Actech Protective Coatings

Chemwatch: **62-6661** Version No: **6.1.14.9**

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **24/08/2021** Print Date: **25/08/2021** L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	ACTFLEX 929 SPU			
Chemical Name	Not Applicable			
Synonyms	ot Available			
Proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains xylene)			
Chemical formula	Not Applicable			
Other means of identification	Not Available			

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Moisture cured water proofing membrane.

Details of the supplier of the safety data sheet

Actech Protective Coatings			
22/872 Canterbury Rd. Roselands NSW 2196 Australia			
61 2 8021 3517			
+61 2 8021 3519			
www.thewaterproofingshop.com.au			
admin@actechpc.com.au			

Emergency telephone number

Assoc	iation / Organisation	Actech Protective Coatings			
E	mergency telephone numbers	+61 2 8021 3517 (Mon-Fri 8am to 5pm; Sat 8.30am to 12.30pm)			
Other e	mergency telephone numbers	Not Available			

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

ChemWatch Hazard Ratings

Poisons Schedule	S6
Classification ^[1]	Flammable Liquids Category 3, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Acute Toxicity (Inhalation) Category 3, Sensitisation (Respiratory) Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Carcinogenicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 1, Hazardous to the Aquatic Environment Acute Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Dangei

Issue Date: 24/08/2021 Print Date: 25/08/2021

Hazard statement(s)

H226	Flammable liquid and vapour.			
H315	Causes skin irritation.			
H317	May cause an allergic skin reaction.			
H318	uses serious eye damage.			
H331	Toxic if inhaled.			
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.			
H335	May cause respiratory irritation.			
H351	Suspected of causing cancer.			
H372	Causes damage to organs through prolonged or repeated exposure.			
H402	Harmful to aquatic life.			

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.				
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.				
P260	Do not breathe mist/vapours/spray.				
P271	Use only outdoors or in a well-ventilated area.				
P280	Wear protective gloves, protective clothing, eye protection and face protection.				
P284	case of inadequate ventilation] wear respiratory protection.				
P240	Ground and bond container and receiving equipment.				
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.				
P242	Use non-sparking tools.				
P243	Take action to prevent static discharges.				
P270	Do not eat, drink or smoke when using this product.				
P273	Avoid release to the environment.				
P264	Wash all exposed external body areas thoroughly after handling.				
P272	Contaminated work clothing should not be allowed out of the workplace.				

Precautionary statement(s) Response

(4)					
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.				
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.				
P308+P313	IF exposed or concerned: Get medical advice/ attention.				
P310	nmediately call a POISON CENTER/doctor/physician/first aider.				
P342+P311	f experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.				
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.				
P302+P352	IF ON SKIN: Wash with plenty of water and soap.				
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.				
P362+P364	Take off contaminated clothing and wash it before reuse.				
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].				

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.		
P405	Store locked up.		

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

IIIIATUI 00					
CAS No	%[weight]	Name			
9016-87-9	40-60	polymeric diphenylmethane diisocyanate			
28553-12-0	10-30	bis(3,5,5-trimethylhexyl) phthalate			
471-34-1	10-15	calcium carbonate			
1330-20-7	5-15	5-15 <u>xylene</u>			
1333-86-4	0.1-1	carbon black			
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4.					

Issue Date: 24/08/2021 Print Date: 25/08/2021

SECTION 4 First aid measures

Description of first aid measures

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

Eye Contact

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted.

Ingestion

- For advice, contact a Poisons Information Centre or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do **NOT** induce vomiting
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- ► Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically

For sub-chronic and chronic exposures to isocvanates:

- This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.
- ► Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts.
- Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- ► Some cross-sensitivity occurs between different isocyanates.
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
- Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- ▶ There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity.

[Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed. For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- ▶ Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Methylhippu-ric acids in urine Index 1.5 gm/gm creatinine 2 mg/min Sampling Time End of shift Last 4 hrs of shift Comments

SECTION 5 Firefighting measures

Extinguishing media

- Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam.
- Presents additional hazard when fire fighting in a confined space
- Cooling with flooding quantities of water reduces this risk
- Water spray or fog may cause frothing and should be used in large quantities.
- Foam.
- Dry chemical powder.
- ► BCF (where regulations permit)

Page 4 of 18

ACTFLEX 929 SPU

Issue Date: 24/08/2021 Print Date: 25/08/2021

- Carbon dioxide.
- ► Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Fire Fighting Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. ▶ DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Liquid and vapour are flammable. ▶ Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) Fire/Explosion Hazard carbon monoxide (CO) isocyanates and minor amounts of hydrogen cyanide nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point

of rupture. Release of toxic and/or flammable isocyanate vapours may then occur

SECTION 6 Accidental release measures

HAZCHEM

Personal precautions, protective equipment and emergency procedures

Burns with acrid black smoke

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Major Spills

Minor Spills	Environmental hazard - contain spillage. Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
	Environmental hazard - contain spillage. Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be

used inside encapsulating suit where this exposure may occur.

