

Prepared for:

### **Vlasic Labs**

1699 Traditional Commerce, MI USA 48390

## 3,000 mg CBD isolate

| Batch ID or Lot Number: <b>T35222-1</b> | Test:<br><b>Potency</b> | Reported: <b>30Dec2022</b> | USDA License:<br>N/A |
|-----------------------------------------|-------------------------|----------------------------|----------------------|
| Matrix:                                 | Test ID:                | Started:                   | Sampler ID:          |
| Solution                                | T000231661              | 28Dec2022                  | N/A                  |
|                                         | Method(s):              | Received:                  | Status:              |
|                                         | TM14 (HPLC-DAD)         | 28Dec2022                  | N/A                  |

| LOD (mg/mL) | LOQ (mg/mL)                                                                         | (mg/mL)                                                                                                                                                                                                                                                                                 | Result (mg/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.179       | 0.643                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Density = 0.95g/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.164       | 0.589                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.709       | 1.707                                                                               | 104.020                                                                                                                                                                                                                                                                                 | 109.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.727       | 1.750                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.168       | 0.404                                                                               | 0.400                                                                                                                                                                                                                                                                                   | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.303       | 0.730                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.102       | 0.365                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.426       | 1.527                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.133       | 0.477                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.290       | 1.042                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.507       | 1.819                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.460       | 1.652                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.408       | 1.464                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.093       | 0.332                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.360       | 1.291                                                                               | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                                                     | 104.420                                                                                                                                                                                                                                                                                 | 109.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |                                                                                     | ND                                                                                                                                                                                                                                                                                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                                                     | 104.020                                                                                                                                                                                                                                                                                 | 109.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 0.179 0.164 0.709 0.727 0.168 0.303 0.102 0.426 0.133 0.290 0.507 0.460 0.408 0.093 | 0.164     0.589       0.709     1.707       0.727     1.750       0.168     0.404       0.303     0.730       0.102     0.365       0.426     1.527       0.133     0.477       0.290     1.042       0.507     1.819       0.460     1.652       0.408     1.464       0.093     0.332 | 0.179         0.643         ND           0.164         0.589         ND           0.709         1.707         104.020           0.727         1.750         ND           0.168         0.404         0.400           0.303         0.730         ND           0.102         0.365         ND           0.426         1.527         ND           0.133         0.477         ND           0.290         1.042         ND           0.507         1.819         ND           0.460         1.652         ND           0.408         1.464         ND           0.093         0.332         ND           0.360         1.291         ND           104.420 | LOD (mg/mL)         LOQ (mg/mL)         (mg/mL)         Result (mg/g)           0.179         0.643         ND         ND           0.164         0.589         ND         ND           0.709         1.707         104.020         109.50           0.727         1.750         ND         ND           0.168         0.404         0.400         0.40           0.303         0.730         ND         ND           0.102         0.365         ND         ND           0.426         1.527         ND         ND           0.133         0.477         ND         ND           0.290         1.042         ND         ND           0.507         1.819         ND         ND           0.460         1.652         ND         ND           0.408         1.464         ND         ND           0.093         0.332         ND         ND           0.360         1.291         ND         ND           ND         ND         ND         ND |

**Final Approval** 

PREPARED BY / DATE

Karen Winternheimer 30Dec2022 10:41:00 AM MST

Somantha mod

Sam Smith 30Dec2022 10:43:00 AM MST



APPROVED BY / DATE

https://results.botanacor.com/api/v1/coas/uuid/01df8823-f68a-4f0b-bebd-111277bb5dc2

#### Definitions

% = % (w/w) = Percent (weight of analyte / weight of product). ND = None Detected (defined by dynamic range of the method).

Total Potential Delta 9-THC or CBD is calculated to take into account the loss of a carboxyl group during decarboxylation step, using the following formulas: Total Potential Delta 9-THC + (Delta 9-THC + (Delta 9-THC a \*(0.877)) and Total CBD = CBD + (CBDa \*(0.877)).

