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Lipid Replacement Therapy, the use of functional oral supplements containing cell membrane phospholipids and
antioxidants, has been used to replace damaged, usually oxidized,membrane glycerophospholipids that accumu-
late during aging and in various clinical conditions in order to restore cellular function. This approach differs from
other dietary and intravenous phospholipid interventions in the composition of phospholipids and their defense
against oxidation during storage, ingestion, digestion and uptake as well as the use of protective molecules that
noncovalently complex with phospholipid micelles and prevent their enzymatic and bile disruption. Once the
phospholipids have been taken in by transport processes, they are protected by several natural mechanisms in-
volving lipid receptors, transport and carrier molecules and circulating cells and lipoproteins until their delivery
to tissues and cells where they can again be transferred to intracellular membranes by specific and nonspecific
transport systems. Once delivered to membrane sites, they naturally replace and stimulate removal of damaged
membrane lipids. Various chronic clinical conditions are characterized by membrane damage, mainly oxidative
but also enzymatic, resulting in loss of cellular function. This is readily apparent in mitochondrial inner mem-
branes where oxidative damage to phospholipids like cardiolipin and other molecules results in loss of trans-
membrane potential, electron transport function and generation of high-energy molecules. Recent clinical trials
have shown the benefits of Lipid Replacement Therapy in restoring mitochondrial function and reducing fatigue
in aged subjects and patients with a variety of clinical diagnoses that are characterized by loss of mitochondrial
function and include fatigue as a major symptom. This Article is Part of a Special Issue Entitled: Membrane
Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
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1. General introduction

The use of dietary membrane lipids and oral and intravenous lipid
supplements to modify cellular and intracellular membranes in order
to improve health or treat specific medical conditions has a rich history
[1,2]. Membrane lipids are known to be essential to cellular membrane
function and cell viability [3,4], and thus their modification and restora-
tion by exogenous membrane lipids remains a useful approach for
maintaining and restoring cellular membrane function [5,6]. Cell mem-
branes control a variety of cellular processes, including whether cells
live or die as well as the maintenance of a structural and ionic barriers,
intercellular communication networks, transport, secretion, recogni-
tion, adhesion and other important cell functions [4,7–9]

Membrane lipids provide at least four major requirements for cellu-
lar health [9,10]. They are used as: (i) an important energy storage res-
ervoir; (ii) thematrix for all cellular membranes, enabling separation of
enzymatic and chemical reactions into discrete cellular compartments;
(iii) bioactive molecules in certain signal transduction and molecular
recognition pathways; and (iv) important functional molecules that
undergo interactions with other cellular constituents, such as proteins
and glycoproteins. This latter characteristic is an absolute requirement
for the formation, structure and activities of biological membranes
[3,4,7–9].
2. Introduction to membrane lipids

The most common membrane lipids are the glycerophospholipids
[9,10]. These are essential for membrane structure and are found in
the membranes of all lower and higher living species, but other phos-
pholipid forms, such as the substitution of sphingosin for glycerol
(sphingomyelins or ceramide-1-phosphorylcholines), are also com-
monly found in cell membranes, mainly on their exterior surfaces
[9,10]. Another common membrane constituent is cholesterol, the
only sterol found in abundance in membranes [4,6,9,10]. In addition,
there are also acylglyerols, fatty acids (FAs) and many other minor
lipid constituents of cellular membranes of largely unknown function
[9,10].

The membrane glycerophospholipids have attached FA chains that
are ester-linked to the glycerol group. The nature and saturation of
the attached FA chains of the phospholipids generate dramatic effects
on membrane packing and fluidity [10–12]. Unsaturated FAs, such as
oleic acid and linoleic acid, confer a high degree of conformational
flexibility of the unsaturated hydrocarbon chains within membranes
due to their occupying a slightlywedge-shaped space. This generally re-
sults in looser packing and amore fluidmembrane [3,11,13]. In contrast,
saturated FA, such as stearic acid and palmitic acid, confer rigidity that
results in a less fluid or more organized membrane [12].
There are lipid compositional differences between different mem-
branes of the cell [9,10,12,14]. The concentrations of sterols (cholesterol
and cholesterol esters) and sphingolipids (sphingomyelin, ceramide
and gangliosides) increase from the endoplasmic reticulum to the cell
surface [9,10,14]. For example, cholesterol/phospholipid ratios increase
from 0.1 in the endoplasmic reticulummembranes to 1.0 in the plasma
membrane [9]. In addition, sphingolipids such as gangliosides are quite
asymmetrically distributed on the outer surface leaflets of cell mem-
branes [15]. Similarly, other neutral lipids, such as phosphatidylcholine
(PC), reside preferentially on the outer leaflet or surface of the cell
membrane, whereas anionic phospholipids, such as phosphatidylserine
(PS) and phosphatidylinositol (PI) tend to reside on the inner leaflet of
the cell membrane. The asymmetric distributions of lipids between
inner and outer membrane leaflets as well as in the plane of the mem-
brane are important in determining key membrane physical properties
(deformation, curvature, compression, expansion) and functional inter-
actions within membranes [11,15–17,20–22].

There are also important differences in the lateral organization of
lipids in membranes [18,20,21]. Lipid cooperative behavior ensures
that lipids organize laterally in the plane of the membrane in a non-
random, non-uniform fashion [18,20,21].

The matrix of cellular membranes is largely formed by
glycerophospholipids, especially PC and phosphatidylethanolamine
(PE), the most abundant phospholipids along with sphingomyelins in
cell membranes [10,12,14,16,17]. Under physiological conditionsmem-
brane phospholipids are present in various fluid, semi-solid and solid
phases that are organized into domains characterized by different
lipid spatial arrangements and rates of rotational and lateral move-
ments [9,10,18,20,21]. The different lipid phases (domains) in mem-
branes have profound consequences for membrane properties,
organization and activities [14–22].

3. Cell membrane structure and membrane models

The most important observation on membranes over the last
100 years was that of Gorter and Grendel, who proposed that mem-
brane lipids must be present in a bilayer configuration [23]. Indeed, an
asymmetric lipid bilayer forms the matrix of all biological membranes
[4,9,11,15–17,19–24]. This hypothesis was used by Danielli and Davson
[25] and later by Robertson [26,27] as the basis for tri-layer models of
membrane structure. The tri-layer models, such as the Unit Membrane
Model [28], possessed unfolded membrane proteins bound to the
headgroups of phospholipids on each side of the lipid bilayer by electro-
static and other forces [26,27].

The current accepted model for cellular membranes, at least at the
sub-micrometer scale, is the Fluid-Mosaic Membrane Model (F-MMM)
[29]. At the time the F-MMM was introduced, the accepted model for
cellular membrane structure was still the tri-layer membrane model
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with most proteins present in extended forms (beta configurations)
bound to the lipid bilayer by electrostatic and other forces [26,27]. How-
ever, this model could not explain various data on membrane structure
and did not take into account the ability of many components in mem-
branes, especially most phospholipids, to rapidly diffuse in the mem-
brane plane [29]. As first proposed, the F-MMM depicted biological
membranes as a matrix made up of a fluid bilayer of phospholipids
withmobile globular integral membrane proteins and glycoproteins in-
tercalated into the bilayer [29]. It did not take into account specialized
lipid domains or regions of low lipid lateral mobility, data that was
largely unavailable at the time the model was proposed.

Over decades of membrane research overwhelming support has
accumulated for the F-MMM, but with some specific modifications
[30,31]. The proposal that intrinsic or integral membrane proteins are
globular structures inserted into a fluid (fluid-disordered) or a fluid-
ordered (fluid-crystalline) lipid matrix, has remained unchanged
[29,30]. However, the revised F-MMM presents membranes more as
heterogeneous, with domains of fluid and structured lipids and integral
membrane proteins, peripheral membrane proteins and membrane-
associated complexes (cytoskeletal and extracellularmatrix complexes)
above and below the membrane [30,31].
4. Phospholipids and their fatty acid chains

As mentioned in Section 2 the major structural lipids in eukaryotic
cell membranes are the glycerophospholipids, such as PC, PE, PS, PI,
and phosphatidylglycerol (PG). These glycerophospholipids contain
hydrophobic diacylglycerol (DAG) tails that constitute the main
hydrophobic matrix of biomembranes [3,9–11]. The DAG tails of
glycerophospholipids contain saturated or cis-unsaturated fatty acyl
chains of varying lengths. In mammalian cell membranes most PC mol-
ecules have at least one cis-unsaturated fatty acyl chain, which renders
them fluid at room temperatures, although some membrane regions
may not be in a fluid state [9–11,18–20]. PC usually accounts for greater
than 50% of the phospholipids in eukaryotic cellular membranes, but
there are also significant percentages of PE, PI, PS and PG [9,10,12]. In
addition, the sphingolipids with their hydrophobic ceramide backbones
constitute another major class of membrane lipids, and this class of
lipids is mainly found on the exteriors of cell membranes where some
of these molecules display oligosaccharide chains [9,10].

Due to their different polar head groups the glycerophospholipids
occupy different geometric spaces in themembrane plane. For example,
since PE has a relatively small polar headgroup size, it assumes a more
conical geometry compared to PC. Addition of PE to PC bilayers imposes
lateral curvature stress [18,21]. This is important in some forms that
membranes take, such as membrane budding, fission and fusion. Thus
changes in local membrane composition can determine important
properties, such as membrane blebbing and budding.
Table 1
Fatty acid nomenclature for some common mammalian unsaturated FA⁎.

Systematic name Common nam

9-hexadecenoic acid Palmitoleic a
9-octadecenoic acid Oleic acid
9-eicosenoic acid Gadoleic acid
9,12-octadecadienoic acid Linoleic acid
9,12,15-octadecatrienoic acid a-Linolenic a
6,9,12-octadecatrienoic acid y-Linolenic a
8,11,14-eicosatrienoic acid Dihomo-y-lin
5,8,11-eicosatrienoic acid Mead acid
5,8,11,14-eicosatetraenoic acid Arachidonic
4,7,10,13,16-docosapentaenoic acid Docosapenta
7,10,13,16-docosatetraenoic acid Adrenic acid
7,10,13,16,19-docosapentaenoic acid Clupanodoni

⁎ Modified from Stubbs and Smith [35].
Although lipid head groups are important in membrane protein–lipid
interactions, another major interaction is through hydrophobic structural
matching, for example in glycerophospholipidsmediatedmainly through
protein-DAG acyl chain interactions [32]. Such hydrophobicmatching can
be disrupted by oxidative modification of the DAG acyl chains. For ex-
ample, enzyme activation can occur when acyl chains are disordered
by oxidization [11,33]. This is thought to change acyl chain packing
and disrupt hydrophobic interactions. In general, hydrophobic structur-
almatching is facilitated by the appropriate conformational states of the
lipid molecules or by selection of appropriate lipid species that provide
the best hydrophobic structural match [21,22,34].

FAs occur in mammalian cells in a variety of chain lengths and
unsaturation states (some FAs found in mammalian membranes are
listed in Table 1). Common FAs in dietary replacement studies are:
oleic acid (9-octadecenoic acid; 18:1Δ9 or 18:1[n-9]), linoleic acid
(9,12-octadecadienoic acid; 18:2Δ9,12 or 18:2[n-6]), α-linolenic acid
(9,12,15-octadecatrienoic acid;18:3Δ9,12,15 or 18:3[n-3]), and arachi-
donic acid (5,8,11,14-eicosatetraenoic acid; 20:4Δ5,8,11,14 or 20:4[n-
6]) [35]. This latter FA is a precursor for prostaglandins. Mammalian
cells are unable to synthesize FAs with double bonds at specific posi-
tions, such as the Δ9 position, and therefore certain unsaturated FAs,
for example linoleic and linolenic acids, are essential dietary FAs, espe-
cially for the synthesis of arachidonic and docosahexaenoic (DHA,
22:6Δ4,7,10,13,16,19 or 22:6[n-3]) acids. The FA cis-double bonds
have dramatic effects on lowering the melting points of phospholipids
and increasing their motional properties [36]. This can lead to lipid lat-
eral phase separation, domain formation and differences in membrane
fluidity [35].

Glycerophospholipids are synthesized mainly in the endoplasmic
reticulum in four steps: (i) synthesis of the backbone glycerol-3-
phosphate molecule, (ii) using FA acyl coenzyme A (CoA) attachment
of FAs to this backbone to produce phosphatidic acids, (iii) dephosphor-
ylation to 1,2-DAG, and (iv) addition of a hydrophilic head group,
such as phosphocholine to make PC, phosphoserine to make PS,
phosphoethanolamine to make PE, or phosphoglycerol to make PG. PI
is formed directly from phosphatidic groups by addition of inositol. In
addition, some glycerophospholipids aremade by alterations of existing
molecules, such as methylation of the ethanolamine group to form
choline, or exchange of head groups. The assembly of the various
glycerophospholipids can also take place in the inner mitochondrial
membrane [37,38].

5. Mitochondrial structure and function

Subsumed and adapted by eukaryotic cells between 1 and 3 billion
years ago [39], the sacrificial and symbiotic alpha-proteobacterium
that forms the genetic basis of mammalian mitochondria has a dual
membrane reminiscent of those present in bacteria [40,41]. This intri-
cate dynamic membrane system, with a peculiar lipid composition,
e Abbreviations

cid 16:1A9
18:1A9 or 18:1 (n-9)
20: 1A9 or 20:1
18:2A9,12 or 18:2 (n-6)

cid 18:3A9,12,15 or 18:3 (n-3)
cid 18:3A6,9,12 or 18:3 (n-6)
olenic acid 20:3A8,11,14 or 20:3 (n-6)

20:3A5,8,11 or 20:3 (n-9)
acid 20:4A5,8,11,14 or 20:4 (n-6)
enoic acid 22:5A4,7,10,13,16 or 22:5 (n-6)

22:4A7,10,13,16 or 22:4 (n-6)
c acid 22:5A7,10,13,16,19 or 22:5 (n-3)
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displays transverse as well as lateral asymmetry with some lipids being
synthesized insidemitochondria, while others are imported or acquired
in the form of precursors [42,43].

