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Neurodegenerative diseases (NDs) are chronic conditions that result in

progressive damage to the nervous system, including Alzheimer’s disease (AD),

Parkinson’s disease (PD), Huntington’s disease (HD), and Amyotrophic lateral

sclerosis (ALS). Age is a major risk factor for NDs. Telomere shortening is a

biological marker of cellular aging, and telomerase reverse transcriptase (TERT)

has been shown to slow down this process by maintaining telomere length. The

blood-brain barrier (BBB) makes the brain a unique immune organ, and while the

number of T cells present in the central nervous system is limited, they play an

important role in NDs. Research suggests that NDs can be influenced by

modulating peripheral T cell immune responses, and that TERT may play a

significant role in T cell senescence and NDs. This review focuses on the

current state of research on TERT in NDs and explores the potential

connections between TERT, T cells, and NDs. Further studies on aging and

telomeres may provide valuable insights for developing therapeutic strategies for

age-related diseases.
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1 Introduction

Neurodegenerative diseases (NDs) are a group of neurological disorders characterized

by the loss of neurons or myelin sheaths, leading to progressive motor and cognitive

impairment. The most common forms of these diseases include Alzheimer’s Disease (AD),

Parkinson’s Disease (PD), Huntington’s Disease (HD), and Amyotrophic Lateral Sclerosis

(ALS). The development of NDs is linked to a range of factors, including aging, oxidative

stress, inflammation, mitochondrial dysfunction, and protein aggregate accumulation (1–

5). Aging is the most significant risk factor and is characterized by metabolic dysfunction,

mitochondrial dysfunction, and telomere wear (6). Understanding and addressing the

aging process has the potential to improve many age-related conditions, including

neurodegenerative diseases. Immune senescence, marked by a decline in T cell immune

function, is a common feature of aging. However, it is not very clear whether immune

senescence is associated with NDs, and T-cell aging drives aging of other non-immune
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organs (7). Additionally, Natural Killer (NK) cells increase

progressively in the brain with age. Studies have found that

clearing immune cells in the aging brain promotes neuroblastoma

cell survival and improve cognitive function (8). T-lymphocyte

senescence is primarily caused by shortened telomere length or

impaired telomerase function (9). Telomeres, widely recognized as

hallmarks of aging, have also been implicated in the process of

neurodegeneration in neurodegenerative diseases (10, 11).

Telomeres are repetitive DNA sequences (TTAGGG)n located

at the ends of eukaryotic linear chromosomes. They protect cells

during replication, prevent DNA damage, and regulate the cell

division cycle through their telomeric DNA and telomere binding

proteins (12, 13). As cells divide, telomeres gradually shorten, but

when this reaches a critical point, telomerase can be activated to

lengthen telomeres, allowing cells to survive a crisis state or replicate

indefinitely (14, 15). Telomerase activity, which is essential for

maintaining telomere length, is primarily composed of the

Telomerase reverse transcriptase (TERT) protein, telomerase

RNA component (TERC), and telomerase-related catalytic

proteins (16, 17). TERT is the primary determinant of telomerase

activity, and it is normally found in germ cells, neurons, and stem

cells, but is inactive in somatic cells (18–22). Exploring telomere

biology offers the potential to search for effective strategies for

treating neurodegenerative diseases. The expression of TERT can be

influenced by various factors, such as cycloastragenol (CAG), a

telomerase activator, which has been shown to promote TERT

expression in rat neurons (21–23). GRN510, a novel small molecule

compound, is another example of a telomerase activator that has

protective effects against neurological diseases by upregulating

TERT expression (24). TERT levels remain constant during

embryonic development, despite decreasing telomerase activity

(25). TERT has been found to play multiple roles, including

neuronal protection, anti-inflammation, antioxidant, tumor

suppression, immunomodulation, and reduction of toxic proteins

(26). TERT can also reduce oxidative stress by transporting from

the nucleus into mitochondria and reducing the production of

reactive oxygen species (ROS) (27, 28) Upregulated TERT

expression in microglia has also been shown to inhibit the

production of inflammatory factors and have anti-inflammatory

effects (29).