Testing results are based solely upon the sample submitted to SC Laboratories, Inc., in the condition it was received. SC Laboratories, Inc., warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of SC Laboratories, Inc. ISO/IEC 17025:2017 Accredited by A2LA.







Cert #4329.02 01df8823f68a4f0bbebd111277bb5dc2.1



Prepared for:

## **Vlasic Labs**

1699 Traditional Commerce, MI USA 48390

# 3,000 mg CBD isolate

| Batch ID or Lot Number: | Test, Test ID and Methods: | Matrix:     | Page 1 of 4 |
|-------------------------|----------------------------|-------------|-------------|
| T35222-1                | Various                    | Concentrate |             |
| Reported:               | Started:                   | Received:   |             |
| 12Jan2023               | 11Jan2023                  | 10Jan2023   |             |

### **Residual Solvents**

Test ID: T000232437

Methods: TM04 (GC-MS): Residual

| Solvents                      | Dynamic Range (ppm) | Result (ppm) | Notes |
|-------------------------------|---------------------|--------------|-------|
| Propane                       | 91 - 1820           | ND           |       |
| Butanes (Isobutane, n-Butane) | 182 - 3642          | ND           |       |
| Methanol                      | 56 - 1125           | ND           |       |
| Pentane                       | 94 - 1875           | ND           |       |
| Ethanol                       | 91 - 1823           | ND           |       |
| Acetone                       | 93 - 1866           | ND           |       |
| Isopropyl Alcohol             | 94 - 1886           | ND           |       |
| Hexane                        | 6 - 117             | ND           |       |
| Ethyl Acetate                 | 95 - 1899           | ND           |       |
| Benzene                       | 0.2 - 3.9           | ND           |       |
| Heptanes                      | 95 - 1895           | ND           |       |
| Toluene                       | 17 - 336            | ND           |       |
| Xylenes (m,p,o-Xylenes)       | 118 - 2364          | ND           |       |

**Final Approval** 

Muteriheumer 01:40:00 PM MST

Karen Winternheimer 12Jan2023

PREPARED BY / DATE

Sawantha Smoth 12Jan2023 01:42:00 PM MST

APPROVED BY / DATE

Sam Smith



Prepared for:

## **Vlasic Labs**

1699 Traditional Commerce, MI USA 48390

# 3,000 mg CBD isolate

| Batch ID or Lot Number: | Test, Test ID and Methods: | Matrix:     | Page 2 of 4 |
|-------------------------|----------------------------|-------------|-------------|
| T35222-1                | Various                    | Concentrate |             |
| Reported:               | Started:                   | Received:   |             |
| 12Jan2023               | 11Jan2023                  | 10Jan2023   |             |

### **Pesticides**

Test ID: T000232435 Methods: TM17

| (LC-QQ LC MS/MS)    | Dynamic Range (ppb) | Result (ppb) |
|---------------------|---------------------|--------------|
| Abamectin           | 287 - 2757          | ND           |
| Acephate            | 42 - 2767           | ND           |
| Acetamiprid         | 41 - 2763           | ND           |
| Azoxystrobin        | 41 - 2733           | ND           |
| Bifenazate          | 41 - 2737           | ND           |
| Boscalid            | 42 - 2801           | ND           |
| Carbaryl            | 38 - 2746           | ND           |
| Carbofuran          | 40 - 2721           | ND           |
| Chlorantraniliprole | 37 - 2705           | ND           |
| Chlorpyrifos        | 37 - 2780           | ND           |
| Clofentezine        | 268 - 2721          | ND           |
| Diazinon            | 275 - 2756          | ND           |
| Dichlorvos          | 265 - 2778          | ND           |
| Dimethoate          | 39 - 2751           | ND           |
| E-Fenpyroximate     | 285 - 2784          | ND           |
| Etofenprox          | 41 - 2782           | ND           |
| Etoxazole           | 285 - 2761          | ND           |
| Fenoxycarb          | 41 - 2744           | ND           |
| Fipronil            | 43 - 2788           | ND           |
| Flonicamid          | 48 - 2799           | ND           |
| Fludioxonil         | 265 - 2757          | ND           |
| Hexythiazox         | 48 - 2801           | ND           |
| Imazalil            | 266 - 2735          | ND           |
| Imidacloprid        | 43 - 2766           | ND           |
| Kresoxim-methyl     | 23 - 2764           | ND           |