The membranes of mitochondria form a distinct dual framework
which forms an intermembrane space and matrix compartment. The
matrix contains a complex mixture of enzymes important for the syn-
thesis of ATP molecules, in addition special mitochondrial ribosomes,
tRNAs, mRNAs and the maternally dominant mitochondrial DNA
(mtDNA) [44,45].

The outer membrane of the mitochondrion is a relatively simple
membrane containing a phospholipid bilayer and protein structures
called porins which render it permeable to molecules of about 10 k
Daltons or less (ions, nutrient molecules, ATP, ADP, and other rela-
tively small molecules) and other membrane components. The
inner mitochondrial membrane (MIM) is a highly complex structure
freely permeable only to oxygen, carbon dioxide, andwater [46–49]. Em-
bedded in the MIM are the four respiratory chain (RC) complexes, ATP-
synthase (complex V), ubiquinone, carnitine-palmitoyl-transferase II,
whichmakeup the electron transport chain (ETC), and carriers for anions,
cations and redox equivalents.

Mitochondria use oxidative phosphorylation via the tricarboxcylic
(TCA) cycle and the ETC to produce energy. ETC oxidative phosphoryla-
tion accounts for about 90% of cellular oxygen consumption and pro-
vides more than 80% of the cellular energy demands [50].

In addition to cellular energy production, mitochondria provide
other critical functions in the cell, including the modulation of calcium
signaling, regulation of cell death, the maintenance of cellular redox
balance, innate immune signaling [51] and the housing of important
biosynthetic pathways, especially for certain lipids [52]. Therefore, it is
reasonable to claim that mitochondria function as gatekeepers of cell
life and cell death [53].

Mitochondrialmembrane phospholipids are comprised ofmainly PE
and PC. Uniquely they also contain the tetra-acyl phospholipid
cardiolipin (CL). CL constitutes some 15–20% of the mass of total mito-
chondrial phospholipid [54]. Both PE and CL are non–bilayer-forming
phospholipids, a feature best explained by their conical shapes. This
shape allows the formation of hexagonal phases that can be observed
for isolated lipids, depending on the pH and ionic strength [55]. PE is
an abundant phospholipid present in all cellular membranes and essen-
tial for cell survival, whereas CL is exclusively found in MIM where it is
required for oxidative phosphorylation, ATP synthesis, and mitochon-
drial bioenergetics. CL is essential for MIM structure and function as
well as maintaining MIM transmembrane potential [56].

CL is biosynthesized from PG and cytidinediphosphate-diacylglycerol
(CDP-DAG) by the enzyme CL synthase on the inner face of the MIM.
CL is highly sensitive to damage of its double bonds by oxidative mech-
anisms due to its rich content of linoleic acid (with the exception of
brain) and being located adjacent to the site of reactive oxygen species
(ROS) production in theMIM,which places it at greater risk of oxidative
insult. CL is of significant functional importance due to its unique ability
to interact with respiratory chain proteins and its role in maintaining
MIM fluidity and osmotic stability [57].

Perhaps the most important property of CL is its central role in
supporting the activity and organization of themitochondrial respirato-
ry chain. It binds to the cytochrome bc1 complex (complex III) and cy-
tochrome c oxidase (complex IV), complexes that form high molecular
weight super-complexes that in effect supersize the mitochondrial
respiratory chain, and in doing so develop a mechanism that allows
for greater nutrient availability to ensure mitochondrial electron chain
function remains viable even in periods of nutrient depletion and stress
[58,59].

Mitochondria are also able to respond quickly to changes in trans-
membrane potential as the penalty for failure to adapt to changes in
MIM potential promoting mitochondrial collapse (mitophagy) and as-
sociated cellular autophagy. The electron and proton transfers of chemi-
osmotic energy coupling generate a remarkable transmembrane
potential of 150–200 mV across the MIM yielding an equivalent field
strength of about 30 million volt/m, matching that discharged by a
bolt of lightning [60]. Failure tomaintain themitochondrial innermem-
brane potential results in the collapse of available cellular energy,
blocking active transport across the cell membrane, and increasing
free-radical leakage.

Various stress conditions, including increased metabolic rates,
hypoxia, or membrane damage all markedly induce mitochondrial
ROS production [61]. ROS, as well as a range of ‘danger signals,’ includ-
ing pathogen-associated molecular patterns (PAMPs), such as lipopoly-
saccharides, peptidoglycans, bacterial nucleic acids and sterile, host
derived, damage-induced molecules called damage associated molecu-
lar patterns (DAMPs) are released in the face of cellular and mitochon-
drial damage. These include: extracellular ATP, K+ efflux and uric-acid
crystal's [62], which induce the assembly of intracellular multiprotein
inflammatory complexes called the inflammasome [63].

Inflammasomes are key intracelleular signaling platforms that
detect pathogenic microorganisms and sterile stressors, as well as
some environmental triggers, such as crystalline silica, alum and asbes-
tos [64,65]. Of the known inflammasomes the best characterized, and
one that is perceived to sense sterile injury is formed by a pattern recog-
nition receptor called NOD-like receptor pyrin domain containing three
(NLRP3). The nucleotide-binding oligomerization domain-like receptor
(NLR) proteins are a group ofmultimeric protein complexes that consist
of an inflammasome sensor molecule, the adaptor protein ASC and cas-
pase 1. Once these protein complexes have formed, the inflammasomes
activate caspase 1,which proteolytically activates the pro-inflammatory
cytokines interleukin-1 (IL-1) and IL-18 andmay result in a unique pro-
grammed cell death known as pyroptosis and inflammation [66]. The
NLRP3 inflammasome also triggers innate immune defenses through
the maturation of these pro-inflammatory cytokines. In particular, the
NLRP3 inflammasomes are activated by the ROS released by damaged
mitochondria, suggesting that mitochondria are also essential for an
inflammatory immune response [64].
6. Oxidative damage to cellular membranes

Oxidative stress occurs when the production of ROS, such as super-
oxide anion radicals, hydroxyl radicals and hydrogen peroxide, and re-
active nitrogen species (RNS), such as peroxynitrite anion, are in excess
of the cell's ability to destroy thesemolecules using natural antioxidants
[67–70]. Cellular targets of ROS/RNS include nucleic acids, proteins and
lipids [69–73], and mitochondrial structures are especially sensitive to
oxidative damage [70,73]. ROS and RNS are produced bymultiple cellu-
lar oxidative pathways, including xanthine oxidase, NAD(P)H oxidases,
monoamine oxidases, cyclooxygenases, lipoxygenases, and as described
in Section 5, the mitochondrial ETC [68,73,74].

The MIM is one of the most abundant sources of ROS, and it is pro-
duced as a consequence of the uncoupling of the electron transport
chain from ATP generation [67,73,74]. Usually the levels of ROS/RNS
are low in cells, and any damage that is caused is constantly repaired
[67,69]. Low levels of ROS are used in cell signaling and may be impor-
tant in the aging process by the induction ofmitochondrial hormesis, the
cellular response to low levels of toxins [75]. However, at higher con-
centrations ROS/RNS become toxic to cells, especially their membranes
[67,75]. To counteract this, mitochondria are equipped with enzymatic
and non-enzymatic systems to control ROS/RNS production and pre-
vent their dissemination within and out of this organelle [70]. As
discussed in the previous section, excess ROS and RNS damage in mito-
chondria can result in triggering of mitophagy and apoptosis.

In addition to oxidative damage to unsaturated FA, CL and other lipid
molecules [67,68,74], ROS/RNS can damage DNA and proteins [69–71].
For example, ROS can stimulate opening of L-type voltage-sensitive cal-
cium channels, resulting in increased intracellular calcium concentra-
tions, as seen in neurodegeneration and stroke patients [74–76]. Once
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released, the ROS/RNS can penetratemitochondrial and cellmembranes
and diffuse outside cells to cause widespread tissue damage [77].

The reaction of ROS/RNSwith cellular membranes is particular dam-
aging, causing oxidation of double bonds in phospholipid unsaturated
FA to aldehyde products, such as malondialdehyde (MDA), 4-
hydroxynonenal (HNE), 4-oxo-2-nonenal and acrolein [67,78]. These
reactive products covalently bind to protein thiol groups and other
cellular materials, altering their function [67]. They are also markers of
neurodegeneration, inflammation, diabetes, atherogenesis and other
pathogenic processes linked to oxidative stress and lipid peroxidation
[67,77–80].

In mitochondria, ROS free radicals are also capable of causing ox-
idation of CL. Consequently, CL remodeling has been implicated in
the etiology of mitochondrial dysfunction and is associated with a
host of pathophysiological conditions, including diabetes, obesity,
heart failure, hyperthyroidism, neurodegeneration, and aging, all of
which are characterized by increased levels of oxidative stress, CL
deficiency, and enrichment of docosahexaenoic acid (DHA) content
in CL [81].
Fig. 1. Some phospholipid transport systems. Most orally ingested phospholipids are absorbed
dispersion and enzymatic digestion. (a) Lipid Replacement Therapy (LRT) phospholipids are u
charides, permitting transportation into cells as small lipid droplets and vesicles by endocytotic
and droplets can be extruded by a reverse exocytotic process and eventually transported to lym
border epithelial cells is shown inmore detail. In addition, some of the phospholipids are absorbe
degradation products to organelle membranes, including mitochondria, by phospholipid transp
pholipids are flipped to the inner plasma membrane surface by phospholipid translocases. At
transport and carrier proteins andmoved to othermembranes. (d) At the brush border cell baso
of the plasmamembrane. There they are flipped to the outer surface by phospholipid translocas
figure are lipid transport by direct membrane-to-membrane contact and lipid droplet- and ves
Thephospholipids ofmitochondria are sensitive to ROS/RNSdamage
because of their high content of certain unsaturated FA, such as DHA
(22:6, n-3) and its sister molecule eicosapentaenoic acid (EPA, 20:5, n-
3) [82,83]. These FAs, which are found at high concentrations in fish
oils, constitute important components in phospholipids of mitochondria
by providing fluidizing properties to the MIM and supporting proton
transport processes [83]. For example, there is a direct relationship
between the contents of unsaturated FA in mitochondria, such as DHA
and EPA, and the ability to maintain a proton gradient across the MIM
[84]. They also have the property of decreasing the contents of choles-
terol in the plasma membranes of aortic endothelial cells and making
their membranes more fluid and controlling membrane permeability
[82,83,85].

Themitochondrial unsaturated FAoxidized products are also very im-
portant in inducing apoptosis by reactionwithmitochondrial permeabil-
ity transition pores (MPTP) [86,87]. MPTP are voltage-dependent
channels that function during calcium-dependent apoptosis. Increases
in mitochondrial ROS production alters MPTP and initiates Ca2+ release,
modifying Ca2+ cell signaling and causing mitochondrial calcium
and transported in the upper small intestines by brush border epithelial cells after their
sually protected from complete disruption and enzymatic degradation by bound oligosac-
processes. At the distal or basolateral regions of the brush border cells excess lipid vesicles
ph and blood vessels. (b) The endocytotic transport of lipid droplets and vesicles into brush
dby the epithelial cell plasmamembrane and transported as simple phospholipids or their
ort systems. (c) After absorption by the brush border epithelial plasma membrane, phos-
the inner plasma membrane surface the phospholipids can be absorbed by phospholipid
lateral surface excess phospholipids are delivered by transport proteins to the inner surface
es where they can be absorbed by lipid droplets and further transported. Not shown in the
cile-to-membrane contact and temporary fusion.

image of Fig.�1
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loading, which further increases ROS production, repeating the process
until mitochondrial begin swelling, eventually followed by cell death
[88]. Modifying mitochondrial unsaturated FA composition by dietary
supplementation with DHA can alter mitochondrial Ca2+ homeostasis
and function by delaying MPTP opening and Ca2+ induced apoptosis
[89,90].

7. Lipid metabolism and transport

Oral phospholipids are dispersed, partially or completely degraded
and absorbed in the gastrointestinal tract [91,92]. Although some hy-
drolysis takes place in the stomach (10–30%), most fat hydrolysis and
absorption occurs in the upper small intestine [93,94]. With increased
load, however, fat is also absorbed in the distal small intestine [95].
The process is quite efficient; in clinical experiments more than 90% of
radiolabeled phospholipids were absorbed within hours, and the
blood concentration indicated that about 20% of an administered phos-
pholipid dose was transported into the blood within 6 h [96,97].

Since phospholipids can be oxidized and degraded during their in-
gestion, digestion and eventual adsorption by the intestinal lumen,
oral Lipid Replacement Therapy (LRT) phospholipids are usually
protected from the acidic environment of the gut, disruption by bile
salts and hydrolysis by phospholipases and other enzymes from the
pancreas and gut microflora [98]. This is accomplished by complexing
LRT phospholipid micelles and liposomes with certain fructooligosac-
charides, which bind to and protect the phospholipids from phospholi-
pases and bile salts [99,100]. They are also better protected from
oxidation in this form [100].

Once phospholipid micelles and liposomes are protected by their
binding of specific protective oligosaccharides, they can be taken in
largely intact by the gastrointestinal brush border cells (Fig. 1)
[94,101]. Although some hydrolysis of phospholipids occurs during
this process, most micellar phospholipids are absorbed intact by muco-
sal cells as unoxidized, undegraded phospholipids [95]. When dietary
phospholipids are protected from the action of bile salts and pancreatic
lipases by oligosaccharides, however, such as in LRT, their overall
absorption is reduced but with less degraded products [102]. On the
other hand, when uncomplexed dietary membrane phospholipids are
directly absorbed bymucosal cells, most of thesemolecules are partially
degraded by pancreatic phospholipases, usually by removal of one or
even both of the acyl FA chains and further degradation [103].