Oxidative stress is a significant contributor to the development

of neurodegenerative diseases and TERT has been found to play a

role in addressing these conditions. As such, TERT has emerged as a

promising strategy for the treatment of age-related NDs (30, 31)

Research has shown that telomerase activation promotes

lymphocyte proliferation and slows down cellular senescence,

while TERT upregulation prevents or reverses tissue and organ

degeneration and premature aging in mice (11). Neurodegenerative

diseases are characterized by an altered balance of oxidation-

reduction, leading to disruptions in cellular signaling pathways

and the regulation of the immune response and inflammatory

processes through ROS (32). In NDs, the intracellular

accumulation of amyloid b protein and neuronal death is

accompanied by increased Th1-Th17 responses and decreased

Th2 responses (33). In the central nervous system, pro-

inflammatory factor-mediated neuroinflammation in glial cells
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can be regulated by peripheral T cells, while CD8+ T cells and

CD4+ T cells are capable of inducing significant neuronal death (34,

35). IL-4-deficient mice with inflammatory myeloid cells exhibit

cognitive deficits, but wild-type T cells can reverse this effect (36).

In conclusion, TERT has the potential to play a role in NDs by

regulating oxidative stress and inflammatory responses, which can

impact Treg cells. The progress of research on the function of TERT

in NDs is discussed in this paper.
2 TERT and T cells

The role of T lymphocytes in the immune system and the

relationship between TERT and T cells have been widely studied. T

lymphocytes are a type of immune cell that mature in the thymus

and are the main component of lymphocytes. T lymphocytes are the

most numerous and complex in terms of function, and aging can

decrease and abnormalize the body’s immune function by affecting

T lymphocytes (37). Regulatory T cells (Treg cells) are a subset of T

cells that play an important role in maintaining self-tolerance,

suppressing autoimmunity, and regulating inflammation in

neurodegeneration. It has been shown that Treg cells are involved

in an adaptive response when the cellular environment is altered, in

order to maintain the t issue internal environment ’s

homeostasis (38).

TERT is an antigen that is closely related to the development of

immunotherapies, and T cells are at the center of the “immune

surveillance” process (39). The expression of TERT has been found

to be closely associated with immunosuppressive features in the

form of Th2 cells, Treg cells, CD56dim natural killer cells, and

myeloid-derived suppressor cells (40). Additionally, overexpression

of the TERT gene has been shown to enhance the proliferative

capacity of T cells, which provides a potential therapeutic strategy

for diseases such as tumors (41). TERT is expressed in all stages of

tumor differentiation and is a crucial target for immunotherapy,

with CD4 T cells playing a role in combating TERT in cancer (39).

Inflammation affects the body’s immune response, and numerous

studies have confirmed that several inflammatory factors, including

IL-2 and IL-6, can promote the expression of telomerase in T cells

and keep it at high levels (42). The NF-kB signaling pathway is an

important pathway that regulates the inflammatory response, and

its downstream target genes include inflammatory factors such as

IL-6, IL-8, and TNF-a, the overexpression of which leads to

immune dysfunction. TERT has a forward feedback regulation

with the NF-kB signaling pathway, allowing it to regulate the

inflammatory immune response of cells (43). The transcriptional

regulation of NF-kB by TERT has been shown to be responsible for

the expression of genes in metabolic syndrome and the regulation of

immune cell function (44, 45). Additionally, TERT gene-transduced

T cells have an enhanced ability to resist oxidative stress (46), and

there is evidence that T cells overexpressing TERT have a stronger

rate of proliferation and are not malignant (47). Importantly,

siRNA mediated TERT knockdown increased cellular ROS levels,

while TERT overexpression inhibited endogenous ROS production

(48). In vitro experiments showed that reducing TERT activity

promoted oxidative stress, leading to cell death (26, 49). With aging,
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telomere length shortening occurs in various organs, causing more

cells to enter the senescent phase and lose their proliferative

capacity (50).

The role of T cells in the brain is increasingly being recognized

and as the relationship between aging and neurodegenerative

diseases becomes more evident, there is growing interest in

studying T cells for potential therapeutic insights into these

aging-related conditions. Although there is limited research on

TERT and T cells, the potential for further exploration is significant.

A recent study found that T cells play an important role in the

brain and considering the relationship between aging and

neurodegenerative diseases (51), it is not difficult to imagine that

a deeper study of T cells may provide important therapeutic clues

for aging-related diseases, including neurodegenerative diseases.