For isocyanate spills of less than 40 litres (2 m2):

- Feacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible
- Notify supervision and others as necessary.
- Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable
- Control source of leakage (where applicable).
- ▶ Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- Estimate spill pool volume or area.
 - Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
 - Shovel absorbent/decontaminant solution mixture into a steel drum.
 - Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. - Completely cover decontaminant with vermiculite or other similar absorbent. - After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above
 - Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
 - Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
 - ▶ Decontaminate and remove personal protective equipment.
 - Return to normal operation.
 - Conduct accident investigation and consider measures to prevent reoccurrence.

Page 5 of 18 ACTFLEX 929 SPU

Issue Date: 24/08/2021 Print Date: 25/08/2021

Decontamination:

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ("neutralising fluid"). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}.

Let stand for 24 hours

Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A

liquid surfactant 0.2-2% sodium carbonate 5-10% water to 100% Formulation B liquid surfactant 0.2-2% concentrated ammonia 3-8%

water to Formulation C

ethanol, isopropanol or butanol 50% concentrated ammonia 5% water to 100%

After application of any of these formulae, let stand for 24 hours.

100%

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- ▶ Avoid contamination with water, alkalies and detergent solutions.
- ▶ Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- DO NOT reseal container if contamination is suspected
- ▶ Open all containers with care.
- DO NOT touch the spill material
- ▶ Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment
- ▶ Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- ▶ Collect solid residues and seal in labelled drums for disposal
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Other information

Precautions for safe handling

- ▶ Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid generation of static electricity.
- DO NOT use plastic buckets
- Earth all lines and equipment.Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- When handling DO NOT eat drink or smoke
- When handling, **DO NOT** eat, drink or smoke
- Keep containers securely sealed when not in use.
 Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ▶ Store in original containers in approved flammable liquid storage area.
- Store away from incompatible materials in a cool, dry, well-ventilated area.
- ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped
- No smoking, naked lights, heat or ignition sources.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel -adequate security must be provided so that unauthorised personnel do not have access.
- Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
- Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and

Continued...

Page 6 of 18

Issue Date: 24/08/2021 Print Date: 25/08/2021

ACTFLEX 929 SPU

- flammable gas detectors.
- Keep adsorbents for leaks and spills readily available.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.
- ▶ Storage tanks should be above ground and diked to hold entire contents.

for commercial quantities of isocyanates:

- Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- · Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken.
- · Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions)..
- Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- · Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.
- Ideal storage temperature range is dependent on the specific polymer due to viscosity and melting point differences between the polymers. Use 25 deg C (77 deg F) to 30 deg C (86 deg F) as a guideline to most liquid isocyanates for optimum storage temperature. If some isocyanates are stored at or below a temperature of 25 deg C (77 deg F), crystallization and settling of the isocyanate may occur. Storage in a cold warehouse can cause crystals to form. These crystals can settle to the bottom of the container. If crystals do form, they can be melted easily with moderate heat. It is suggested that a container the size of a drum be warmed for 16-24 hours at sufficient temperature to melt the crystals. When the crystals are melted, the container should be agitated by rolling or stirring, until the contents are homogenous. Since heated isocyanate will generate vapors more rapidly than product stored at 25 deg C (77 deg F), be sure to follow the precautions under the Personal Protection. Rotate all stock to prevent ageing. Use on FIFO (First In-First Out) basis

Conditions for safe storage, including any incompatibilities

- ▶ Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Suitable container

- Avoid reaction with oxidising agents
- Avoid strong acids, bases.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	polymeric diphenylmethane diisocyanate	Isocyanates, all (as-NCO)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available
Australia Exposure Standards	calcium carbonate	Calcium carbonate	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	80 ppm / 350 mg/m3	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	carbon black	Carbon black	3 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
polymeric diphenylmethane diisocyanate	0.15 mg/m3	3.6 mg/m3	22 mg/m3
calcium carbonate	45 mg/m3	210 mg/m3	1,300 mg/m3
xylene	Not Available	Not Available	Not Available
carbon black	9 mg/m3	99 mg/m3	590 mg/m3

Ingredient	Original IDLH	Revised IDLH
polymeric diphenylmethane diisocyanate	Not Available	Not Available
bis(3,5,5-trimethylhexyl) phthalate	Not Available	Not Available

Page 7 of 18

ACTFLEX 929 SPU

Issue Date: **24/08/2021**Print Date: **25/08/2021**

Ingredient	Original IDLH	Revised IDLH
calcium carbonate	Not Available	Not Available
xylene	900 ppm	Not Available
carbon black	1,750 mg/m3	Not Available

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations. Local exhaust ventilation with full face air supplied breathing apparatus (hood or helmet type) is normally required. Unprotected personnel must vacate spraying area.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- All processes in which isocyanates are used should be enclosed wherever possible.
- Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure standards.
- If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed.
- Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards.
- Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard.