Morphological studies have revealed that undigested dietary lipids
and phospholipids are present in the small intestine mainly as small
lipid droplets andmicelles (50-1,000 Å in size) that are taken in largely
intact into intestinal cells (Fig. 1) [104]. Although electron microscopic
methods cannot distinguish the lipid compositions of lipid droplets
andmicelles, thesematerials are absent in fasting controls [104]. The in-
testinal absorptive cells also transport individual phospholipids and
their degradation products, such as FAs, using specificmembrane trans-
port systems, but the small droplets (called chylomicrons once inside
cells) and micelles are transported via a pinocytosis process [104].
There they accumulate inside intestinal brush border cells as larger
droplets or chylomicrons [105], especially in the most differentiated
cells at villous tips [104,105].

In addition to the pinocytosis transport system, intestinal bush bor-
der plasmamembranes can also directly absorb free phospholipids (and
other lipids) and phospholipids bound in micelles and lipid droplets
into their outer plasma membrane leaflets. Dermer observed that the
microvillous plasmamembranes became thicker on their outer surfaces
during phospholipid and FA absorption, and this was attributed to the
direct insertion of lipidmolecules into the outer surface or outer leaflets
of the microvilli membranes [106]. Once phospholipids like PC are
enriched in the plasma membranes of the colonic mucosa, they help
protect this structure from pathogenic processes like ulcerative colitis
and other chronic inflammatory conditions. It was proposed that they
do this by providing cell surface hydrophobicity and modulating the
signaling state of the mucosa, a regulatory component of the inflamma-
tory signaling pathway [107].

After phospholipids, DAG and FAs are incorporated into the outer
leaflet of a cellular membrane, there are several different transmem-
brane lipid-translocase or flipping molecules (flipases, flopases and
scramblases) that can transfer the phospholipids and FAs to the other
membrane surface [108–110]. In the case of lipid molecules that have
been transferred from the outer to the inner surface of the plasma
membrane, they can then be picked up by intracellular lipid carrier,
transporter and transfer molecules and transported to intracellular
membranes, or they can simply diffuse to recipient cellular membranes
and partition into the membrane [111,112]. Alternatively they can be
stored inside cells as vesicles or in some cells as lipid droplets [113].
The flipping of phospholipids to the inner surface of the plasma
membrane may promote formation of transport vesicles by inducing
membrane curvature and blebbing [109]. A possible reason for the exis-
tence of multiple mechanisms for the transfer of lipid molecules from
the intestinal lumen of brush border cells into these cells and beyond
may be to provide redundancy for this critical process.

Once inside intestinal cells phospholipids and other lipids are usual-
ly delivered to variousmembranes and organelles via carrier, transfer or
transport proteins [111,112], or asmentioned above, they can be stored
as chylomicrons that are found only during fat absorption [104,114].
Lipid chylomicrons are mostly phospholipids (70–75%), but they also
contain cholesterol (5–10%), triglycerides (13–25%), FAs and other
lipids [114]. Not only do they store phospholipids in mucosal cells, but
they are also used to transfer lipids to the endoplasmic reticulum,
Golgi and other organelles, and also to other adjacent cells [104,105].

Vesicles released from Golgi membranes of mucosal cells can con-
tain small lipid droplets or larger chylomicrons, and these lipid-loaded
vesicles have been observed to be transported to the basolateral surface
for release by a process called reverse pinocytosis. Eventually they find
their way to the cells lining the lymph or circulatory systems [104].
There pinocytosis and transport processes can be repeated until the
lipid droplets or chylomicrons are eventually released into the lymph
or blood.

In addition to lipid droplets [113], the usual method of lipid transfer
inside cells makes use of a wide variety of intracellular lipid carriers or
transfer proteins, each specific for a given type of lipid or lipid class
[111,112]. These lipid transport systems usually function on a mass ac-
tion basiswheremembranes that contain high concentrations of certain
membrane lipids deliver their excess lipids to membranes with lower
lipid concentrations.

When intracellularmembrane phospholipid-binding or transfer pro-
teins were isolated and studied in vitro, investigators found a transfer
preference for polyunsaturated phospholipids but not for phospholipids
with different acyl chain lengths. This indicated that intracellular phos-
pholipid transfer proteins can distinguish unsaturated acyl chains of
varying lengths in membrane phospholipids [115]. A slightly different
result was obtained by other investigators with a membrane phospho-
lipid transfer protein from bovine liver. They found that this membrane
phospholipid transfer protein preferentially extracted and transferred
PC long chain unsaturated FA (fluid phase PC) [116]. Of course, once
they arrive at their destination, membrane phospholipids are alsomod-
ified enzymatically, and their FAs and head groups can be replaced to
reflect the usual composition of the membranes at their final destina-
tion [117]. This system can also be reversed to remove oxidized or dam-
aged lipids from membranes and eventually degrade them or export
them [118].

There is also an additional system for transferring lipids inside cells.
Membranes and organelles can transfer lipidswithin cells by direct con-
tact and diffusion. For example, endoplasmic reticulum and mitochon-
dria can transfer membrane lipids by direct contact transfer through
specific junctions called the mitochondria-associated membrane
(MAM) [119,120]. In addition, certain cellular organelles have their
own specific lipid transport systems to move phospholipids inside
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these structures. For example,mitochondria possess lipid transport pro-
teins that shuttle membrane phospholipids between inner and outer
membranes, probably to insure maximal exchange of damaged mem-
brane phospholipids with undamaged phospholipids during fusion
[121,122].

Once in the circulation, lipids, such asmembrane phospholipids, ste-
roids, FAs and other lipids, can be bound by plasma carrier molecules,
absorbed by lipoproteins, such as high- and low-density lipoproteins
(HDL and LDL), or bound to blood cells, such as erythrocytes. The
blood lipoproteins are an important transport system for membrane
phospholipids in the circulation. They also protect phospholipids and
other lipids from oxidation and enzymatic digestion during transport.
In man, the amounts of membrane phospholipids exchanged and pref-
erentially transported by HDL lipoproteins are more than 20-times the
amounts transported by red blood cells [123]. In addition, membrane
phospholipids can displace and help remove cholesterol from the circu-
lation by displacing it from erythrocytes and circulating lipoproteins
[123,124].

The half-life of high concentrations of membrane phospholipids
injected intravenously into the circulation indicates that after a rapid
decrease in concentration due to liver clearance (approximately 80%
reduction within 15 min), residual phospholipids may be present for
some time before being deposited into tissue stores. In one study
in man the concentrations of intravenously injected radiolabeled-
phospholipids fell rapidly in the blood (almost 100% after 10 h), but
the residual phospholipids slowly declined with a half-life of 59 days
[125,126]. This may not be a good model for dietary or oral membrane
phospholipid turnover in the blood circulation, however, because the
concentrations of phospholipids in the blood are many times higher
after intravenous injection than those transported from intestinal
sources [126]. Le Kim and Betzing studied polyunsaturated PC absorp-
tion in rats and found that the disappearance from the gastrointestinal
tract was relatively rapid in the first 6–8 h after instillation but became
considerably slower thereafter [127]. Importantly, more than 90% was
absorbed within 24 h, and essentially all of the membrane phospho-
lipids absorbed after oral administration were eventually incorporated
into tissues [96,127]. This indicates that the gastrointestinal transport
and utilization of membrane phospholipids is a very efficient process.

After their transport in the blood to organs and tissues, membrane
phospholipids and other lipids are transferred to the plasma mem-
branes of endothelial cells. This process repeats almost in reverse the
transfer of membrane phospholipids from gut endothelium to the
blood. From endothelial cells at sites distant from the gut, membrane
phospholipids are then transferred to tissue and organ cells and eventu-
ally to intracellular membranes. The entire process follows a mass ac-
tion concentration gradient from the gut to tissues (and back again for
damaged/oxidized phospholipids). As mentioned above, there is also a
Table 2
Some clinical effects of dietary LRT supplement NTFactor on fatigue scores.a

Subjects/patients n Av age Time on LR

Chronic fatiguec 34 50.3 8 week
Aging, chronic fatigued 22 68.9 12 week
Chronic fatigue syndromed 15 44.8 8 week
Obesity, fatigued 35 42 8 week
Aging, chronic fatiguee 67 57.3 1 week
Lyme disease, fatiguef 17 52.4 8 week
Gulf War Illness, fatigueg 16 42.2 8 week

a Modified from Nicolson and Settineri [147].
b Piper Fatigue Scale [147].
c Propax™ with NT Factor.
d NT Factor®.
e Healthy Curb™ with NT Factor®.
f Advanced Physician's Formula™ with NT Factor®.
g ATP Fuel® with NT Factor®.

⁎⁎ P b 0.0001.
⁎ P b 0.001 compared to without NT Factor.
natural process to reduce cholesterol in membranes and tissues, be-
cause the lipoproteins with high phospholipid unsaturated FA have a
fluidizing effect on lipoproteins andmembranes, effectuating cholester-
ol removal from cellular stores in tissues and cells [128,129]. Once the
transferred membrane phospholipids are present at their destination
sites, they can also be modified enzymatically to other phospholipids,
or they can have one or two of their FAs exchanged with unsaturated
FA ormodified in situ. The end result is to transform cellularmembranes
so that enzymes, receptors and other components of membranes are
more active, and membranes are less permeable, less deformable and
more functional [130–136].
8. Lipid replacement methods

Membrane lipids can be replaced (LRT) using dietary sources, oral
supplements or intravenous introduction of membrane phospholipids
(so-called “essential” phospholipids). There are advantages and disad-
vantages to each of these methods. Plant sources of dietary polyunsatu-
rated membrane phospholipids, such as legumes or cabbage, are a good
starting point for dietary supplementation [6,137]. Although the normal
average dietary uptake of diet-derived membrane phospholipids is not
known to any accuracy, it is considered in the range of 2–8 g per day
[6]. However, the amounts of rawmaterial, such as soy beans, required
to obtain a daily dose of approximately 1.8 g of membrane phospho-
lipids is approximately 15 kg of beans [137]. This makes dietary sources
of enough membrane phospholipids unappealing and impractical. In
addition, dietary sources of membrane phospholipids are not protected
from oxidation, disruption and digestion before and during intestinal
delivery. Oral supplements, on the other hand, can deliver therapeutic
doses of membrane phospholipids as part of a daily supplement regi-
men, and oral membrane phospholipid supplements can be protected
from oxidation, bile disruption and enzymatic digestion using protec-
tive fructooligosaccharides [5,99,100].

Most oral supplements formembrane repair and replacement utilize
sources that contain mixtures of glycerophospholipids, n-3 and n-6
unsaturated FA and other lipid components derived from legumes,
milk, liver, fish, krill, and other sources [6,90,138–141]. Many of these
have also been tested in laboratory animals. For example, animals sup-
plemented with n-3 unsaturated FAs showed changes in mitochondrial
membrane phospholipid FA composition, improved mitochondrial
function and altered Ca2+-induced mitochondrial permeability transi-
tion pore opening [142]. This was accomplished by modification of the
MIM, or more specifically by replacing CL FAs with specific unsaturated
FA to improve inner membrane fluidity and CL-ETC interactions. For
example, feeding rats for 10 weeks with a DHA and EPA unsaturated
FA supplement resulted in modifying their cardiac mitochondrial CL
T Fatigue Scale reduction (%)b Reference

40.5⁎⁎ Ellithorpe et al. [354]
35.5⁎ Agadjanyan et al. [166]
43.1⁎ Nicolson & Ellithorpe [144]
24⁎ Ellithrope et al. [251]
36.8⁎⁎ Nicolson et al. [230]
26⁎ Nicolson et al. [231]
34.6⁎ Nicolson et al. [147]
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FAs and delaying Ca2+-induced mitochondrial permeability transition
pore opening [143].

In terms of daily use for humans, themost convenient, efficient, safe
and cost effective method of membrane phospholipid administration
has been the use of daily oral supplements [6]. Of the oral supplements
available, most are crude soy, egg yolk or marine lecithin preparations
that lack oxidation, bile and phosphatase protection. In addition, most
of these preparations have not been carefully analyzed for phospholipid
composition. However, there are oral membrane phospholipid supple-
ments, such as NTFactor®, that fulfill the requirements for efficacy,
oxidation and degradation protection, safety and convenience
[5,144,145]. The NTFactor supplement, its use and clinical results, will
be discussed in more detail in Section 11. NTFactor comes in many
oral forms, but almost all contain from 1.8 to over 2 g of phospholipids
(N30% PC plus PI, PE, PS and other phospholipidswithmostly unsaturat-
ed FA) [144,145]. Some NTFactor-containing supplements also contain
probiotic bacteria, various vitamins andminerals and other ingredients.
Some of these oral supplements can be compositionally quite complex.
For example, a specific supplement for mitochondrial support, ATP
Fuel®, contains 2 g NTFactor and also NADH, Coenzyme-Q10, vitamin
E, α-ketoglutaric acid, L-carnitine, and other ingredients [147]. All of
these oral supplements contain some antioxidant, such as low concen-
trations of vitamin E, to protect the phospholipids and unsaturated FA
from oxidation during storage and ingestion.

Other specific oral phospholipid preparations, such as PS supple-
ments, usually made from bovine brain or soy, have been used to treat
memory loss in aged subjects or in Alzheimer's disease (AD). In the
case of AD patients supplementation with 300 mg per day of bovine
PS for 6 months provided cognitive improvement relative to placebo
controls [148]; however, this was not seen in another study on elderly
subjects with age-associated memory impairment that received 300-
600 mg soy PS daily for 12 weeks [149]. Although administration of
PS alone has health benefits, the use ofmore complexmixtures ofmem-
brane phospholipids containing PC, PS, PE, PI, etc. are considered more
useful [5,144,146].

