^[1] 2-Butoxvethanol Skin (rabbit): 500 mg, open; mild Skin: adverse effect observed (irritating)^[1] Skin: no adverse effect observed (not irritating) [1]

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise Legend: specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

2,2,4-TRIMETHYL-1,3-PENTANEDIOL DIISOBUTYRATE NOAEL oral (rat), 103 days = 1% in diet *** NOEL oral (dog), 90 days = 1% in diet *** Mutagenicity/Genotoxicity Data: *** Chromosomal aberration assay: Negative (+/- activation) CHO/HGPRT assay: Negative (+/- activation) Salmonella-E.coli reverse mutation assay (Ames test): Negative (+/- activation) *,**,*** Various suppliers MSDS Sensitization Species:Guinea pig: Result: sensitizing Effects on foetal development: Species: Rabbit Application Route: Oral Developmental Toxicity: NOAEL: 300 mg/kg body weight Reproductive toxicity; Assessment: Some

Page 9 of 12 ARDEX RA 56 Part B

Issue Date: 10/03/2023 Print Date: 15/06/2023

evidence of adverse effects on development, based on animal experiments. * Eastman Benzoflex 6000 Plasticiser The following information refers to contact allergens as a group and may not be specific to this product.

Genotoxicity: The chemical showed no genotoxic effects in bacteria and chromosomal aberration tests in vitro

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

For 2.2.4-trimethyl-1.3-pentanediol diisobutyrate (TXIB)

TXIB showed no genotoxic effects in bacteria and chromosomal aberration test in vitro.

Reproductive/ developmental toxicity: In a combined repeat dose and reproductive/developmental toxicity screening test, increase of liver and kidney weights were observed in parental animals from the middle dose level (150 mg/kg/day). In the histopathological examinations, increases in grade of basophilic change of renal tubular epithelium and degeneration of hyaline droplet were observed from the same level. In addition, necrosis and other renal effects were also observed. From the view point of reproductive/developmental end-points, there were no effects observed related to mating, fertility and oestrus cycle and also for dams during the pregnancy and lactation period and for pups after their birth. Therefore, NOEL was 30 mg/kg/day for repeated dose toxicity as well as 750 mg/kg/day for reproductive toxicity.

DIETHYLENE GLYCOL

2-BUTOXYETHANOL

Diglycolic acid is formed following the oxidation of accidentally ingested diethylene glycol in the body and can lead to severe complications with fatal outcome.

NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed to high concentrations of this substance by all routes. ** ASCC (NZ) SDS

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

For ethylene glycol monoalkyl ethers and their acetates (EGMAEs):

Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates.

EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary metabolites of mono substituted glycol ethers.

Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Four to six hour acute inhalation toxicity studies were conducted for these chemicals in rats at the highest vapour concentrations practically achievable. Values range from LC0 > 85 ppm (508 mg/m3) for EGHE, LC50 > 400ppm (2620 mg/m3) for EGBEA to LC50 > 2132 ppm (9061 mg/m3) for EGPE. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 435 mg/kg bw (EGBE) to 1500 mg/kg bw (EGBEA). Overall these category members can be considered to be of low to moderate acute toxicity. All category members cause reversible irritation to skin and eyes, with EGBEA less irritating and EGHE more irritating than the other category members. EGPE and EGBE are not sensitisers in experimental animals or humans. Signs of acute toxicity in rats, mice and rabbits are consistent with haemolysis (with the exception of EGHE) and non-specific CNS depression typical of organic solvents in general. Alkoxyacetic acid metabolites, propoxyacetic acid (PAA) and butoxyacetic acid (BAA), are responsible for the red blood cell hemolysis. Signs of toxicity in humans deliberately ingesting cleaning fluids containing 9-22% EGBE are similar to those of rats, with the exception of haemolysis. Although decreased blood haemoglobin and/or haemoglobinuria were observed in some of the human cases, it is not clear if this was due to haemoglosis or haemodlution as a result of administration of large volumes of fluid. Red blood cells of humans are many-fold more resistant to toxicity from EGPE and EGBE *in vitro* than those of rats.