Personal protection

Eye and face protection

- ► Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when

Hands/feet protection

making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be

washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

Issue Date: 24/08/2021 Print Date: 25/08/2021

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ▶ Do NOT wear natural rubber (latex gloves).
- Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- Protective gloves and overalls should be worn as specified in the appropriate national standard.
- ▶ Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- ▶ NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates
- DO NOT use skin cream unless necessary and then use only minimum amount.
- Isocyanate vapour may be absorbed into skin cream and this increases hazard.

Body protection

Other protection

See Other protection below

All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential.

Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known.

- Overalls.
- ► PVC Apron.
- ► PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

ACTFLEX 929 SPU

Material	СРІ
PE/EVAL/PE	A
PVA	A
TEFLON	A
VITON	A
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PVC	С

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

Issue Date: **24/08/2021**Print Date: **25/08/2021**

PVDC/PE/PVDC

C

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory: may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

- * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.
- However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable.
- Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected.
- Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Grey flammable liquid; does not mix with water.		
Physical state	Liquid	Relative density (Water = 1)	~1.35
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	463
pH (as supplied)	~8	Decomposition temperature	150
Melting point / freezing point (°C)	-25.5	Viscosity (cSt)	3200
Initial boiling point and boiling range (°C)	>144	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	>30	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	7	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	130

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Presence of elevated temperatures. Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may produce toxic effects. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of

Page 10 of 18 **ACTFLEX 929 SPU**

Issue Date: 24/08/2021 Print Date: 25/08/2021

coordination and vertigo

The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics.

Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced.

Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 ppm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics.

Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed Inhalation hazard is increased at higher temperatures.

The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment.

Inhalation hazard is increased at higher temperatures.

Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose

Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness Serious poisonings may result in respiratory depression and may be fatal.

Accidental ingestion of the material may be seriously damaging to the health of the individual; animal experiments indicate that ingestion of less than 40 gram may be fatal

Phthalates (aromatic dicarboxylic acid esters), in general, exhibit low toxicity, partly because of poor absorption but mainly as a result of rapid metabolism in which the esters are saponified to phthalic acid (which is rapidly excreted) and the parent alcohol (which is subsequently metabolised). The pathology of these compounds seems to be related to the released alcohol and its biological effects. The rate of absorption of ingested phthalate esters is influenced by the content of dietary fat. Ingested phthalate esters may to a lesser degree be absorbed as the monoester derivatives or in the case of di(2-ethylhexyl)phthalate, as the diester. Cumulative toxicity of the phthalates has been observed on repeated administration. Both di-n-octvl phthalate and di(2-ethylhexyl)phthalate were found to have 22-28 times greater toxicity (based on LD50s) following repeated administration to animals. The liver has been shown to be the target organ affected by the phthalates. In general phthalates have induced liver enlargement; this increase in liver weight has been attributed to rapid cell division (hyperplasia) along with the detachment of cells (hypertrophy). The increase in liver weight caused by phthalates has been found to reverse to normal or even below normal levels on prolonged exposure.

Exposure to phthalates, in general, has been found to be associated with a reduction in circulating cholesterol and serum triglyceride levels which accounted for a reduction in liver steroidogenesis. The phthalates also effect carbohydrate metabolism in the liver producing depleted glycogen electron transport inhibitors following interaction with mitochondria. Testicular atrophy produced in rats during feeding studies depends on the length and structure of the alcohol; in general the lower molecular weight esters produce the more severe effects. The toxicity of phthalic acid isomers decreases in the order o-phthalic acid, isophthalic acid and terephthalic acid. Phthalic acid is not metabolised but is excreted, unchanged, in the urine and faeces. Terephthalic acid appears to potentiate the biological effects of substances such as antibiotics, thiamine and

Skin contact with the material may be harmful; systemic effects may result following absorption.

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

The material may accentuate any pre-existing dermatitis condition

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a

greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of

nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of

individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Ingestion

Skin Contact

Eye

Chronic

Issue Date: **24/08/2021**Print Date: **25/08/2021**

Toxic: danger of serious damage to health by prolonged exposure through inhalation.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Pure calcium carbonate does not produce pneumoconiosis probably being eliminated from the lungs slowly by solution.

As mined, unsterilised particulates can carry bacteria into the air passages and lungs, producing infection and bronchitis.