|                 | <b>Dynamic Range</b> (ppb) | Result (ppb) |
|-----------------|----------------------------|--------------|
| Malathion       | 278 - 2693                 | ND           |
| Metalaxyl       | 45 - 2738                  | ND           |
| Methiocarb      | 40 - 2736                  | ND           |
| Methomyl        | 38 - 2770                  | ND           |
| MGK 264 1       | 178 - 1610                 | ND           |
| MGK 264 2       | 123 - 1152                 | ND           |
| Myclobutanil    | 35 - 2750                  | ND           |
| Naled           | 45 - 2715                  | ND           |
| Oxamyl          | 40 - 2751                  | ND           |
| Paclobutrazol   | 44 - 2718                  | ND           |
| Permethrin      | 292 - 2794                 | ND           |
| Phosmet         | 43 - 2737                  | ND           |
| Prophos         | 264 - 2718                 | ND           |
| Propoxur        | 41 - 2723                  | ND           |
| Pyridaben       | 285 - 2782                 | ND           |
| Spinosad A      | 34 - 2219                  | ND           |
| Spinosad D      | 48 - 500                   | ND           |
| Spiromesifen    | 268 - 2797                 | ND           |
| Spirotetramat   | 283 - 2743                 | ND           |
| Spiroxamine 1   | 15 - 1173                  | ND           |
| Spiroxamine 2   | 17 - 1560                  | ND           |
| Tebuconazole    | 275 - 2701                 | ND           |
| Thiacloprid     | 40 - 2765                  | ND           |
| Thiamethoxam    | 43 - 2782                  | ND           |
| Trifloxystrobin | 40 - 2742                  | ND           |

**Final Approval** 

Mtenheumer 09:34:00 AM MST PREPARED BY / DATE

Karen Winternheimer 13Jan2023

Sawantha Smill 13Jan2023 09:37:00 AM MST

Sam Smith

APPROVED BY / DATE



Prepared for:

### **Vlasic Labs**

1699 Traditional Commerce, MI USA 48390

# 3,000 mg CBD isolate

| Batch ID or Lot Number: | Test, Test ID and Methods: | Matrix:     | Page 3 of 4 |
|-------------------------|----------------------------|-------------|-------------|
| T35222-1                | Various                    | Concentrate |             |
| Reported:               | Started:                   | Received:   |             |
| 12Jan2023               | 11Jan2023                  | 10Jan2023   |             |

### **Heavy Metals**

Test ID: T000232436

Methods: TM19 (ICP-MS): Heavy

| Metals  | Dynamic Range (ppm) | Result (ppm) | Notes |
|---------|---------------------|--------------|-------|
| Arsenic | 0.04 - 4.50         | ND           |       |
| Cadmium | 0.05 - 4.60         | ND           | -     |
| Mercury | 0.05 - 4.56         | ND           | -     |
| Lead    | 0.04 - 4.37         | ND           |       |

#### **Final Approval**

Sawantha Small 16Jan2023 12:31:00 PM MST

Sam Smith

APPROVED BY / DATE

Karen Winternheimer 16Jan2023

PREPARED BY / DATE

### **Mycotoxins**

Test ID: T000232438

Methods: TM18 (UHPLC-QQQ

| LCMS/MS): Mycotoxins                 | <b>Dynamic Range</b> (ppb) | Result (ppb) | Notes |
|--------------------------------------|----------------------------|--------------|-------|
| Ochratoxin A                         | 4.41 - 129.69              | ND           | N/A   |
| Aflatoxin B1                         | 1.09 - 32.54               | ND           |       |
| Aflatoxin B2                         | 1.03 - 32.74               | ND           |       |
| Aflatoxin G1                         | 1.13 - 32.80               | ND           |       |
| Aflatoxin G2                         | 1.06 - 32.70               | ND           |       |
| Total Aflatoxins (B1, B2, G1, and G2 | ()                         | ND           |       |