Repeat dose toxicity: The fact that the NOAEL for repeated dose toxicity of EGBE is less than that of EGPE is consistent with red blood cells being more sensitive to EGBE than EGPE. Blood from mice, rats, hamsters, rabbits and baboons were sensitive to the effects of BAA *in vitro* and displayed similar responses, which included erythrocyte swelling (increased haematocrit and mean corpuscular hemoglobin), followed by hemolysis. Blood from humans, pigs, dogs, cats, and guinea pigs was less sensitive to haemolysis by BAA *in vitro*.

Mutagenicity: In the absence and presence of metabolic activation, EGBE tested negative for mutagenicity in Ames tests conducted in *S. typhimurium* strains TA97, TA98, TA100, TA1535 and TA1537 and EGHE tested negative in strains TA98, TA100, TA1535, TA1537 and TA1538. *In vitro* cytogenicity and sister chromatid exchange assays with EGBE and EGHE in Chinese Hamster Ovary Cells with and without metabolic activation and in vivo micronucleus tests with EGBE in rats and mice were negative, indicating that these glycol ethers are not genotoxic. Carcinogenicity: In a 2-year inhalation chronic toxicity and carcinogenicity study with EGBE in rats and mice a significant increase in the incidence of liver haemangiosarcomas was seen in male mice and forestomach tumours in female mice. It was decided that based on the mode of action data available, there was no significant hazard for human carcinogenicity

Reproductive and developmental toxicity. The results of reproductive and developmental toxicity studies indicate that the glycol ethers in this category are not selectively toxic to the reproductive system or developing fetus, developmental toxicity is secondary to maternal toxicity. The repeated dose toxicity studies in which reproductive organs were examined indicate that the members of this category are not associated with toxicity to reproductive organs (including the testes).

Results of the developmental toxicity studies conducted via inhalation exposures during gestation periods on EGPE (rabbits -125, 250, 500 ppm or 531, 1062, or 2125 mg/m3 and rats - 100, 200, 300, 400 ppm or 425, 850, 1275, or 1700 mg/m3), EGBE (rat and rabbit - 25, 50, 100, 200 ppm or 121, 241, 483, or 966 mg/m3), and EGHE (rat and rabbit - 20.8, 41.4, 79.2 ppm or 124, 248, or 474 mg/m3) indicate that the members of the category are not teratogenic.

The NOAELs for developmental toxicity are greater than 500 ppm or 2125 mg/m3 (rabbit-EGPE), 100 ppm or 425 mg/m3 (rat-EGPE), 50 ppm or 241 mg/m3 (rat EGBE) and 100 ppm or 483 mg/m3 (rabbit EGBE) and greater than 79.2 ppm or 474 mg/m3 (rat and rabbit-EGHE). Exposure of pregnant rats to ethylene glycol monobutyl ether (2-butoxyethanol) at 100 ppm or rabbits at 200 ppm during organogenesis resulted in maternal toxicity and embryotoxicity including a decreased number of viable implantations per litter. Slight foetoxicity in the form of poorly ossified or unossified skeletal elements was also apparent in rats. Teratogenic effects were not observed in other species.

At least one researcher has stated that the reproductive effects were less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, macrocytosis, abnormally large red cells and abnormal red cell fragility.

Exposure of male and female rats and mice for 14 weeks to 2 years produced a regenerative haemolytic anaemia and subsequent effects on the haemopoietic system in rats and mice. In addition, 2-butoxyethanol exposures caused increases in the incidence of neoplasms and nonneoplastic lesions (1). The occurrence of the anaemia was concentration-dependent and more pronounced in rats and females. In this study it was proposed that 2-butoxyethanol at concentrations of 500 ppm and greater produced an acute disseminated thrombosis and bone infarction in male and female rats as a result of severe acute haemolysis and reduced deformability of erythrocytes or through anoxic damage to endothelial cells that compromise blood flow. In two-year studies, 2-butoxyethanol continued to affect circulating erythroid mass, inducing a responsive anaemia. Rats showed a marginal increase in the incidence of benign or malignant pheochromocytomas (combined) of the adrenal gland. In mice, 2-butoxyethanol exposure resulted in a concentration dependent increase in the incidence of squamous cell papilloma or carcinoma of the forestomach. It was hypothesised that exposure-induced irritation produced inflammatory and hyperplastic effects in the forestomach and that the neoplasia were associated with a continuation of the injury/ degeneration process. Exposure also produced a concentration -dependent increase in the incidence of haemangiosarcoma of the liver of male mice and hepatocellular carcinoma.