Intravenous administration ofmembrane phospholipids (“essential”
phospholipids or EPL) can deliver high phospholipid concentrations
without the need for inhibiting intestinal disruption, but they are still
susceptible to enzymatic and oxidative damage. In addition, daily intra-
venous delivery comes with some risk for adverse events (infection,
blood vessel damage, thrombosis, pruritus, dyspnoea, urticaria, etc.),
and it is much more expensive and its administration must be profes-
sionally supervised. Nonetheless, there are many published reports
on the clinical usefulness of intravenous membrane phospholipids
[1,2]. EPL intravenous preparations, such as Essentiale®, contain 1 g
phospholipids, mainly PC (N75% PC, with some PE, PI and other
phospholipids, ethanol, tocopherol, ethylvanilllin, vitamins B6, B12,
nicotinamide, and sodium D-pantothenate) [2,6]. Other membrane
phospholipid products are listed in Table 2 of Küllenberg et al. [6].
9. Pre-clinical and clinical safety studies

Some of the most important preclinical studies on LRT are analyses
of acute and chronic toxicity, including dose effects, perinatal and post-
natal toxicity and mutagenic and carcinogenic potentials. Importantly,
none of these studies, which were mostly conducted in laboratory ani-
mals (mice, rats and rabbits), demonstrated any acute or chronic toxic
effects of membrane phospholipids given by oral, subcutaneous or in-
travenous administration. From multiple studies toxic or lethal doses
could not be established in laboratory animals. Nor could any doses of
membrane phospholipids be established that caused any mutagenic or
carcinogenic events. In mice, rats, rabbits and dogs daily oral doses up
to 3.75 g/Kg body weight produced no effects (reviewed in [2]). Thus
using single or repeated dose administration no toxicity could be
established in young, adult, pregnant or fetal laboratory animals. For
example, no toxicity was found in pregnant rats or rabbits or with
their fetal offspring at doses up to and above 1 g/Kg [2].

When the effects of membrane phospholipids were examined in
laboratory animals receiving carcinogens, simultaneous administration
of membrane phospholipids inhibited the formation of tumors
(reviewed in [2]). For example, supplementation of pure PC in rats
reduced preneoplastic liver nodule formation [150]. These and other
studies resulted in the U.S. Federal Drug Administration (FDA) classify-
ing membrane phospholipids used in LRT in the category ‘Generally
Recognized as Safe’ (GRAS) [151].

The long-term pharmacological effect of membrane phospholipids
on rodentswas examined byWagener et al. [152]. Themembrane phos-
pholipids were given in chow or water daily at doses ranging from 0.01
to 5 g/Kg bodyweight. No effects were found in the central or peripher-
al nervous systems, including reflexes, analgetic, spasmoltyic or spasm-
influencing functions, renal function, heart and vascular function, or
other measures of pharmacological toxic effects [152]. Long-term
administration of membrane phospholipids in the chow of laboratory
rodents has proven to be beneficial not harmful. For example, Seidman
et al. [153] examined the protective effect of feeding rodentsmembrane
phospholipids on age-related hearing loss andDNA deletions associated
with aging. Rats aged 18–20 months were fed membrane phospho-
lipids (NTFactor) or placebo for 6 months and their auditory brainstem
responses (ABR) and MIM potentials and mitochondrial DNA deletions
were examined every two months. ABR were measured by measuring
hearing thresholds and sensitivities, mitochondrial inner membrane
potentials were assessed by using blood lymphocytes labeled with
rhodomine-123 and monitoring fluorescence with a flow cytometer,
and DNA deletions were determined by extracting DNA from various
brain regions and amplification of mitochondrial mtDNA sequences
(ND1-16srRNA and other sequences).

There were significant differences found between the experimental
and placebo groups in ABR, MIM potential and the presence of mtDNA
deletions [153]. By 4-months administration of NTFactor there
was significant preservation of hearing threshold at all frequencies test-
ed in the experimental group. In addition, NTFactor prevented age-
related decline inmitochondrial innermembrane potential and reduced
the incidence of common mtDNA deletions found in aging rats. The ef-
fects were attributed to the ability of NTFactor to repair mitochondrial
and other membranes and to the ability of the phospholipid unsaturat-
ed FA to reduce the effects of ROS damage on mtDNA [153].

High doses of membrane phospholipids have also been given
to humans with no apparent toxicity. For example, patients with
hepatic encephalopathy due to decompensated liver cirrhosis were
administered 2 g per day of EPL intravenously for several weeks with
no apparent adverse events. Patients receiving EPL showed significant
improvements in their liver disease and had significantly prolonged
survivals compared to a control group that did not receive the mem-
brane phospholipids [154]. In phase I/II clinical trials on patients with
cardiovascular disease, PI was given at doses over 5 g per day. This
phosphatidyl lipid was able to increase plasma HDL and apolipoprotein
A-1 levels and reduce triglyceride levels with no evidence of any toxic-
ity [155].

Long-term administration of relatively high doses of LRT has actually
improved cardiovascular blood markers. In addition to the studies
above, in 35 older (average age 60.7) subjects receiving over 2 g per
day oral NTFactor for over 6 months showed no evidence of adverse
events. In fact, their cardiovascular blood marker levels, such as homo-
cysteine, improved during the trial [155]. Similarly, 58 patients
with fatiguing illnesses received doses of 2 g per day oral NTFactor for
2 months without incident [147]. A follow-up on these patients found
that most had continued using the LRT supplement for over a year
with no adverse events. Cohn et al. [157] have reviewed experimental
and clinical studies on the use of membrane phospholipids in the
treatment of cardiovascular diseases and have concluded that there is
no evidence of toxicity.
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In a variety of clinical studies membrane phospholipids have been
shown to be safe and effective and have a positive impact in human
disease (reviewed in [2,6,157]). Most clinical studies have used oral
membrane phospholipids in the range of 1.5-3 g per day or intravenous
administration of 0.5-2 g per day [2,6,144–146]. Membrane phospho-
lipids from soy, egg yolk, milk and marine sources have been used in
doses over 3 g per day orally or intravenously with no adverse effects.
In a few cases does up to 45 g of membrane phospholipids were
given orally without adverse effects [158]. In fact, the administered
phospholipids actually reduced the side effects of drugs and other treat-
ments [2,6,145]. Thus the use of purified membrane phospholipids at
high daily doses has no apparent toxic effects in animals or man.

10. Aging and energy requirements

Aging is a degenerative process associatedwith progressive accumu-
lation of deleterious changes with time, reduction of physiological func-
tion, including increased fatigue and increased chances of disease and
death. The causes of normal aging are multi-factorial with no single
mechanism able to explain all aspects. An understanding of some of
the molecular mechanisms driving the aging process may provide
new insights into the pathophysiology of diseases associated with
aging and potential new interventions to limit the rate of aging
[159–162].

López-Otín et al. [159] have proposed that there are 9 hall marks
related to aging: (i) genomic instability, (ii) telomere attrition,
(iii) mitochondrial dysfunction, (iv) cellular senescence, (v) epigenetic
alterations, (vi) loss of proteostasis, (vii) deregulated nutrient sensing,
(viii) stem cell exhaustion and (ix) altered intercellular communication.
One of the most significant hallmarks was however, not mentioned:
inflammation (“Inflamm-aging”) [160] and its effect on aging. Inflamm-
aging describes the close relationship between low-grade chronic
innate immune driven inflammation and aging that has been linked to
a wide spectrum of age-related disorders in various organs [161].

The inflamm-aging process is associated with a decline in autopha-
gic and mitophagic capacity that impairs cellular and mitochondrial
housekeeping, leading to protein aggregation and accumulation of
dysfunctional mitochondria. This can result in diminished oxidative
phosphorylation, reduced MIM trans-membrane potential and in-
creased permeabilization of the outer mitochondrial membrane [162].
In turn, this provokes ROS/RNS production and oxidative stress,
resulting in other changes, such as loss in membrane fluidity due to
lipid peroxidation and decreased CL content [163,164]. These changes
probably account for the reported age-related declines inmitochondrial
function and other hallmarks of aging [165].

Importantly, LRT can reverse these age related changes. For example,
NTFactor use in aged subjects has been shown to improvemitochondri-
al function, reduce fatigue and increase cognition, suggesting that the
phospholipid lipid membranes of the mitochondria were functionally
improved through oral LRT supplementation [166]. More impressively,
the mitochondrial function of the aged group was restored to the
same level of function as that displayed by a healthy 29 year-old control
[166].

Overall, age-related membrane alterations can have significant bio-
energetic costs, such as a decrease in mitochondrial activity and ATP
production. In addition, the essential transport of phospholipids across
leaflets of the membrane bilayer is highly dependent on the presence
of ATP. As discussed in Section 7, membrane translocases are generally
ATP-dependent [109,110] and as ATP production declines so does the
utilization of existing membrane-and-serum derived lipids for the pur-
pose of achieving asymmetrical membrane management and composi-
tion [167].

Since mitochondrial production of ATP is directly linked to mainte-
nance of MIM trans-membrane chemical/electrical potential [168], pro-
viding lipid substrates via oral supplements or diet manipulation
represent attractive options for managing age-related decline. A group
ofmitochondrial FA oxidation disorders have been successfully targeted
by dietary intervention, indicating that dietary composition and supple-
mentation have valid roles in phospholipid replacement strategies
[169].

The mitochondrial membrane permeability event MOMP is a deci-
sive event in the functional decline and eventual execution of apoptosis
or programmed cell death. It is also causally linked to a decline in bioen-
ergetic function via different mechanisms, not merely due to cyto-
chrome c dispersion. This includes at higher levels the generation of
fatigue, and the increased production of DAMPs or ‘alarmins’ [170], fur-
ther provoking risk forMIM electrochemical potential decline, resulting
in additional reduction in ATP production [171].

Other processes contributing to aging and mitochondrial dysfunc-
tion are also linked to alterations in the phospholipids of the MIM.
Several groups have reported pre-apoptosis-associated changes in CL
content, including oxidation [172], “reorganization” [173], and even re-
location of CL from the MIM to other membrane compartments [174].

One of the most contemporary examples includes selective peroxi-
dation of MIM CL in cells undergoing apoptosis. CL peroxidation prod-
ucts are required for the mitochondrial membrane permeabilization,
release of pro-apoptotic factors and completion of the cell death pro-
gram. Therefore, the search for effective inhibitors of CL peroxidation
may be critical to discovery and development of anti-apoptotic
supplements.

Recent studies have found that autophagy (the programmed
destruction of cells) and mitophagy (the programmed destruction of
mitochondria) function asmajor sensors of redox signalling at the inter-
face between cell stress adaptation and cell death. Autophagic activities
are mediated by complex molecular machinery, including membrane
phospholipids. Dysfunction of autophagy may result in abnormal
mitophagy, loss of mitochondrial function and oxidative stress, which
are some of the molecular hallmarks of aging [175]. The age-related
accumulation of dysfunctional mitochondrial likely results from the
combination of impaired clearance of damaged organelles by autophagy
and inadequate replenishment of the cellular mitochondria by mito-
chondriogenesis as well as optimal membrane lipid availability for
maintenance of MIM potential [176].

Mitophagy is a selective type of autophagy, whereby damaged or su-
perfluous mitochondria are eliminated to maintain proper mitochon-
drial numbers and quality. While mitophagy shares key regulatory
factors with the general macroautophagy pathway, it also involves
distinct steps that are specific for mitochondrial elimination [177].
The subsequent release of DAMPs from damaged membranes is
recognised by intracellular danger-sensing multiprotein platforms
called inflammasomes [178–180]. Recent studies have clearly indicated
that ROS, such as superoxide (O(2)(−)) and hydrogen peroxide (H(2)
O(2)) production induced by damaged mitochondria, can stimulate
inflammasome formation as a consequence of their role as sterile
inflammation or para-inflammation promoters [181–183]. Damaged
but functional mitochondria can release up to tenfold more hydrogen
peroxide, potentially triggering more sterile inflammatory responses
[184]. However, other studies have shown that nitric oxidemay actually
inhibit the triggering of the keystone NLRP3 inflammasome; suggesting
a co-dependant oxidation relationship for the purpose of maintaining
innate immune activation and subsequent adverse age related changes
in membrane tissues [185].

Although ROS and RNS have been classically known for their damag-
ing effects, increasing evidence of their importance in regulating and
maintaining normal homeostatic processes in living organisms has
been accumulating. Therefore, the term ‘redox regulation’ seems to
better describe the redox status of mitochondria and its consequences.
One of the areaswhere redox balance ismost comprehensively required
is in the MIM.

NLRP3 is a key immune related receptor with high affinity for nu-
merous compounds is activated by many danger signals, such as ROS/
RNS, soluble ATP, mtDNA, cathepsin B (released from destabilized
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lysosomes) and aggregated proteins, all of which evoke cellular stress
and are involved in the aging process [186]. NLRP3 activation is also
enhanced in many age-related diseases, such as atherosclerosis, obesity
and type 2 diabetes [187]. NLRP3-induced cytokines provoke inflamma-
tory responses and accelerate the aging process by inhibiting appropri-
ate autophagy and mitophagy [188]. To avoid cellular damage, ROS-
generating mitochondria are constantly removed by mitophagy [189].
Inhibition of autophagic and mitophagic capacity with aging generates
the inflammaging condition via the activation of inflammasomes [190].

Exploratory studies using FAs tomanipulate the expression of NLRP3
inflammasomes indicate that omega-3 (n − 3) unsaturated FA, such as
DHA and EPA, exhibit anti-inflammatory properties via their inhibition
of the inflammasome [191,192]. This is likely achieved through various
mechanisms, including the manipulation of cell membrane lipids as
well as inhibition of primary and secondary triggers, in particular
through the compression of NFκB [193]. This provides an early stage
mechanism for the possible use of dietary lipids to inhibit inflammation
and for LRT utilizing cell membrane-specific phospholipids to compress
the rate of mitochondrial-induced DAMP production through reduction
of membrane permeabilization and thus limit age-related innate
immune inflammation.