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates.

The chemistry of reaction of isocyanates, as evidenced by MDI, in biological milieu is such that in the event of a true exposure of small MDI doses to the mouth, reactions will commence at once with biological macromolecules in the buccal region and will continue along the digestive tract prior to reaching the stomach. Reaction products will be a variety of polyureas and macromolecular conjugates with for example mucus, proteins and cell components.

This is corroborated by the results from an MDI inhalation study. Following an inhalation exposure of rats to radiolabelled MDI, 79% of the dose was excreted in faeces. The faecal excretion in these animals was considered entirely due to ingestion of radioactivity from grooming and ingestion of deposited material from the nasopharangeal region via the mucociliary escalator, i.e. not following systemic absorption. The faecal radioactivity was tentatively identified as mixed molecular weight polyureas derived from MDI. Diamine was not present. Thus, for MDI and diisocyanates in general the oral gavage dosing route is inappropriate for toxicological studies and risk assessment.

It is expected that oral gavage dosing will result in a similar outcome to that produced by TDI or MDI, that is (1) reaction with stomach contents and (2) polymerization to solid polyureas.

- Reaction with stomach contents is very plausibly described in case reports of accidental ingestion of polymeric MDI based glue in domestic animals. Extensive polymerization and CO2 liberation resulting in an expansion of the gastric content is described in the stomach, without apparent acute chemical toxicity
- Polyurea formation in organic and aqueous phases has been described. In this generally accepted chemistry of hydrolysis of an isocyanate the initially produced carbamate decarboxylates to an amine which. The amine, as a reactive intermediate, then reacts very readily with the present isocyanate to produce a solid and inert polyurea. This urea formation acts as a pH buffer in the stomach, thus promoting transformation of the diisocyanate into polyurea, even under the acidic conditions.

At the resorbtive tissues in the small intestine, these high molecular reaction products are likely to be of very low bioavailability, which is substantiated by the absence of systemic toxicity in acute oral bioassays with rats at the OECD limit dose (LC50>2 g/kg bw).

The respiratory tract may be regarded as the main entry for systemically available isocyanates as evidenced following MDI.exposures.

A detailed summary on urinary, plasma and in vitro metabolite studies is provided below. Taken together, all available studies provide convincing evidence that MDI-protein adduct and MDI-metabolite formation proceeds:

- ▶ via formation of a labile isocyanate glutathione (GSH)-adduct,
- $\ensuremath{\,^{\blacktriangleright}\,}$ then transfer to a more stable adduct with larger proteins, and
- without formation of free MDA. MDA reported as a metabolite is actually formed by analytical workup procedures (strong acid or base hydrolysis) and is not an identified metabolite in urine or blood

Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms.

Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers

Xylene has been classed as a developmental toxin in some jurisdictions.

Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

ACTFLEX 929 SPU	TOXICITY	IRRITATION
	Not Available	Not Available
	TOXICITY	IRRITATION
polymeric diphenylmethane	Dermal (rabbit) LD50: >9400 mg/kg ^[2]	Eye (rabbit): 100 mg - mild
diisocyanate	Inhalation(Rat) LC50; 0.49 mg/L4h ^[2]	
	Oral(Rat) LD50; 43000 mg/kg ^[2]	
	TOXICITY	IRRITATION
bis(3,5,5-trimethylhexyl)	Inhalation(Rat) LC50; 0.49 mg/L4h[2]	Not Available
	Inhalation(Rat) LC50; >4.4 mg/l4h ^[2]	IRRITATION Not Available
	Oral(Rat) LD50; >40000 mg/kg ^[2]	
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 0.75 mg/24h - SEVERE
calcium carbonate	Inhalation(Rat) LC50; >3 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral(Rat) LD50; >2000 mg/kg ^[1]	Skin (rabbit): 500 mg/24h-moderate
		Skin: no adverse effect observed (not irritating) ^[1]

Issue Date: **24/08/2021**Print Date: **25/08/2021**

	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant	
	Inhalation(Rat) LC50; 5922 ppm4h ^[1]	Eye (rabbit): 5 mg/24h SEVERE	
xylene	Oral(Mouse) LD50; 2119 mg/kg ^[2]	Eye (rabbit): 87 mg mild	
		Eye: adverse effect observed (irritating) ^[1]	
		Skin (rabbit):500 mg/24h moderate	
		Skin: adverse effect observed (irritating) ^[1]	
	TOXICITY	IRRITATION	
carbon black	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral(Rat) LD50; >8000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
Legend:	New Part of the Community of the Co		

produc

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, hives and swelling of extremities.

Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

POLYMERIC DIPHENYLMETHANE DIISOCYANATE

for diisocyanates:

In general, there appears to be little or no difference between aromatic and aliphatic diisocyanates as toxicants. In addition, there are insufficient data available to make any major distinctions between polymeric (<1000 MW) and monomeric diisocyanates. Based on repeated dose studies in animals by the inhalation route, both aromatic and aliphatic diisocyanates appear to be of high concern for pulmonary toxicity at low exposure levels. Based upon a very limited data set, it appears that diisocyanate prepolymers exhibit the same respiratory tract effects as the monomers in repeated dose studies. There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route. Most members of the diisocyanate category have not been tested for carcinogenic potential. Though the aromatic diisocyanates tested positive and the one aliphatic diisocyanate tested negative in one species, it is premature to make any generalizations about the carcinogenic potential of aromatic versus aliphatic diisocyanates. In the absence of more human data, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Diisocyanates are moderate to strong dermal sensitisers in animal studies. Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates.

For monomers, effects on the respiratory tract (lungs and nasal cavities) were observed in animal studies at exposure concentrations of less than

For monomers, effects on the respiratory tract (lungs and nasal cavities) were observed in animal studies at exposure concentrations of less than 0.005 mg/L. The experimental animal data available on prepolymeric diisocyanates show similar adverse effects at levels that range from 0.002 mg/L to 0.026 mg/L.

There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route

Oncogenicity: Most members of the diisocyanate category have not been tested for carcinogenic potential. Commercially available Poly-MDI was tested in a 2-year inhalation study in rats. The tested material contained 47% aromatic 4,4'-methylenediphenyl diisocyanate (MDI) and 53% higher molecular weight oligomers. Interim sacrifices at one year showed that males and females in the highest dose group (6 mg/m3) had treatment related histological changes in the nasal cavity, lungs and mediastinal lymph nodes. The incidence and severity of degeneration and basal cell hyperplasia of the olfactory epithelium and Bowman's gland hyperplasia were increased in males at the mid and high doses and in females at the high dose following the two year exposure period. Pulmonary adenomas were found in 6 males and 2 females, and pulmonary adenocarcinoma in one male in the high dose group. However, aliphatic hexamethylene diisocyanate (HDI) was found not to be carcinogenic in a two year repeated dose study in rats by the inhalation route. HDI has not been tested in mice by the inhalation route.

Though the oral route is not an expected route of exposure to humans, it should be noted that in two year repeated dose studies by the oral route, aromatic toluene diisocyanate (TDI) and 3,3'-dimethoxy-benzidine-4,4'-diisocyanate (dianisidine diisocyanate, DADI) were found to be carcinogenic in rodents. TDI induced a statistically significant increase in the incidence of liver tumors in rats and mice as well as dose-related hemangiosarcomas of the circulatory system and has been classified by the Agency as a B2 carcinogen. DADI was found to be carcinogenic in rats, but not in mice, with a statistically increase in the incidence of pancreatic tumors observed.

Respiratory and Dermal Sensitization: Based on the available toxicity data in animals and epidemiologic studies of humans, aromatic disocyanates such as TDI and MDI are strong respiratory sensitisers. Aliphatic disocyanates are generally not active in animal models for respiratory sensitization. However, HDI and possibly isophorone disocyanate (IPDI), are reported to be associated with respiratory sensitization in humans. Symptoms resulting from occupational exposure to HDI include shortness of breath, increased bronchoconstriction reaction to histamine challenges, asthmatic reactions, wheezing and coughing. Two case reports of human exposure to IPDI by inhalation suggest IPDI is a respiratory sensitiser in humans. In view of the information from case reports in humans, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Studies in both human and mice using TDI, HDI, MDI and dicyclohexylmethane-

Page 13 of 18

ACTFLEX 929 SPU

Issue Date: 24/08/2021 Print Date: 25/08/2021

4,4'-diisocyanate (HMDI) suggest cross-reactivity with the other diisocyanates, irrespective of whether the challenge compound was an aliphatic or aromatic diisocyanate. Diisocyanates are moderate to strong dermal sensitisers in animal studies. There seems to be little or no difference in the level of reactivity between aromatic and aliphatic diisocyanates.

Dermal Irritation: Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates. The level of irritation ranged from slightly to severely irritating to the skin. One chemical, hydrogenated MDI (1,1-methylenebis-4-isocyanatocyclohexane), was found to be corrosive to the skin in guinea pigs.

High Molecular Weight Phthalate Esters (HMWPEs) Category as defined by the Phthalate Esters Panel HPV Testing Group (2001) and OECD (2004). The HMWPE group includes chemically similar substances produced from alcohols having backbone carbon lengths of >= 7. Due to their similar chemical structure, category members are generally similar with respect to physicochemical, biological and toxicological properties or display an expected trend. Thus, read-across for toxicity endpoints is an appropriate approach to characterise selected endpoints for members of this category.