Despite the relatively few studies related to TERT and T cells,

there is great value for exploration.
3 Role of TERT in
neurodegenerative diseases

As previously mentioned, the aging process is closely tied to the

development of neurodegenerative diseases. This is often

characterized by oxidative stress, neuroinflammation, and an

altered immune response. Research has shown that prolonged

exposure to pro-oxidants leads to the production of reactive

oxygen species (ROS) which, in turn, causes cellular damage

through inflammation and mitochondrial dysfunction. In short,

there is an interaction between oxidative stress and inflammatory

responses, and the inflammatory factors produced by the body can

potentially cause an immune response that can affect the

progression of NDs. This results in increased expression of IL-17

and Syntaxin5 in the hippocampus of the brain, leading to cognitive

impairment (32). Given the anti-aging and antioxidant effects of

TERT, it is essential to further examine the relationship between

TERT and various neurodegenerative diseases.
3.1 TERT and AD

Alzheimer’s disease (AD) is a common neurodegenerative

disorder that increases in incidence and prevalence with age (52–

55). It is predominantly found in individuals over 65 years old (56).

The underlying pathological features of AD are the presence of large

numbers of senile plaques (SPs) formed by beta-amyloid peptide

(Ab) deposits outside the neuros (57) in the brain, as well as

neurofibrillary tangles (NFTs) formed by tau-hyperphosphorylation

(58, 59), oxidative stress (60), and alterations in cholinergic signaling

(61). Studies have demonstrated that oxidative stress plays a critical

role in the development and progression of AD, promoting Ab
deposition, Tau protein hyperphosphorylation, metal ion

imbalances, synaptic and neuronal loss, and mitochondrial

dysfunction (62, 63). Thus, targeting oxidative stress holds great

potential as a therapeutic strategy for AD.
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Studies have shown that patients with Alzheimer’s disease (AD)

have elevated levels of CD4+/CD8+ T cells in peripheral blood,

which is related to the permeability of the blood-brain barrier,

which increases as the disease progresses, promoting the infiltration

of T cells into the brain tissue (64–66). There are conflicting results

regarding the role of T cells in AD, with some studies suggesting a

neuroprotective role for Treg cells and an improvement in cognitive

function with higher levels of Treg cells and IL-35 (67). On the

other hand, elevated levels of TEMRA CD8 T cells, which are

cytotoxic and secrete inflammatory molecules, have been found to

impair cognitive performance in AD patients (68, 69). Furthermore,

peripheral T cell activation and the subsequent release of pro-

inflammatory factors such as IL-6, tumor necrosis factor a (TNFa),
and IL-1, have also been linked to AD pathology (70). While

multiple studies have suggested a role for T cells in AD

development, their specific mechanisms of action and impact on

the disease remain unclear.

The length of telomeres, which serve as a marker of cellular

aging, are critical to normal brain function (71, 72). Given this

importance, the potential benefits of TERT in preventing and

treating Alzheimer’s disease (AD) have garnered significant

attention. AD is predominantly seen in the elderly population,

but studies have shown that TERT levels in the brains of AD

patients remain unchanged with disease progression (73). TERT has

been found to have multiple biological roles in adult brain neurons,

including the accumulation in the mitochondria of AD patients’

brains and the prevention of neuronal damage from pathological

proteins (74). Additionally, TERT has been shown to alleviate

memory impairment in AD (75). AGS treatment was found to

temporarily increase TERT gene expression in hippocampal

primary cell cultures, either with or without Ab, and ultimately

protect neurons from Ab-induced neuronal degeneration by

increasing expression of neurotrophic factors, neuronal plasticity

genes, and activating the Wnt/beta-catenin pathway (76). The

telomerase protein TERT confers neuronal resistance to

pathological tau by reducing the production of oxidative species

and improving mitochondrial function rather than altering tau

protein (77). Furthermore, neurons treated with TERT inhibitors

were found to be more susceptible to Ab damage, while TERT was

able to protect neurons from Ab-induced apoptosis in an

experimental model of AD (78, 79).In conclusion, TERT may be

a promising target for AD treatment and provide a new direction

for research. However, its specific mechanisms of action require

further investigation.