For almost a century two primary hypotheses have dominated the
concepts of aging. The first appreciated that an organism's intrinsic
metabolic rate is an important determinant of life span andwas referred
to as the “rate of living hypothesis” [194]. This was merged with the
“free radical theory of aging” proposed initially by Harman [195], and
expanded on since by many authors [196–198]. Harman suggested
that agingmight bemediated bymacromolecular damage through reac-
tions involving ROS [195]. Today, a version of the free radical theory of
aging, focusing on mitochondria as source as well as target of ROS, is
considered a valid theory to explain aging [199].

Recognition of the important role ofmitochondria in aging has led to
the mitochondrial free radical theory of aging, which considers mtDNA
mutations to be the initiating, primary event in the aging process, be-
cause it has been observed that mutated mtDNAmolecules accumulate
with age [200,201]. The age-dependent accumulation of mutations in
mtDNA can, in principle, be explained by six mechanisms that result
from replication errors and unrepaired damage through increased
production of ROS and an imbalance in the expression of antioxidant
enzymes [202,203].

Studies in several species have revealed a wide spectrum of
alterations in mitochondria and mitochondrial mtDNA with aging,
including: (i) Increased disorganization of mitochondrial structure,
(ii) decline in mitochondrial oxidative phosphorylation (oxphos) func-
tion, (iii) accumulation of mtDNA mutations, (iv) increased mitochon-
drial production of ROS and (v) increased extent of oxidative damage
to DNA, proteins, and lipids and (vi) insufficient antioxidative enzymes
[177,195–205].

LRT provides protection for ROS-related damage tomtDNA, proteins
and lipids, decline in MIM potential, and provides substrates for CL
regeneration and membrane repair [2,5,86,87]. Thus LRT is capable of
decreasing or preventing age-related mitochondrial stress-induced
adverse effects and may have significant potential in the reduction of
age-related disorders [153,166].

Mitochondria cannot be synthesized de novo, and thus mitochondrial
mass, fusion, and fission are important factors in coping with impaired
function. Effective control of mitochondrial biogenesis and turnover,
therefore, becomes critical for the maintenance of energy production,
the prevention of endogenous oxidative stress and the promotion of
healthy aging. Fusion of mitochondria helps mitigate cellular stress by
mixing the contents of partially damagedmitochondria with undamaged
mitochondria as a form of complementation in which undamaged phos-
pholipids and co-factor nutrients are utilized or re-used to maintain
their viability. Mitochondrial fusion remains a largely unknown process
albeit some steps have now been exposed. Legros et al. used a green
and a red fluorescent protein targeted to the mitochondrial matrix to
demonstrate that mitochondrial fusion occurs in human cells, is efficient
and achieves complete mixing of matrix contents within as little as 12 h
[204]. This showed that fusion requires mitochondria to be viable and is
mediated bymitofusins. Thesemitofusions activate the process inwhich
mitochondria of healthy cells undergo fusion.

The course of action occurs in three steps: (i) Themitochondria align
themselves, end to end, (ii) the outer membranes of the two organelles
fuse with each other, (iii) the inner membranes fuse with each other,
thus forming a larger intact mitochondrion [205]. Mitochondrial fusion
therefore, represents a rescuemechanism for impairedmitochondria by
themixing of contents (proteins, lipids andmitochondrial DNA) and the
unification of themitochondrial compartment, permitting it tomaintain
its functionality and allow it to continue toplay roles in cellular develop-
ment, healthy aging and energy dissipation [206,207].

Fission of mitochondria is needed to create newmitochondria, but it
also contributes to quality control by enabling removal of damaged mi-
tochondria and can facilitate apoptosis (or mitophagy) during high
levels of cellular stress. Mitochondrial fusion, fission and membrane re-
pair also provide suitable quenching molecules for ROS/RNS free-
radicals and thus diminish inappropriate mitochondrial collapse and
mitophagy. These processes occur throughout the lifecycle of the cell
and the functional outcomes of the use of LRT to support them may be
reflected in increased ATP synthesis, decreased membrane perme-
abilization, increased MIM potential, diminished DAMP production
and eventually decreased levels of fatigue and improvements in various
organ functions, such as cognition and mood [166,153].

Additional improvements in mitochondrial repair have also been
noted in diets that are limited in caloric intake without malnutrition,
or they involve periods of reduced nutritional intake followed by pe-
riods of modest surplus and an adequate intake of minerals, utilization
of antioxidants such as CoQ10, vitamin E, curcumin, resveratrol and
rotterlin and other associated or complementing nutrients [208–212].
This indicates that supplemental sources of mitochondrial-related nu-
trients and LRTmay provide redox regulation andmembrane functional
benefits with a subsequent reduction in age-related mitochondrial
disorders.

11. Fatiguing illnesses

Fatigue is considered a complex, multidimensional sensation that is
poorly understood but perceived to be a loss of overall energy and feel-
ing of exhaustion and an inability to perform even simple tasks without
exertion [213–215]. At the cellular level moderate to severe fatigue
are related to loss of mitochondrial function and diminished production
or leakage of ATP [216,166]. Intractable fatigue lasting more than
6 months that is not reversed by sleep (chronic fatigue) is the most
common complaint of patients seeking general medical care [213,217].

During aging and chronic diseases oxidative damage to mitochon-
drial membranes impairs mitochondrial function [214,218–220]. For
example, chronic fatigue syndrome patients present with evidence of
oxidative damage to DNA and lipids [218,219], such as oxidized blood
markers and oxidized membrane lipids that are indicative of excess ox-
idative stress [220,221]. These patients also have sustained, elevated
levels of peroxynitrite due to excess nitric oxide, which can also result
in lipid peroxidation and loss of mitochondrial function as well as
changes in cytokine levels that exert a positive feedback on nitric
oxide production [222].

In addition to fatigue in chronic illness patients, fatigue is also one of
the most common symptoms in cancer [145,146]. It occurs in cancer
patients from the earliest forms of cancer to the most progressed
forms of metastatic disease [223,224]. Along with pain and nausea,
cancer-associated fatigue is one of the most common and disabling
symptoms in cancer [223,224], especially in advanced cancers
[225,226]. Cancer-associated fatigue is not well understood, but it is
thought to be a combination of the effects of the cancer itself plus the
effects of cancer treatments [227].



Fig. 2.Mitochondria contribute to awide variety of cellular,molecular and immune interactions. Oral phospholipids (LRT) havedemonstrateddirect and beneficial effects on the functional
health ofmitochondria, contributing to a reduction in loss of functionality. In addition, lifestyle and nutrition are also recognized to play a role inmitochondrial fitness and function. More
recently mitochondria are understood to be a significant source of signalling molecules for the promotion of an intracellular protein complex; the inflammasome. Mitochondria and
inflammasomes feature at the centre stage of several complex chronic diseases and functional disorders via the production of cellular energy, and promotion of inflammatory enzymes
and cytokines. LRT, associated cofactor nutrients and lifestyle changes are safe beneficial enhancers ofmitochondrial function andpresent opportunities for disease symptommanagement
via inhibition of mitochondrial dysfunction. Abbreviations: AOX, antioxidants; CoQ10, coenzyme Q10; CL, Cardiolipin; ETC, electron transport chain; IL-1β, interleukin 1-beta; IL-18,
interleukin-18; MIM, Mitochondrial inner membrane; MOM, mitochondrial outer membrane; Mt, mitochondria, MtDNA, mitochondrial DNA; MtOr, mammalian target of rapomycin;
NADH, nicotinamide adenine dinucleotide; NCDs, non-communicable diseases; NLRP3, Nod-like receptor family protein 3; ROS/RNS, reactive oxygen species/reactive nitrogen species.

1667G.L. Nicolson, M.E. Ash / Biochimica et Biophysica Acta 1838 (2014) 1657–1679
Until recently cancer-associated fatigue was rarely treated and
thought to be an unavoidable symptom [223] that was also associated
with depression and anxiety [225]. Since fatigue or loss of energy is a
core aspect of diagnosing depression, both fatigue and depression
are often diagnosed together in cancer patients, usually by self-
assessment, and they are considered to be part of a clinical symptom
cluster or co-morbidity [226]. Cancer-associated fatigue can vary in de-
gree frommild to severe, which is often seen during cancer therapy. Fa-
tigue is often a significant reason why patients discontinue anti-cancer
therapy [227]. Eighty to 96% of patients receiving chemotherapy and
60-93% receiving radiotherapy experienced moderate to severe fatigue,
which continued for months or even years after the cancer therapy was
completed [228].

LRT has been used to treat cancer-associated fatigue and the fatigue-
effects of cancer therapy [145,146]. Using NTFactor cancer-associated
fatigue was reduced approximately 30% within 8 weeks [145]. A
vitamin-mineral mixture with NTFactor has been used in cancer
patients to reduce common adverse effects of cancer therapy, such as
chemotherapy-induced fatigue, nausea, vomiting, malaise, diarrhea,
headaches and other side effects [229]. In advanced metastatic colon,
pancreatic and rectal cancers LRT was used to reduce adverse chemo-
therapy effects. NTFactor supplementation resulted in significantly
fewer episodes of fatigue, nausea, diarrhea, constipation, skin changes,
insomnia and other effects. Eighty-one percent of patients on chemo-
therapy that used NTFactor experienced an overall improvement in
quality of life parameters. In a double-blinded, cross-over, placebo-
controlled trial on advanced cancers the patients on chemotherapy
plus LRT (NTFactor) showed fewer adverse effects of chemotherapy,
and LRT resulted in improvements in the incidence of fatigue, nausea,
diarrhea, impaired taste, constipation, insomnia and other quality of
life indicators [229].

LRT has been used in studies with severe chronic fatigued patients to
reduce their fatigue [144,147,166,230] (Table 2). For example, the effects
of NTFactor on fatigue in moderately fatigued subjects were also deter-
mined to see if mitochondrial function improved with administration
of NT Factor [166]. In this clinical trial there was good correspondence
between reductions in fatigue and gains in mitochondrial function.
After 8 weeks of LRT with NTFactor, mitochondrial function was signifi-
cantly improved, and after 12 weeks of NTFactor supplementation, mi-
tochondrial function was found to be similar to that found in young
healthy adults (26.8% increase, p b 0.0001) [166]. After 12 weeks of sup-
plement use, subjects were placed on placebo without their knowledge
for an additional 12 weeks, and their fatigue andmitochondrial function
were again measured. After the 12-week placebo period, fatigue and

image of Fig.�2
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mitochondrial function were intermediate between the initial starting
values and those found after eight or 12 weeks on the supplement, indi-
cating that continued supplementation is required to show improve-
ments in mitochondrial function and maintain lower fatigue scores
[166]. Similar results on the effects of NTFactor on fatigue were found
in patientswith chronic fatigue syndrome (CFS/ME) and/orfibromyalgia
syndrome, Gulf War Illness or chronic Lyme Disease [163] (Table 2).

NTFactor has also been used in combination LRT studies with other
mitochondrial supplements to treat long-term chronic illness patients
with moderate to severe fatigue [144,231]. These patients had been ill
with intractable fatigue for an average of over 17 years, had been seen
bymany physicians (N15), and had taken an average of over 35 supple-
ments and drugs with no effect on their fatigue [147]. On the combina-
tion LRT, however, they responded with significant reductions (30.7%,
p b 0.001) in fatigue within 60 days. Regression analysis of the data in-
dicated that reductions in fatiguewere gradual, consistent, and occurred
with a high degree of confidence (R2 = 0.960) [147]. The combination
supplement proved to be a safe and effectivemethod to significantly re-
duce fatigue in long-term patients with intractable chronic fatigue
[147,231].

12. Degenerative diseases, the metabolic state and
mitochondrial function

Degenerative diseases are primarily the non-infectious or non-
communicable prevalent diseases (NCD) whose incidences increase
with aging and certain behaviors. The main human degenerative
diseases are: cardiovascular diseases, neoplastic diseases and neuro-
degenerative diseases. These include hypertension, cardiopathies, in-
cluding coronary disease and myocardial infarction, cerebrovascular
incidents (including cardiovascular diseases or strokes), neurodegener-
ative diseases, such as Alzheimer's disease and Parkinson's disease,
among others. Other NCDs such as obesity, chronic respiratory diseases,
diabetes, autoimmune diseases and arthritis are also important. Meta-
bolic syndrome (MetSyn), type 2 diabetes, cardiovascular diseases,
hypertension and other related diseases will be discussed in the next
section. Nutrition and environmental stress exposures have been iden-
tified as major modifiable determinants of NCD [232–234].

As discussed in previous sections of this review, maintenance of
functional mitochondria is essential in order to prevent degenerative
processes leading to disease and aging. These outcomes share basic
mechanisms—in particular, mitochondrial age and function within an
individual [235].

Mitochondrial dynamics, especially fission and fusion, play a crucial
role in ensuring mitochondrial function and quality, but the process
may also generate and spread molecular damage through a population
of mitochondria if adequate membrane lipids or other macro and
micro nutrients are either unavailable or consumed in excess [236].
Computational simulations have indicated that this molecular dynamic
is advantageous whenmitochondria are undamaged or only marginally
damaged. In contrast, at a higher degree of damage mitochondrial dy-
namics may be disadvantageous, implying that supporting favorable
mitochondrial dynamics with suitable lipids (LTR) and other important
nutrients along with appropriate caloric restriction will confer a health
advantage [237] (Fig. 2).