In some cases the substances have ester side group constituents that span two subcategories (i.e., transitional and high molecular weight constituents). If the level of C4 to C6 constituents in the substance exceeded 10%, the substance was conservatively placed in the transitional subcategory.

High molecular weight phthalates are used nearly exclusively as plasticisers of PVC.

They are very poorly soluble in water, and have very low vapor pressure. The extant database demonstrates that these substances have few biological effects. A notable exception to this generalisation is that hepatocarcinogenicity has been observed for diisononyl phthalate (DINP). The hepatocarcinogenicity effects of DINP are by a mechanism (peroxisomal proliferation) to which rodents are particularly sensitive. However, it does not appear to be relevant to humans.

The high molecular weight phthalates all demonstrate minimal acute toxicity, are not genotoxic, exhibit some liver and kidney effects at high doses, and are negative for reproductive and developmental effects. Further, the available data indicate that the toxicological activity of these molecules diminishes with increasing molecular weight.

Studies on HMWPEs indicate that they are rapidly metabolised in the gastrointestinal tract to the corresponding monoester, absorbed and excreted primarily in the urine.

Acute toxicity: The available data on phthalates spanning the carbon range from C8-C13 indicate that phthalate esters in the high molecular weight subcategory are not toxic by acute oral and dermal administration; LD50 values of all substances tested exceed the maximum amounts which can be administered to the animals. There are fewer data available on inhalation toxicity; only di-iso-nonyl phthalate (DINP) and di-iso-decyl phthalate (DIDP) have been tested. However, the phthalates in the high molecular weight subcategory have extremely low vapor pressures, and exposure by inhalation at potentially hazardous levels is not anticipated.

Repeat dose toxicity. Several substances ranging from C8-C11 have been tested for repeated dose toxicity in studies ranging from 21 days to two years. Ditridecyl phthalate (CAS 119-06-2) has been studied by the Japan Ministry of Health and Welfare (unpublished report) and data for this substance is used as read-across data for DTDP*. In addition results from repeat dose studies examining DINP (CAS 685 15-48-0) and DIDP (CAS 68515-49-1) are used as read across for the di C9-C11 phthalates (CAS 68515-43-5). The principal effects found are those associated with peroxisomal proliferation, including liver enlargement and induction of peroxisomal enzymes. As shown for example in a comparative study of liver effects, the strongest inducers of peroxisomal proliferation were DEHP, DINP, and DIDP with substances of shorter and longer ester side chains (e.g., 610P*, 711P*, and diundecyl phthalate - DUP) showing less pronounced effects. Thus, it is reasonable to conclude that other members of this subcategory would show effects similar to but not more pronounced than those associated with DINP and DIDP. It should also be noted that the relevance of these findings to human health is, at best, questionable. It has been shown that these effects are mediated through the peroxisome proliferation-activated receptor alpha (PPARa;), and that levels of PPARa are much higher in rodents than humans. Thus, one would expect humans to be substantially less responsive than rodents to peroxisome proliferating agents. Empirical evidence supporting this postulation is provided by studies in primates in which repeated administration of DEHP and DINP had no effects on liver, kidney or testicular parameters.

liver, kidney or testicular parameters

BIS(3,5,5-TRIMETHYLHEXYL)

PHTHALATE

In this regard it should also be noted that kidney enlargement is also commonly observed but normally without any pathological changes. There is a component of the kidney changes which is also PPARa-related. It has also been shown that in male rats, DINP induces an alpha 2u-globulin nephropathy which is male rat- specific but without relevance to humans. Thus, as was true for the liver changes, the relevance of the kidney changes to human health is also questionable

Finally, some of the lower molecular weight phthalates can induce testicular atrophy when administered to juvenile rats at high levels. However, the higher molecular weight phthalates including di-n-octyl phthalate (DnOP), DINP, DIDP, 610P, and 71 1P do not induce testicular atrophy. Further, the testis was not a target organ for DINP in either marmosets or cynomolgus monkeys. Thus, testicular atrophy is not an effect associated with phthalates in the high molecular weight subcategory

Reproductive toxicity: Reproductive toxicity tests in rats have been carried out with DINP, DIDP a linear C7-C9 phthalate (CAS 68515-41-3), a linear C9-C11 phthalate, and ditridecyl phthalate (Japan Ministry of Health and Welfare, unpublished report). None of these affected fertility or profoundly affected male reproductive development. A slight decrease in offspring viability was reported for both DIDP and ditridecyl phthalate at levels associated with maternal effects. DnOP was tested for effects on fertility in a continuous breeding protocol in mice, and, like the other members of this subcategory, did not reduce fertility. Thus, it can be concluded that the subcategory of high molecular weight phthalates do not affect fertility.