1: NTP Toxicology Program Technical report Series 484. March 2000.

2,2,4-TRIMETHYL-1,3-PENTANEDIOL DIISOBUTYRATE & DIETHYLENE GLYCOL & 2-BUTOXYETHANOL

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Continued...

Page 10 of 12

ARDEX RA 56 Part B

Issue Date: **10/03/2023**Print Date: **15/06/2023**

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

★ - Data either not available or does not fill the criteria for classification

– Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species		Value	Source
ARDEX RA 56 Part B	Not Available	Not Available	Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species		Value	Source
	BCF	1008h	Fish		0.6-0.8	7
2,2,4-trimethyl-1,3-pentanediol	NOEC(ECx)	504h	Crustacea		0.7mg/l	2
diisobutyrate	LC50	96h	Fish		>1.55mg/l	2
	EC50	72h	Algae or other aquatic plants		>7.49mg/l	2
	EC50	48h	Crustacea		>1.46mg/l	1
	Endpoint	Test Duration (hr)	Species	Va	lue	Source
	LC50	96h	Fish	>1	00mg/l	4
diethylene glycol	EC50	48h	Crustacea 8400		000mg/l	1
	NOEC(ECx)	192h	Algae or other aquatic plants	80	0mg/l	1
	EC50	96h	Algae or other aquatic plants 6500-13000		00-13000mg/l	2
	Endpoint	Test Duration (hr)	Species		Value	Source
	LC50	96h	Fish		1700mg/l	Not Available
2-Butoxyethanol	EC50	72h	Algae or other aquatic plants		623mg/l	2
·	EC50	48h	Crustacea		164mg/l	2
	EC10(ECx)	48h	Crustacea		7.2mg/l	2
	EC50	96h	Algae or other aquatic plants		720mg/l	2
Legend:	Ecotox databas		d Substances - Ecotoxicological Inform rd Assessment Data 6. NITE (Japan) -			

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	нівн	HIGH
diethylene glycol	LOW	LOW
2-Butoxyethanol	LOW (Half-life = 56 days)	LOW (Half-life = 1.37 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	LOW (BCF = 1)
diethylene glycol	LOW (BCF = 180)
2-Butoxyethanol	LOW (BCF = 2.51)

Mobility in soil

•	
Ingredient	Mobility
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	LOW (KOC = 607.5)
diethylene glycol	HIGH (KOC = 1)
2-Butoxyethanol	HIGH (KOC = 1)

ARDEX RA 56 Part B

Issue Date: **10/03/2023**Print Date: **15/06/2023**

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- ▶ Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	Not Available
diethylene glycol	Not Available
2-Butoxyethanol	Not Available

Transport in bulk in accordance with the IGC Code

•	
Product name	Ship Type
2,2,4-trimethyl-1,3-pentanediol diisobutyrate	Not Available
diethylene glycol	Not Available
2-Butoxyethanol	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

2,2,4-trimethyl-1,3-pentanediol diisobutyrate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

diethylene glycol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 $\,$

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\bf 6$

Australian Inventory of Industrial Chemicals (AIIC)

2-Butoxyethanol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

National Inventory Status

National Inventory Status			
National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	/es		
Canada - NDSL	No (2,2,4-trimethyl-1,3-pentanediol diisobutyrate; diethylene glycol; 2-Butoxyethanol)		
China - IECSC	s		
Europe - EINEC / ELINCS / NLP	/es		
Japan - ENCS	Yes		
Korea - KECI	Yes		
New Zealand - NZIoC	Yes		
Philippines - PICCS	Yes		

Chemwatch: 5562-94 Page **12** of **12** Issue Date: 10/03/2023 Version No: 3.1 Print Date: 15/06/2023

ARDEX RA 56 Part B

National Inventory	Status	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	10/03/2023
Initial Date	17/10/2022

SDS Version Summary

Version	Date of Update	Sections Updated
3.1	10/03/2023	Classification change due to full database hazard calculation/update.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average

PC - STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit₀

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.