Mitochondrial defects, systemic inflammation, and oxidative stress
are at the root ofmost NCDs, and improvedmitochondrial bioenergetics
along with positive changes in lifestyle represents an opportunity for
suitable intervention [238]. Potential therapeutic approaches currently
available to slow down age-related functional declines that predispose
to NCDs include insulin sensitizers [239], exercise to promotemitofusin
[240] and antioxidant treatments to reduce ROS/RNS [241]; how-
ever, the effectiveness of existing antioxidants alone is suboptimal, be-
cause most antioxidants are not selective for mitochondria and fail to
penetrate the MIM. In addition, unlike ubiquinone or tocopherols,
most nutritional antioxidants do not attach covalently to lipophilic
triphenylphosphonium cations to facilitate transport across the phos-
pholipid bilayers into the mitochondria [242]. Other possible therapeu-
tic approaches, such as caloric restriction or reduction in caloric intake
without malnutrition (CR) or intermittent fasting, remain controversial
and their benefits yet to be fully determined [243,244].

Experimentswith a combination of phospholipids (LRT) and antiox-
idants have been successful in improving mitochondrial bioenergetics
in animal and human studies [144,153,166,230,231,251] and have
the added effect of resolving inflammation. Manipulating cellular
bioenergetics represents a new way to treat NCDs and inflammatory
and immune diseases via the reprogramming of the inflammatory
and metabolic response. This includes lifestyle and behavioral
changes related to food selection combined with LRT to provide im-
portant mitochondrial support. It is well understood that unmodified
western diets lead to mitochondrial dysfunction and higher suscep-
tibilities to inflammation, apoptosis, NCDs and aging [8].

One of the mechanisms involved in the management of mitochon-
drial functionality and NCDs is the mammalian target of rapamycin
(mTOR), a well-conserved serine/threonine kinase that regulates cell
growth in response to nutrient status [244]. Two distinct complexes
have been identified: mTORC1, in which mTOR is bound to the protein
partner raptor, and mTORC2, in which mTOR is bound to another
protein partner called rictor [245]. Dysregulation of TORC1 and TORC2
activity is closely associated with various NCDs, including diabetes,
cancer and neurodegenerative disorders as well as aging [246].

By sensing the abundance of various nutrients and regulating the ac-
tivity of critical processes such as autophagy and translation, the TORC1
signaling pathway lies at the intersection between nutrient, environ-
mental and innatemechanisms of aging andNCDs. TORC1 signaling reg-
ulates mitochondrial biogenesis, oxidative stress and turnover in
mammals as well as in lower organisms. Also, defects in the clearance
of damaged mitochondria by TORC1-regulated autophagy contribute
to ROS/RNS accumulation [247]. CR without malnutrition and periodic
bouts of short-term nutrient excess [248] and specific inhibitors of
MTOR such as rapamycin [249] beneficially affect mitochondrial func-
tion, suggesting that mitochondria are highly responsive nutrient sen-
sors and effectors, some of the implications of which are discussed in
the next section. Thenatural sensitivity ofmitochondria to energetic sub-
strate levels and their recently discovered ability to dynamically undergo
function-defining morphology transitions that influence the integrity of
the mitochondrial genome constitute a novel potential mechanism to
explain long-term modulations of health and disease [250].

Lifestyle changes plus LRTmay present opportunities to enhancemi-
tochondrial fusion, and reduce inflammation and oxidative stress and
thus assist in themanagement, prevention or treatment of NCDs. An ex-
ample of this is a small pilot trial in which LRT supplementation modi-
fied metabolism through body mass reduction and appetite restraint
[251]. Thirty subjects (Mean Age = 56.8; 24 females and 6 males)
used oral NTFactor (500 mg) and alpha-amylase inhibitor (500 mg)
30 min before each meal. Participants were told to eat and exercise
normally and weight, waist and hip measurements were taken weekly.
Appetite and sweet cravings were assessed weekly by standard
methods. Fatigue was determined using the Piper Fatigue Scale [252],
and blood samples were taken prior to and at the end of the trial for
lipid and chemical analyses.

Sixty-three percent of the participants lost an average of 6.11 ± 0.28
lb (2.77 ± 0.12 Kg) (p b 0.001) along with average reductions of
2.51 ± 0.05 in. (6.4 ± 0.13 cm) (p b 0.0001) and 1.5 ± 0.04 in.
(3.8 ± 0.10 cm) (p b 0.0001) from waist and hip circumferences, re-
spectively. The entire group lost an average of 3.63 ± 0.13 lb
(1.65 ± 0.11 Kg) (p b 0.001) with average reductions of 1.59 ± 0.03 in.
(4.04 ± 0.06 cm) (p b 0.0001) and 1.13 ± 0.02 in. (2.87 ± 0.05 cm)
(p b 0.0001) from waist and hip circumferences, respectively. Weight
loss and body measurement decreases were gradual, consistent and
significant, along with reductions in body mass index (BMI) and basal
metabolic rate (BMR) measurements. Overall hunger was reduced
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44.5% (p b 0.001), with reduced cravings for sweets and fats, and there
was a 23.9% reduction in fatigue (p b 0.009). Along with fatigue reduc-
tion therewas a 26.8% perceived improvement (p b 0.004) in cognition
and ability to concentrate, remember and think clearly. Blood lipid pro-
files at the end of the trial suggested improved cardiovascular lipid pro-
files, and there were no adverse events from the product [251].

Theweight loss effects of LRT in clinical studiesmay be due to the re-
placement of membrane lipids with glycerophospholipids containing
particular unsaturated FA. In support of this Vögler et al. fed rats diets
high in stearic, elaidic, oleic, linoleic or 2-hydroxyoleic acids or con-
trol vehicle for 7 days and found that in the test animals food intake
was lower and the animals lost body weight, mainly through reduc-
tion of adipose fat mass. Only treatment with C-18 oleic acid or 2-
hydroxyoleic acid induced body weight loss (3.3 and 11.4%, respective-
ly). They attributed the effect to enhanced energy expenditure due to
changes in UCP1 expression and phosphorylation state of the cyclic
AMP-response element-binding protein CREB in adipose tissue [253].

Other uses of membrane phospholipids tomodify NCD related func-
tional decline include supplementation with oral PS to improve memo-
ry loss and cognition. Richter et al. [254] recruited 30 male and female
subjects (age 50–90 years, average 74.6 years) with memory impair-
ments unrelated to neurological disease, stroke, intracranial hemor-
rhage, brain lesions, diabetes, infections or inflammatory processes for
a 12-week study to determine if 300 mg PS per day modified outcomes
in 6 different tests ofmemory and cognition. At the endof the study par-
ticipants showed significant improvements in memory recognition
(p = 0.004) and recall (p = 0.006), total learning (p = 0.013), execu-
tive functions (p = 0.004), metal flexibility, and visual spatial learning.
There were no adverse events during the trial, and interestingly both
mean systolic and diastolic blood pressure values were reduced at
12 weeks in comparison to baseline values [254]. Similarly, Kato-
Kataoka et al. [255] conducted a double-blind, randomized clinical
trial on 78 subjects (50–69 years) to determine if 100–300 mg oral PS
per day versus placebo affected memory scores. They found that PS
supplementation significantly improved behavioral memory functions,
especially short-term memory and cognitive function in low-scoring
(delayed word recall) participants (p b 0.01). There were no adverse
events and no changes in vital signs or laboratory tests [255].

13. Metabolic syndrome, diabetes and cardiovascular diseases

Metabolic syndrome (MetSyn), thought to be the precursor to type 2
diabetes and cardiovascular diseases (CVD), is made up of several inter-
related disturbances of glucose and lipid homeostasis in obese individ-
uals. This includes insulin resistance, changes in blood lipid profiles,
abnormal glucose tolerance, hypertension and vascular inflammation,
as well as a background of multiple genetic abnormalities [256,257].
There are a number of major risk factors forMetSyn: (i) abdominal obe-
sity, (ii) elevated fasting plasma glucose, (iii) artherogenic dyslipidemia
(increased triacylglyerols, increased LDL and reducedHDL), (iv) elevated
blood pressure, and (v) the presence of prothrombotic and proinflam-
matory molecules [257,258]. MetSyn has also been called Syndrome X
[259] or insulin-resistance syndrome [259], and it is estimated that in
the age group over 60 in North America, over 40% have some symptoms
of MetSyn [260]. The above risk factors are also found in CVD, type 2
diabetes, hypertension, and other diseases [256,261–263].

The interacting principles of MetSyn have been proposed by Grundy
[258] as obesity plus genetic factors and endogenous metabolic suscep-
tibility, such as manifested by insulin resistance and other characteris-
tics [256,258]. Along with the multiple risk factors listed in the
paragraph above and the laboratory test results listed below, a diagnosis
of MetSyn can bemade, although there is still some discussion as to the
relative merits of using MetSyn as a diagnosis in clinical practice [264].
Insulin resistance, increased abdominal fat, genetic factors, physical in-
activity, advancing age, inflammation and endocrine dysfunction also
help establish the metabolic susceptibility of MetSyn, which when
combined with additional laboratory risk factors, such as high LDL,
lowHDL, high triacylglyerols, elevated blood glucose, elevated plasmin-
ogen activator inhibitor-1 and c-reactive protein, among other tests,
also increase dramatically the likelihood of life-threatening MetSyn-
associated diseases later in life [257,265].

One of the initial signs of MetSyn is insulin resistance [261]. Insulin
secreted by the pancreatic (beta) cells in response to increased circulat-
ing levels of glucose and amino acids is essential for development,
growth, apoptosis andmaintenance of glucose homeostasis by regulating
gene expression and carbohydrate, lipid and protein metabolism [266].
Insulin regulates glucose homeostasis by reducing hepatic output and
increasing the rate of glucose uptake in tissues as well as increasing
lipid synthesis in liver and fat cells and reducing triglyceride breakdown
in fat andmuscle.When the circulating concentrations of insulin are in-
sufficient to regulate the above processes, insulin resistance occurs.
This, in turn, can lead to clinically diverse syndromes, such as type A
syndrome, leprechaunism, Rabson-Mendenhall syndrome and often
type 2 diabetes [267].

Insulin resistance is one of the primary events in the development of
MetSyn, and it is thought to induce the biochemical, pathophysiological
and clinical sequelae of MetSyn and eventually its associated diseases
[257]. Houston and Egan [267] have listed several factors that are in-
volved in insulin resistance and MetSyn: (i) multiple genes (thus it is
a polygenetic disorder), (ii) epigenetic contributions (nutrition, low
birthweight, etc.), (iii) visceral obesity, (iv) body-mass index, (v) caloric
and carbohydrate intake, (vi) sedentary lifestyle, (vii) age, (viii) ethnic-
ity, (ix) gender, (x) menopausal status, (xi) alcohol consumption (xii)
inflammation and (xiii) dysbiosis. One of the emerging inflammation
mechanisms involved in the generation of metabolic disorders is the
activation of the NLRP3 inflammasome, via various triggers, including
mitochondrial DAMPs [268], lysosomal membrane disruption [269]
and high fat diets [270] through the generation of the cytokines IL-1β
and IL-18. The activation of this inflammation complex contributes to
the development of visceral adiposity and insulin resistance. Because
of its wide distribution in different tissues and organs, the NLRP3
inflammasome protein complexmay represent a crucial signaling path-
way that facilitates organ crosstalk and local injury in tissues target of
metabolic damage [271].

The significant role of inflammasome components in the genera-
tion of altered gut microbiota composition has recently demonstrated
that NLRP3 inflammasome regulates both the gastrointestinal
microbiome and is activated by pathobionts and associated dysbiosis,
which affects host susceptibility to metabolic disease onset and pro-
gression beyond the gastrointestinal tract, including obesity and dia-
betes. In particular, the NLRP3 modulation of the intestinal
microbiota through multiple inflammasome components has been
demonstrated to be a significant determinant of NAFLD/NASH pro-
gression as well as many other aspects of MetSyn, including weight
gain and glucose homeostasis [272].

In terms of cellular lipids, defects in the capacity to metabolize FAs
and glucose are thought to play important roles in insulin resistance
and MetSyn [273]. Accumulations of DAG, triacylglycerol and free FAs
in non-adipose tissues correlate strongly with insulin resistance
[274,275]. For example, increases in free fatty acids may play a role in
blocking insulin signal transduction [265]. DAG, in particular, has been
implicated in insulin resistance by activating distinct isoforms of protein
kinase C, which in turn can directly modulate insulin signaling by phos-
phorylating and inhibiting the tyrosine kinase activity of the insulin re-
ceptor and activating genes responsible for FA-induced impairment of
insulin action [275]. Gene expression modifications in adipose tissue
are thought to be responsible for enhanced secretion of MetSyn-
related factors, such as the pro-inflammatory cytokine TNFα and
the tissue-specific protein adiponectin [276], and in muscle tissue
decreased oxidative capacity and fat accumulation may also induce
skeletal muscle insulin resistance and contribute to the development
of type 2 diabetes [273].
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Although no single lesion or gene can account for MetSyn and its
associated diseases, various studies point to mitochondrial dysfunction
as a major component, especially in the development of type 2 diabetes
[273,277,278]. Gene expression studies have shown that there is a coor-
dinate reduction in oxidative gene activities along with increased ex-
pression of several other genes in type 2 diabetes patients [279]. Using
microarray assays tomonitor gene expression clusters several oxidative
genes were found to be down-regulated, supporting the notion that
more generalized mitochondrial dysfunction occurs in type 2 diabetes
[273]. This also correlated with reduced muscle ETC activity [277] and
decreased whole body anaerobic capacity in type 2 diabetes patients
[280]. In addition, in type 2 diabetics genetic polymorphisms have also
been found that are involved in FA oxidation and in factors that control
transcriptional activities (reviewed in [267]).