Developmental toxicity: Developmental toxicity tests in rats have been carried out with DINP; DIDP; C7-9 phthalate (CAS 68515-41-3); C9-11 phthalate (CAS 68515-43-5); and ditridecyl phthalate (CAS 119-06-2). None of the substances tested affected litter size, foetal survival or bodyweight, and none produced teratogenic effects. Increased frequencies of developmental variants including dilated renal pelvis, and supernumerary lumbar and cervical ribs were found at levels associated with maternal effects. The toxicological significance of these developmental variants is unclear. DnOP was not teratogenic in mice when tested at very high levels. Thus, it can be concluded that this subcategory of high molecular weight phthalates do not produce profound developmental effects in rodents

Genotoxicity: The majority of the substances in the subcategory of high molecular weight phthalates have been tested for genetic activity in the Salmonella assay, and all were inactive. One large program covering many of these substances was carried out by the National Institute of Environmental Health Sciences. Similarly, a range of substances covering the majority of the carbon numbers in this subcategory were found to be inactive in mouse lymphoma tests

Chromosomal Aberrations. Two representative members of the subcategory of high molecular weight phthalates (DINP and DIDP) have been tested for chromosomal mutation in the mouse micronucleus test, and both were inactive. Ditridecyl phthalate (CAS 119-06-2) induced neither structural chromosomal aberrations nor polyploidy in CHL cells up to the limit concentration of 4.75 mg/ rnl, in the absence or presence of an exogenous metabolic activation system (Japan Ministry of Health and Welfare, unpublished report). Further, all of the low molecular weight and transitional phthalates that have been tested were inactive.

*610P - mixed decyl, hexyl and octyl esters (CAS Rn: 68648-93-1)

*711P - C7,C11, branched and linear esters (CAS Rn: 111381-90-9)

* DTDP - di-C11-14, C13 rich ester (CAS 68515-47-9)

The material may produce peroxisome proliferation. Peroxisomes are single, membrane limited, cytoplasmic organelles that are found in the cells of animals, plants, fungi and protozoa. Peroxisome proliferators include certain hypolipidaemic drugs, phthalate ester plasticisers, industrial solvents, herbicides, food flavours, leukotriene D4 antagonists and hormones. Numerous studies in rats and mice have demonstrated the hepatocarcinogenic effects of peroxisome proliferators, and these compounds have been unequivocally established as carcinogens. However it is generally conceded that compounds inducing proliferation in rats and mice have little, if any, effect on human liver except at very high doses or extreme conditions of exposure.

CALCIUM CARBONATE

XYLENE Reproductive effector in rats

CARBON BLACK

Inhalation (rat) TCLo: 50 mg/m3/6h/90D-l Nil reported

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

No evidence of carcinogenic properties. No evidence of mutagenic or teratogenic effects.

Continued...

Issue Date: 24/08/2021 Print Date: 25/08/2021

POLYMERIC DIPHENYLMETHANE **DIISOCYANATE & CALCIUM** CARBONATE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, or spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production

POLYMERIC **DIPHENYLMETHANE DIISOCYANATE & XYLENE**

The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

BIS(3,5,5-TRIMETHYLHEXYL) PHTHALATE & CARBON **BLACK**

No significant acute toxicological data identified in literature search.

CALCIUM CARBONATE & XYLENE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend:

💢 – Data either not available or does not fill the criteria for classification

🥓 – Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species		Value	Source
ACTFLEX 929 SPU	Not Available	Not Available	Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species		Value	Source
olymeric diphenylmethane diisocyanate	Not Available	Not Available	Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species		Value	Source
	EC50	72h	Algae or other aquatic plants		>100mg/l	1
bis(3,5,5-trimethylhexyl) phthalate	LC50	96h	Fish		>0.1mg/l	2
pritrialate	EC50	48h	Crustacea		>74mg/l	1
	EC50(ECx)	48h	Crustacea		>74mg/l	1
	Endpoint	Test Duration (hr)	Species	pecies Val		Source
	NOEC(ECx)	6h	Fish	4-32		4
calcium carbonate	EC50	72h	Algae or other aquatic plants	quatic plants >14n		2
	LC50	96h	Fish	Fish >1652		4
	Endpoint	Test Duration (hr)	Species	Species Val		Source
	EC50	72h	Algae or other aquatic plants	Algae or other aquatic plants		2
xylene	LC50	96h	Fish	Fish		2
	EC50	48h	Crustacea		1.8mg/l	2
	NOEC(ECx)	73h	Algae or other aquatic plants		0.44mg/l	2
	Endpoint	Test Duration (hr)	Species	Value)	Source
	EC50	72h	Algae or other aquatic plants	>0.2n	ng/l	2
carbon black	LC50	96h	Fish	Fish >100n		2
	EC50	48h	Crustacea	33.07	'6-41.968mg/l	4
	NOEC(ECx)	24h	Crustacea 3200mg		mg/l	1

Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Issue Date: **24/08/2021**Print Date: **25/08/2021**

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

Harmful to aquatic organisms.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
bis(3,5,5-trimethylhexyl) phthalate	HIGH	HIGH
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
bis(3,5,5-trimethylhexyl) phthalate	LOW (BCF = 183.8)
xylene	MEDIUM (BCF = 740)

Mobility in soil

Ingredient	Mobility
bis(3,5,5-trimethylhexyl) phthalate	LOW (KOC = 467200)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- ► Reuse
- ► Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	•3Y

Land transport (ADG)

UN number	1993	
UN proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains xylene)	
Transport hazard class(es)	Class 3 Subrisk Not Applicable	
Packing group		
Environmental hazard	Not Applicable	

Page **16** of **18**

ACTFLEX 929 SPU

Issue Date: **24/08/2021**Print Date: **25/08/2021**

Special precautions for user

Special provisions	223 274
Limited quantity	5 L

Air transport (ICAO-IATA / DGR)

transport (IOAO IAIA / DOI	,		
UN number	1993		
UN proper shipping name	Flammable liquid, n.o.s.	* (contains xylene)	
	ICAO/IATA Class	3	
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable	
	ERG Code	3L	
	ENG COUC	- SE	
Packing group	III		
Environmental hazard	Not Applicable		
	Special provisions		A3
Special precautions for user	Special provisions		AS
	Cargo Only Packing Instructions		366
	Cargo Only Maximum Qty / Pack		220 L
	Passenger and Cargo Packing Instructions		355
	Passenger and Cargo Maximum Qty / Pack		60 L
	Passenger and Cargo Limited Quantity Packing Instructions		Y344
	Passenger and Cargo	Limited Maximum Qty / Pack	10 L

Sea transport (IMDG-Code / GGVSee)

UN number	1993		
UN proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains xylene)		
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable		
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number F-E , S-E Special provisions 223 274 955 Limited Quantities 5 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
polymeric diphenylmethane diisocyanate	Not Available
bis(3,5,5-trimethylhexyl) phthalate	Not Available
calcium carbonate	Not Available
xylene	Not Available
carbon black	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
polymeric diphenylmethane diisocyanate	Not Available
bis(3,5,5-trimethylhexyl) phthalate	Not Available
calcium carbonate	Not Available
xylene	Not Available
carbon black	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

polymeric diphenylmethane diisocyanate is found on the following regulatory lists

Issue Date: **24/08/2021**Print Date: **25/08/2021**

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\bf 6$

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

bis(3,5,5-trimethylhexyl) phthalate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

calcium carbonate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

xylene is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\boldsymbol{6}$

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

carbon black is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (polymeric diphenylmethane diisocyanate; bis(3,5,5-trimethylhexyl) phthalate; xylene; carbon black)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (polymeric diphenylmethane diisocyanate)
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	24/08/2021
Initial Date	21/04/2016

SDS Version Summary

Version	Date of Update	Sections Updated
5.1.1.1	03/09/2020	Classification change due to full database hazard calculation/update.
5.1.2.1	26/04/2021	Regulation Change
5.1.3.1	03/05/2021	Regulation Change
5.1.4.1	06/05/2021	Regulation Change
5.1.5.1	10/05/2021	Regulation Change
5.1.5.2	30/05/2021	Template Change
5.1.5.3	04/06/2021	Template Change
5.1.5.4	05/06/2021	Template Change
5.1.6.4	07/06/2021	Regulation Change
5.1.6.5	09/06/2021	Template Change
5.1.6.6	11/06/2021	Template Change
5.1.6.7	15/06/2021	Template Change
5.1.7.7	17/06/2021	Regulation Change
5.1.8.7	21/06/2021	Regulation Change

Page **18** of **18**

ACTFLEX 929 SPU

Issue Date: **24/08/2021**Print Date: **25/08/2021**

Version	Date of Update	Sections Updated
5.1.8.8	05/07/2021	Template Change
5.1.9.8	14/07/2021	Regulation Change
5.1.10.8	19/07/2021	Regulation Change
5.1.10.9	01/08/2021	Template Change
5.1.11.9	02/08/2021	Regulation Change
5.1.12.9	05/08/2021	Regulation Change
5.1.13.9	09/08/2021	Regulation Change
5.1.14.9	23/08/2021	Regulation Change
6.1.14.9	24/08/2021	Classification, Name

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.