#### **Final Approval**

Sawantha Small 19Jan2023 07:43:00 AM MST

PREPARED BY / DATE

Sam Smith

Muternheumer 07:44:00 AM MST APPROVED BY / DATE

Karen Winternheimer 19Jan2023

SC Laboratories, Inc. | © All Rights Reserved | 1301 S Jason St Unit K, Denver, CO 80223 | 888.800.8223 | www.sclabs.com



Prepared for:

### Vlasic Labs

1699 Traditional Commerce, MI USA 48390

### 3,000 mg CBD isolate

| Batch ID or Lot Number: | Test, Test ID and Methods: | Matrix:     | Page 4 of 4 |
|-------------------------|----------------------------|-------------|-------------|
| T35222-1                | Various                    | Concentrate |             |
| Reported:               | Started:                   | Received:   |             |
| 12Jan2023               | 11Jan2023                  | 10Jan2023   |             |



https://results.botanacor.com/api/v1/coas/uuid/1d9da15b-8d47-400c-9ce5-bc6ef829cb63

#### **Definitions**

LOD = Limit of Detection, ULOQ = Upper Limit of Quantitation, LLOQ = Lower Limit of Quantitation, PPB = Parts per Billion, % = % (w/w) = Percent (weight of analyte / weight of product). ND = None Detected (defined by dynamic range of the method). Total Potential Delta 9-THC or CBD is calculated to take into account the loss of a carboxyl group during decarboxylation step, using the following formulas: Total Potential Delta 9-THC = Delta 9-THC + (Delta 9-THCa \*(0.877)) and Total CBD = CBD + (CBDa \*(0.877)). Fail equates to a concentration level of Delta 9-THC, on a dry weight basis, higher than 0.3 percent + or - the measurement uncertainty. Total Potential THC is calculated using the following formulas to take into account the loss of a carboxyl group during decarboxylation step. Total THC = THC + (THCa \*(0.877)). ALOQ = Above Limit Of Quantitation (defined by dynamic range of the method), CFU/g = Colony Forming Units per Gram. Values recorded in scientific notation, a common microbial practice of expressing numbers that are too large to be conveniently written in decimal form. Examples: 10^2 = 100 CFU, 10^3 = 1,000 CFU, 10^4 = 10,000 CFU, 10^5 = 100,000 CFU.

Testing results are based solely upon the sample submitted to SC Laboratories, Inc., in the condition it was received. SC Laboratories, Inc., warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of SC Laboratories, Inc. ISO/IEC 17025:2017 Accredited by A2LA. Some tests listed on this COA may not be within our scope of A2LA accreditation. Please visit A2LA for more details.







1d9da15b8d47400c9ce5bc6ef829cb63.1





**Report Number:** 22-015890/D004.R000

01/17/2023 Report Date: ORELAP#: OR100028

**Purchase Order:** 

Received: 12/29/22 11:43

**Customer:** Vlasic Labs

Product identity: T35222-1 (3,000mg CBD Isolate)

Client/Metrc ID:

Laboratory ID: 22-015890-0001

C------

| Summary                         |  |  |  |  |  |
|---------------------------------|--|--|--|--|--|
| Microbiology:                   |  |  |  |  |  |
| Less than LOQ for all analytes. |  |  |  |  |  |
|                                 |  |  |  |  |  |





**Report Number:** 22-015890/D004.R000

**Report Date:** 01/17/2023 **ORELAP#:** OR100028

**Purchase Order:** 

**Received:** 12/29/22 11:43

Customer: Vlasic Labs

1699 Traditional Commerce Walled Lake Michigan 48390 United States of America (USA)

**Product identity:** T35222-1 (3,000mg CBD Isolate)

Client/Metrc ID:

Sample Date:

**Laboratory ID:** 22-015890-0001

Evidence of Cooling: No
Temp: 14.8 °C
Relinquished by: UPS

### **Sample Results**

| Microbiology            |        |              |     |         |                                               |              |  |
|-------------------------|--------|--------------|-----|---------|-----------------------------------------------|--------------|--|
| Analyte                 | Result | Limits Units | LOQ | Batch   | Analyzed Method                               | Status Notes |  |
| Aerobic Plate Count     | < LOQ  | cfu/g        | 10  | 2300101 | 01/07/23 AOAC 990.12 (Petrifilm) <sup>b</sup> |              |  |
| E.coli                  | < LOQ  | cfu/g        | 10  | 2300099 | 01/07/23 AOAC 991.14 (Petrifilm) <sup>p</sup> |              |  |
| Total Coliforms         | < LOQ  | cfu/g        | 10  | 2300099 | 01/07/23 AOAC 991.14 (Petrifilm) <sup>p</sup> |              |  |
| Mold (RAPID Petrifilm)  | < LOQ  | cfu/g        | 10  | 2300100 | 01/08/23 AOAC 2014.05 (RAPID) <sup>b</sup>    |              |  |
| Yeast (RAPID Petrifilm) | < LOQ  | cfu/g        | 10  | 2300100 | 01/08/23 AOAC 2014.05 (RAPID) <sup>b</sup>    |              |  |





Report Number: 22-015890/D004.R000

**Report Date:** 01/17/2023 **ORELAP#:** OR100028

**Purchase Order:** 

**Received:** 12/29/22 11:43

These test results are representative of the individual sample selected and submitted by the client.

#### **Abbreviations**

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

**Limit(s) of Quantitation (LOQ):** The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

b = ISO/IEC 17025:2017 accredited method.

#### Units of Measure

cfu/g = Colony forming units per gram % wt =  $\mu$ g/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager





**Report Number:** 22-015890/D004.R000

**Report Date:** 01/17/2023 ORELAP#: OR100028

**Purchase Order:** 

Received: 12/29/22 11:43







22-015890/D004.R000 **Report Number:** 

**Report Date:** 01/17/2023 ORELAP#: OR100028

**Purchase Order:** 

12/29/22 11:43 Received:

#### Explanation of QC Flag Comments:

| Code | Explanation                                                                                 |  |  |  |
|------|---------------------------------------------------------------------------------------------|--|--|--|
| Q    | Matrix interferences affecting spike or surrogate recoveries.                               |  |  |  |
| Q1   | Quality control result biased high. Only non-detect samples reported.                       |  |  |  |
| Q2   | Quality control outside QC limits. Data considered estimate.                                |  |  |  |
| Q3   | Sample concentration greater than four times the amount spiked.                             |  |  |  |
| Q4   | Non-homogenous sample matrix, affecting RPD result and/or % recoveries.                     |  |  |  |
| Q5   | Spike results above calibration curve.                                                      |  |  |  |
| Q6   | Quality control outside QC limits. Data acceptable based on remaining QC.                   |  |  |  |
| R    | Relative percent difference (RPD) outside control limit.                                    |  |  |  |
| R1   | RPD non-calculable, as sample or duplicate results are less than five times the LOQ.        |  |  |  |
| R2   | Sample replicates RPD non-calculable, as only one replicate is within the analytical range. |  |  |  |
| LOQ1 | Quantitation level raised due to low sample volume and/or dilution.                         |  |  |  |
| LOQ2 | Quantitaion level raised due to matrix interference.                                        |  |  |  |
| В    | Analyte detected in method blank, but not in associated samples.                            |  |  |  |
| B1   | The sample concentration is greater than 5 times the blank concentration.                   |  |  |  |
| B2   | The sample concentration is less than 5 times the blank concentration.                      |  |  |  |