MetSyn and type 2 diabetes patients show reduced fat oxidative ca-
pacities [281]. In obese, pre-diabetic and diabetic patients free FA levels
are increased together with decreases in fat oxidative capacity, and this
can result in accumulations of FAs and acylglyerols in beta cells and
other tissues, which have been shown to correlate strongly with insulin
resistance [257,273,282].

Continuous production of superoxide and peroxide are necessary for
normal cellular functions [283], but in MetSyn and associated diseases
oxidants, mainly ROS/RNS, are over-produced [273,284]. Excess super-
oxide produced continually as a byproduct of normalmitochondrial res-
piration can directly damage iron sulfur center-containing enzymes, be
converted to hydrogen peroxide (and ultimately to hydroxyl radical)
and also reactwith nitrogen oxide to produce peroxynitrite, a very reac-
tive RNS [285]. As discussed in previous sections, FAs are particularly
sensitive to ROS/RNS oxidation, resulting in the formation of lipid
peroxides, which are cytotoxic and lead to free-radical damage to
other lipids, proteins and DNA, and this is especially important in
MetSyn, type 2 diabetes and cardiovascular (CVD) and renal diseases
[273,286]. Free FAs also accumulate, particularly in muscle cell mito-
chondria where ROS/RNS damage can occur, and there they are thus
prone to peroxidative events that result in damage to mitochondrial
membranes, proteins, DNA and the activation of the NLRP3 inflamma-
some [287]. Once mitochondrial membrane lipids have been modified,
they are less likely to maintain the low levels of proton leakage and
membrane fluidity required to maintain the proper MIM membrane
potential.

Uncoupling proteins (UCPs), such as UCP2 and UCP3, are involved in
regulating ETC activity, and UCP3 and other UCPs also prevent build-up
of excessive concentrations of ROS/RNS by limiting oxidative phosphor-
ylation [285]. Also, it has been suggested that UCP3 functions to remove
FA anions formed by oxidative reactions that can build-up during excess
FA partitioning into the mitochondria [284]. These FA anions can cause
reactions with other lipids, proteins and DNA. Type 2 diabetes patients
have been found to have about one-half the normal levels of UCP3 in
their skeletal muscles [288].

Pancreatic beta cells contain mainly UCP2, and while activation of
UCPs can reduce ROS/RNS production in peripheral tissues, it may dis-
rupt glucose-stimulated insulin secretion in beta cells [289]. Thus the
reduced levels of UCPs in MetSyn and type 2 diabetic patients could in-
dicate a defective feedback mechanism between ROS-lipid peroxides
and mitochondrial protection against fat accumulation, and thus could
contribute to oxidative mitochondrial damage [273].

Type 2 diabetes is thought to occur as a consequence of persistent
hyperglycemia which causes: (i) formation of advanced glycation end
products (AGEs, the products of nonenzymatic glycation andoxidation),
and their oxidation and interactions with cell receptors and cellular
accumulation; (ii) activation of various isoforms of protein kinase C;
(iii) induction of the polyol pathway; and (iv) increased hexosamine
pathway flux [289–291]. Most of these pathways are associated with
elevated oxidative stress and over-production of superoxide (and thus
ROS/RNS) during hyperglycemia, but the link between hyperglycemia
and increased mitochondrial superoxide production may not be
mediated solely by the mitochondrial redox state [289]. Therefore, an
increase in mitochondrial ROS/RNS in response to hyperglycemia is
the defect that likely leads to the pathological consequences of hyper-
glycemia. Moreover, hyperlipidemia as a consequence of obesity results
in increased FA oxidation products that stimulate insulin secretion,
resulting in hyperinsulinemia. This, in turn, down-regulates insulin re-
ceptors, reducing insulin action and increasing blood glucose levels
[292]. Mitochondrial excess oxidative stress likely contributes to
progression to type 2 diabetes by disrupting the ability of beta cells to
respond to elevated blood glucose [289]. Eventually, apoptosis is stimu-
lated by excess ROS/RNS, resulting in loss of beta cells by apoptosis and
hence reduced production of insulin [293].

Preventing damage to cellular and mitochondrial membranes is
important in preventing loss of electron transport function and cellular
energy seen in MetSyn and type 2 diabetes [292]. This can be accom-
plished, in part, by neutralizing excess ROS/RNS with various
types of antioxidants or increasing free-radical scavenging systems
[289,292,294]. In MetSyn and diseases caused or promoted by excess
ROS/RNS dietary supplementation with low molecular weight antioxi-
dants, plus some replacement of accessory molecules, such as the
metal ion cofactors zinc, manganese, copper, vanadium, chromium
and selenium necessary for antioxidant and other enzymes, and certain
vitamins with some antioxidant properties (C, E, A, CoQ10) can be used
to maintain antioxidant levels and free-radical scavenging systems
[267,289,292,295,296]. However, supplementation with low molecular
weight antioxidants, enzyme and other cofactors and vitamins, may
not be sufficient to maintain cellular components free of ROS/RNS
damage, and antioxidants alone cannot replace damaged cellular
components, especially the phospholipids in membranes [295,296]. In
addition, once extensive damage and cell death has occurred over
time, it may be impossible to reverse these changes by supplementation
alone [296].

Patients with MetSyn and type 2 diabetes have been found to be
deficient in certain antioxidant vitamins and minerals, correlating
with oxidative excess in these patients [296–298]. However, despite
the evidence for a connection between excess oxidative stress in
MetSyn and associated diseases, a link between the intake of antioxi-
dant nutrients, even in high concentrations, and the ability to prevent
or delayMetSyn disease progression to type 2 diabetes has been difficult
to prove [296–299]. Often randomized, controlled clinical trials failed to
show any significant benefit of antioxidants, whereas initial cohort
studies suggested otherwise [300].

SinceMetSyn and associated diseases show excess ROS/RNS damage
to membranes and other structures, LRT should be useful in replacing
damaged membrane components and restoring unoxidized phospho-
lipids in blood lipoproteins. In fact, administration of membrane phos-
pholipids along with changes in diet can help remove oxidized
phospholipids and cholesterol from HDL and LDL [301]. For example,
treatment of type 2 diabetic patients with oral LRT resulted in decreased
serum triglyceride levels (37% reduction over 12 months) and reduced
lipid peroxidation products compared to placebo [302]. In terms of LRT
producing reduced blood peroxidation products, one study showed a
significant reduction in the levels of acyl-hydroperoxides, of Schiff's
bases, diene/triene conjugates aswell asMDA in patientswhowere tak-
ing membrane phospholipids [303]. In contrast, there have been vari-
able results with fasting glucose levels in type 2 diabetics on oral EPL
[257], but some studies have found a significant reduction in blood
sugar levels in patientswith type 2 diabetes given 1.2 g of oral phospho-
lipids for 60 days compared to a control group with diet alone [304].

MetSyn also appears to be a precursor condition to hypertension
and CVD, such as atherosclerosis, heart diseases and stroke
[256,258,260,261,267]. Damage to the endothelium causes endothelial
dysfunction and impaired release of nitric oxide and loss of its
antiatherogenic and other properties. At the early stages of insulin-
resistance, before the development ofMetSyn in obese young adults, re-
ductions in vascular smooth muscle nitric oxide vasodilatory capacity
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have been seen using positron emission tomography [305]. Thus insulin
resistance is linked to endothelial dysfunction through nitric oxide-
mediated vasodilation. Vascular dysfunction may be one of the initial
steps in the development of hypertension, MetSyn, type 2 diabetes
and CVD. Nitric oxide formed in endothelial cells by the action of endo-
thelial nitric oxide synthase (eNOS) can be inactivated by superoxide
anion radical to form the NRS peroxynitrite anion, which can cause fur-
ther oxidative damage and depress nitric oxide-related, endothelial-
dependent, acetylcholine-induced arterial relaxation [305]. In MetSyn
many of the altered blood components, such as excess free FAs and
LDL, also decrease eNOS activity [306]. A decrease in eNOS and an excess
of angiotensin-II synthesis or action causes vasoconstriction, growth
promotion and pro-thrombotic, pro-inflammatory, pro-oxidant states
[267].

Endothelial cell dysfunction can also be caused by inflammatory
cytokines and infiltration by inflammatory macrophages. For example,
adipose tissue plays a role in endothelial dysfunction by producing
pro-inflammatory cytokines, such as IL-6 and TNFα aswell as other fac-
tors. Molecules like TNFα activate the important NF-κB transcription
factor and can indirectly induce serine phosphorylation of the insulin
receptor, thereby interfering with insulin receptor signaling pathways
[307,308]. Activation of the NF-κB transcription pathway also increases
production of nitric oxide [309]. Adipose cells express receptors for
inflammatory cytokines, and the infiltration of adipose tissue by inflam-
matory macrophages stimulates over-production of ROS, which is a
common feature of obesity [310].

Conditions like hypertension are directly related to vascular dys-
function and MetSyn, which can be preceded by insulin resistance for
decades before becoming apparent in most patients [311]. As indicated
above, the primary abnormalities associated with hypertension include
loss of eNOS and reduced nitric oxide availability, up-regulation of the
MAPK pathway, inflammation of the vascular endothelium and accu-
mulation of angiotension converting enzymes, collagen overproduction
and other factors [312–314]. Hypertension is also linked to insulin resis-
tance, excess oxidative stress, mediatedmainly by ROS/RNS, and chang-
es in endothelial and smooth muscle cells that eventually result in
vascular inflammation. In endothelial cells excess ROS/RNS can affect a
variety of cellular targets and can initiate apoptosis and modify gene
expression [315].

Atherosclerosis involves chronic inflammatory damage to blood
vessels due to lipid accumulation, inflammatory response, vessel cell
death and thrombosis, which can eventually result in the occlusion of
coronary vessels and heart disease. Atherosclerosis is characterized by
a number of risk factors, including abnormalities in lipoprotein subclass
distribution, increases in vascular acute phase response proteins, chang-
es in vascular endothelial cell adhesionmolecules and certain cytokines
[316,317]. ROS/RNS play an essential physiological role in maintaining
vascular integrity, butwhen they are in excess, they serve a pathological
role in cardiovascular dysfunction. In addition to type 2 diabetes and
hypertension, excess production of ROS/RNS is also associated with
atherosclerosis, ischemic heart disease and congestive heart failure
[282,316].

The sensitive immune-based, Toll-like receptors (TLRs) are also
recognized as key orchestrators of atherosclerosis, which is driven by
inflammation. The pattern-recognition receptor CD36 coordinates the
intracellular conversion of oxidized LDL, amyloid-beta, and amylin pep-
tides, into crystals or fibrils, which results in lysosomal disruption and
activation of the NLRP3 inflammasome in atherosclerosis, Alzheimer's
disease, and diabetes. CD36 has been found to be a central regulator
of inflammasome activation in sterile inflammation associated with
DAMPs. The ligation of CD36 may possibly be the common molecular
event that links the recognition of sterile ligands with priming and
activation of the NLRP3 inflammasome in atherosclerosis, Alzheimer's
disease and type 2 diabetes [318].

Atherosclerosis is thought to beginwith abnormalities in lipoprotein
subclasses, such as triglyceride-rich lipoproteins, their remnants, and
changes in HDL and LDL, hallmarks of MetSyn [319]. During the devel-
opment of MetSyn these lipoproteins and their remnants are suscepti-
ble to oxidation [320], and the presence of the oxidized lipoprotein
subclasses is significantly associated with an abundance of macro-
phages in atherosclerotic lesions [321]. When they interact with the
blood vessel wall, the oxidized, proinflammatory lipoprotein subclasses
can induce endothelial adhesionmolecules, resulting in selective leuko-
cyte recruitment, attachment to the endothelium and transmigration
into the intima [322,323]. These leukocytes differentiate into inflamma-
tory, ROS-producing macrophages that are abundant within thickened
vessel walls. As this occurs, smooth muscle cell numbers decline and
foam cells form that release growth factors, cytokines, metalloprotein-
ases and more ROS/RNS, which perpetuates and amplifies vascular re-
modeling [324]. Unstable atherosclerotic plaques form slowly over
time, and eventually some of the unstable plaques break off and form
thrombi that can occlude blood vessels and interrupt blood flow.
When this occurs in the heart, myocardial infarction, ischemia, heart
failure and sudden death can occur.

Endothelial and adipose dysfunction and insulin resistance are
thought to be among the most basic physiologic abnormalities that
link MetSyn and CVD [305,325]. The exact mechanism of endothelial
dysfunction and insulin resistance and the contribution of dyslipidemia
remain only partially known. Hsueh and Quiñones [305] have argued
that endothelial dysfunction occurs early in the pathogenesis of insulin
resistance, MetSyn and the development of related diseases, suggesting
that vascular damage associated with excess oxidation, inflammation
and thrombosis is a primary event in the development of MetSyn, CVD
and other diseases. Also, since macrophages are also recruited to
adipose tissue, changes occur in adipose cells in parallel with changes
in endothelial cells, such as induction of secreted adipokines (IL-1, IL-
6, leptin, c-reactive protein, serum amyloid A, plasminogen activator-
1, chemerin and others) [325].

Although it is doubtful that LRT can modify or reverse late-stage
changes described above that result in type 2 diabetes, atherosclerosis
or CVD, use ofmembrane phospholipids such as PC can change the com-
position and oxidation state of circulating lipoproteins. For example, in-
travenous administration of polyunsaturated PC to laboratory animals
resulted in the rapid uptake of 50–80% of the PC into HDL and about
20% into LDL and very-low LDL,whereas oral PC administration resulted
in about 60% of the PC being incorporated into HDL and less than 20%
into LDL fractions within 36 h [326]. Interestingly, the administration
of PC resulted in removal of cholesterol from serum lipoproteins and
membranes. The transported cholesterol was deposited mainly in the
liver [327]. In a long-term (10 year) experiment using seven rhesus
monkeys fed high cholesterol diets (120 mg cholesterol per 100 g of
diet), Wong et al. [328] found that seven weeks of oral lecithin in their
diets significantly lowered total cholesterol, LDL cholesterol and triglyc-
eride levels. Other animal studies have also shown that administration
of LRT resulted in reductions in cholesterol, LDL-cholesterol and triglyc-
erides (reviewed in [257]). In an interesting study usingmini-pigs fed a
cholesterol and coconut oil diet for 24 weeks Samochowiec et al. [329]
found that the serum levels of triglycerides, cholesterol free FAs and
beta-lipoprotens gradually increased with time. Using this model to
study the effects of LRT EPL was administered (up to 280 mg/Kg body
weight), and after 8 weeks of treatment Samochowiec et al. found a
dose-related reduction in total lipids, cholesterol esters, free cholesterol
and triglycerides [330]. At the highest doses used there was a reduction
in atherosclerotic plaques observed in the aortas and heart valves.

In addition, increased lipid peroxidation is one of the first changes
associated with the development of MetSyn, and it is thought to be im-
portant in hypertension, type 2 diabetes, atherosclerosis and CVD. Ac-
cording to this hypothesis oxidized lipoproteins, such as oxidized LDL,
play an important role in promoting MetSyn-associated diseases, and
agents that reduce lipoprotein lipid oxidation can inhibit or attenuate
the pathogenesis of these diseases [331,332]. In fact, LRT has been
shown to reduce lipid peroxidation in patients with ischemic heart
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disease [333]. For example, Serkova administered oral LRT (1.8 g phos-
pholipids) for 3 weeks to a group of patientswith angina pectoris and at
the end of treatment found that there was a significant reduction
(p b 0.01) in oxidized serum lipids, an increase in HDL cholesterol and
a reduction in erythrocyte hemolysis due to peroxidation [333].

Use of LRT in a controlled clinical setting has demonstrated that
blood levels of cholesterol, LDL-cholesterol and triglycerides can be re-
duced. For example, a risk for long-term dialysis patients is ischemic
cardiovascular complications, and these patients tend to have high
lipid values. To study this two groups of ten patients who had hyperlip-
idemia (serum cholesterol greater than 260 mg/dl, LDL cholesterol
greater than 180 mg/dl and triglyerides greater than 200 mg/dl) were
given 2.7 g per day oral PC or placebo for 6 weeks [334]. In this
double-blind, randomized study the 6 week treatment was followed
by a two-week wash-out phase, and lipid parameters were determined
at 2, 4 and 6 weeks of treatment. Two weeks after PC administration
there was a reduction in LDL-cholesterol of 32 mg/dl compared to the
stable placebo controls (p b 0.01). By four weeks triglycerides de-
creased by 58.2 mg/dl (p b 0.001) and by six weeks there was a reduc-
tion in triglycerides of 43.3 mg/dl compared to the placebo group
(4 weeks, −5.7 mg/dl and 6 weeks, −11.4 mg/dl, p b 0.01). There
were few side effects of the treatment, and they were similar in both
test and placebo arms of the study [334]. Patients with hyperlipidemia
were also tested with oral PC. In a double-blind study of patients with
type II hyperlipidemia participants received either three doses of oral
polyenylphosphatidylcholine (0.9 g per day) or placebo, and their
blood lipid levels determined [335]. Total cholesterol and LDL-
cholesterol were lowered significantly, and there was a downward
trend in apoprotein B, triglycerides and VLDL-cholesterol and an up-
ward trend in apoprotein A1 compared to the placebo group [335]. As
discussed above, administration of membrane phospholipids along
with changes in diet and related caloric restriction as well as suitable
macro- and micro-nutrient concentrations can help replace oxidized
phospholipids and cholesterol from HDL and LDL [301].

Thus there is the potential to reverse some of the lipid changes that
are important in MetSyn development and possibly prevent other dis-
eases with the use of LRT. It is interestingly that long-term use of LRT
in the form of oral NTFactor and vitamins reduced significantly markers
for CVD risk, such as homocyteine, erythrocyte sedimentation and
fasting insulin levels [156]. In a group of patients with all of the above
factors above the threshold for risk, LRT using oral NTFactor resulted
in return of average test results to the normal ranges within 6 months
[156]. Future studies should document whether LRT can impede or
change the course of the development of MetSyn and its subsequent
associated diseases.

14. Final comments and future directions

In this review we have concentrated on a few examples of how LRT
can be used to repair and replace oxidatively damaged membrane
glycerophospholipids and restore function. Using mitochondria as an
example of a critical membrane-bound enzyme and electron transport
system we have discussed how LRT can be used to restore MIM trans-
membrane potential and recover ETC function. Indeed, multiple clinical
trials have proven the usefulness of LRT in reducing the symptoms asso-
ciated with loss of mitochondrial function and improving quality of life
in patients with a variety of diagnoses as well as providing important
anti-aging effects on important cellular structures [336]. In addition to
the uses of LRT described in this review, it has been used in laboratory
animals andhumans (mainly anecdotally) to treat toxic liver and kidney
damage caused by carbontetrachloride, alcohols, glactosamine, acet-
aminophen, tetracycline, solvents, detergents, thioacetamide, indo-
methacin, anesthetics, ionizing radiation, immune-mediated hepatitis
and others. LRT reduced the toxic effects of these agents and promoted
organ regeneration after exposure [1]. In humans LRT has been used
mainly in uncontrolled studies to treat damage caused by fat embolism,
non-steroidal anti-inflammatory drugs, liver-damaging anti-microbial
drugs, lethal hepatic toxins, fatty liver due tomalnutrition and viral hep-
atitis (reviewed in [2]).

The treatment of viral hepatitis using membrane phospholipids has
been extensively investigated in uncontrolled and controlled clinical trials
[337,338]. For example,Wallnöfer et al. [337] found that hepatitis patients
treated with intravenous EPL usually reported earlier improvements in
dyspepsia, nausea, epigastric pain, fullness in the epigastrium and other
symptoms as well as showing improvements in hepatomegaly and pres-
ence of ascites. Laboratory tests also improved, such as more normal
blood liver enzyme levels, total protein, bilirubin, among other tests,
and histological analysis of liver biopsies indicated earlier regeneration
of hepatocytes [337]. In a blinded, controlled trial Kordac et al. [338] treat-
ed 20 patientswith active, chronic hepatitis for one yearwith intravenous
EPL. In the treatment group therewas a significant reduction in hepato-
megaly (p b 0.01), and liver enzymes, such as γ-glutamyltransferase,
hepatic excretory capacity (bromsulphalein test) and γ-globulin levels
(p b 0.05), and other parameters, such as serum albumin levels, also
improved compared to controls. Although most results on treatments
of patients with chronic hepatitis with intravenous EPL tended to be
variable, in general, the patientswith themore severe forms of hepatitis
with lowest liver function and highest blood liver enzyme levels
responded best with greater improvements over time [339,340].

Treatments with intravenous membrane phospholipids have also
clinically improved cirrhosis of the liver and decreased time required
for recovery. Pogromov et al. [341] treated 25 patients with advanced
liver cirrhosis with oral membrane phospholipids. After 3 months,
nearly all blood biochemical parameters improved and were found to
be within the normal range. Kalab and Cervinka [342] also found im-
provements in clinical and blood biochemical tests in 30 patients treat-
ed with EPL for 6 months, and in particular IgA decreased to within
normal range in these patients. In other studies, patients with moder-
ately severe to severe cirrhosis caused by type B hepatitis virus were
treated with intravenous EPL for 3 months [343]. Thirty-seven patients
were given EPL and compared to 27 patients who received a vitamin
preparation alone. In the control group there were no changes in liver
function from pre-treatment values, but in the treatment group there
was a significant improvement in liver function and in 63% of the test
group there was an absence of hepatitis B antigen but this was seen in
only 14% of the control group [343].

LRT has also been used in chronic ambulatory peritoneal dialysis
(CAPD). Among the first to use administration of membrane phospho-
lipids to CAPD patients, di Paolo et al. [344] found that CAPD patients
not only released electrolytes, creatinine and urea into the ascites
fluid, they also secreted phospholipids and other membrane-derived
material whichwas removed by dialysis. The releasedmembrane phos-
pholipids were thought to improve peritoneal dialysis by lowering sur-
face tension. Therefore, they supplemented CAPD dialysis with 250 mg
ofmembrane phospholipids like PC intravenously or 400 mgorally each
day and found significant increases in mean CAPD ultrafiltration within
72 h. There were also significant increases in creatinine and urea clear-
ance in the treated patients receiving CAPD, and they were able to re-
store normal physiological conditions in patients with abnormal but
not in patients with normal ultrafiltration rates [344].

During pregnancy gestosis or toxemia of pregnancy can occur where
patients display hypertension, edema and proteinuria [345]. Gestosis is
thought to be caused by chronic intravascular clotting and fibrin deposi-
tion in the uteroplacental bloodstream, which can affect uteroplacental
perfusion and fetal development [345]. Risk factors include pre-
existing vascular conditions, chronic nephropathies, liver dysfunction
and diabetes mellitus. The more severe the clinical presentation the
higher the levels of lipid peroxidation products found in the serum
and erythrocyte membranes of these patients [346]. To treat these con-
ditions patients were given intravenous or oral membrane phospho-
lipids. For example, using 52 patients Bottiglioni and Tirelli [347]
administered EPL twice daily at a dose of 500 mg per day in last
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trimester of pregnancy and found that clinical symptoms disappeared.
Edema subsided, and liver and kidney function tests were normalized.

There are a number of studies that show that membrane phospho-
lipids given orally or intravenously improve a variety of neurological
conditions. Examples include cerebral circulatory disorders, involution-
al dementias, Friedreich's ataxia, multiple sclerosis, encepthalomyelitis,
neurotoxicosis and other conditions (reviewed in [2]). Although these
studies are for the most part preliminary, they point to the potential
use of membrane phospholipids to treat a variety of acute and chronic
neurological conditions.

In future studies on the use of membrane phospholipids for
LRT more attention must be directed at determining if the clinical
and biochemical changes brought about by the use of LRT actually
cause long-term or only temporary changes that are slowly reversed
in time. This was apparent in previous cross-over studies on chronic
fatigue patients where fatigue slowly returned and mitochondrial
function slowly decayed after placebowas substituted for membrane
phospholipids [166]. In clinical situations where an acute toxic insult
is removed during or before treatment, such as in the use of LRT to
reverse the toxic or poison exposures listed above, it seems reason-
able that after the insult is removed and cellular damage repaired
that LRT will no longer be necessary. However, in most chronic con-
ditions the presumed insult(s) are not temporary and may continue
for an unforeseeable period of time without dietary and behavior
modifications. In these cases LRT may be a lifelong requirement to
maintain health.

The role of LRT in maintaining mitochondrial function is considered
particularly important in reducing the effects of aging and helping
provide for a healthy lifestyle [336]. Typical 21st century sedentary life
favors chronic metabolic oversupply [348], a physiological state that
promotes mitochondrial fission and fragmentation and damages mito-
chondrial membranes throughmitophagic inhibition. This can alter mi-
tochondrial membrane function, mutate mtDNA and compromise
cellular structure and function. In contrast, caloric restriction or pulsing
between restriction and modest increases in caloric intake, including
nutrient dense foods and LRT and exercise can induce a state of meta-
bolic undersupply that triggers mitochondrial fusion and appropriate
mitophagy. This establishes a life-sustaining intracellular state that pro-
motes cell survival andmaintains the integrity ofmtDNA. A healthy bal-
ance of both sides of mitochondrial dynamics (fusion and fission)
promotes healthy cellular adaptation [349].

In addition, other endogenous cellular components, enzymes, mes-
sengers and metabolites, among other important cellular molecules,
are sensitive to oxidative damage, especially damage fromexcess gener-
ation of ROS/RNS. There is increasing recognition of the NLRP3
inflammasome pathway in triggering and responding to sterile inflam-
mation. Such inflammation of non-infectious origin has put this innate
immune sensor at the crossroads of metabolic disease and inflamma-
tion. The accumulation of mitochondrial DAMPs during chronic inflam-
matory diseases is increasingly hypothesized to contribute to low-grade
inappropriate systemic inflammation and disease pathogenesis.
LRT provides us with the an opportunity to beneficially modify
mitochondria-promoted DAMPs and reduce endogenous activation of
persistent low grade inflammation and in doing so reduce one of the
most significant causal factors in metabolic and aging illnesses —

inflamm-aging [350].
Maintenance of MIM trans-membrane potential and coordination of

ETC and uncoupling reactions keeps ROS/RNS at normal physiological
levels. LRT helps to repair and replace damaged mitochondrial mem-
brane phospholipids to maintain “healthy” mitochondrial membranes
[336]. It is likely that LRT may also be important in maintaining other
membrane structures, such as endoplasmic reticulum, nuclear, Golgi
and other membranes. It is also likely to be equally important in the
maintenance and function of various plasma membranes, including
the membranes of neural, immune, gastrointestinal, vascular, musculo-
skeletal and other cells. Future studies will undoubtedly focus on the
use of LRT to modify and repair various tissue and cellular membrane
systems.

Finally, although this review has focused on the use of LRT in restor-
ing cellular membrane functions, it can also be used to have new, selec-
tive effects, such as modifications of membrane-drug and -messenger
interactions [351]. For example, it is known that themembrane recruit-
ment, localization and functions of heterotrimeric, dimeric and subunits
of messenger G proteins (Gαβγ, Gβγ and Gα) are dependent onmem-
brane phospholipids, and these interactions can be modified by modu-
lation of themembrane phospholipid organization through substitution
of particular glycerophospholipids and their FAs [352,353]. Thus de-
signing specific LRT using particular phospholipids with certain FA acyl
chains that have specific effects on cellular functions, such as drug and
messenger effects, could be useful in developing new combination ther-
apies for a variety of conditions and diseases [351].
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