PD is a neurodegenerative disease that is second only to AD in

prevalence worldwide (80) The aging population is leading to a

growing number of PD patients (81). PD primarily affects the

elderly, causing progressively worsening and irreversible

symptoms, which can be divided into motor and non-motor

symptoms (82). Pathologically, PD is characterized by the loss of

neurons in the substantia nigra, the presence of eosinophilic protein

deposits in the cytoplasm, and a reduction in dopaminergic neurons

in the striatum of patients (83, 84). Lipid peroxidation, protein

carbonylation, and 8-hydroxyguanosine have been found in the
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dopamine-produc ing neurons o f PD pat i en t s (85 ) .

Neuroinflammation is also considered to play a crucial role in the

development of PD. In PD model mice, the protective effect of the

substantia nigra and striatum is mainly due to activated Treg cells

(86). Pro-inflammatory cytokines such as tumor necrosis factor

(TNF-a), interferon (IFN)-g, interleukin (IL)-1b and IL-6 have

been found to be elevated in the nigrostriatal region of PD patients

(87). In the peripheral blood of PD patients, the levels of naive T

cells and anti-inflammatory regulatory T cells are reduced, and the

ratio of IFN-g to IL-4-producing T cells is increased, creating a pro-

inflammatory environment (88). a-Syn-reactive T cells have been

found in PD patients, and they are most abundant in those with

motor PD (89). Innate and adaptive immune changes occur in both

the brain and periphery in PD, including adaptive T-lymphocyte

responses (90). Additionally, a reduction in replicative senescence

of CD8+ T cells in the early stages of PD has been shown to

promote PD progression (91).

There is evidence that telomerase activators can have

neuroprotective effects by increasing TERT expression in the

brains of PD model mice and enhancing their locomotor abilities

(92). Studies have shown that after CAG treatment in PD mice,

there was a significant reduction of alpha-synuclein in the

hippocampus and cortex, and a significant improvement in the

mice’s motor function, suggesting that TERT can alleviate the

symptoms of PD by inhibiting the aggregation of alpha-synuclein

(74). It has been shown that the presence of estrogen receptor (ER)

control elements in the promoter sequence of TERT elements, the

integrity of ER is required for the regulation of hTERT, and the

expression and distribution of ER are simultaneously regulated by

the ratio of androgen to estrogen in the internal environment (93).

TERT has a known association with estrogen, and the results of the

rotating bar test after CAG treatment in PD model mice showed

that motor function was significantly improved in females

compared to males, which may be due to the protective effect of

TERT (94). After 1‐Methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine

(MPTP) intraperitoneal injection in wild mice and TERT

knockout mice, it was found that TERT-deficient mice displayed

more severe symptoms, demonstrating that TERT-deficient mice

are more susceptible to the neurotoxic effects of MPTP (95).

Additionally, knockdown of TERT in the hippocampal dentate

gyrus impaired the formation of spatial memory in mice (96).

These findings suggest that the pathogenesis of PD could be

improved by targeting TERT.
3.3 TERT and HD

Huntington’s disease (HD) is a debilitating neurodegenerative

disorder that is characterized by the progressive decline of cognitive

and motor functions, psychiatric disorders, and metabolic

abnormalities (97). It typically presents in individuals between the

ages of 30 and 40 years, although 5% of patients may present before

the age of 21 years (97, 98). The disease is caused by the repetitive

amplification of the first exon of the HTT gene, which encodes the

Huntington protein. Research has shown that leukocyte telomere
Frontiers in Immunology 04
length is shorter in HD patients compared to healthy individuals,

suggesting that telomere shortening may play a role in the

pathogenesis of HD (99). The peripheral immune dysfunction in

Huntington’s disease appears to be primarily mediated by the

innate immune system, rather than the adaptive immune system

(100). Additionally, therapies that decrease T cell-driven

inflammation have been shown to delay or prevent the onset of

HD (101). The results of relevant investigations have also suggested

a potential association between telomere shortening and HD, which

may be related to oxidative stress (102). As TERT is known to be a

key component in maintaining telomere length and has antioxidant

effects, it may be a potential target for alleviating HD and warrant

further study.
3.4 TERT and ALS

Amyotrophic Lateral Sclerosis (ALS) is a type of motor neuron

disease that affects mostly sporadic patients, with around 10% of

cases being hereditary (103). The disease typically begins to develop

between the ages of 40 and 60, with a high incidence rate (104). ALS

is a rapid and fatal neurodegenerative disease characterized by the

death and dysfunction of motor neurons in the patient’s brainstem,

cerebral cortex, and spinal cord (105). Although the disease is

influenced by multiple factors, it is currently incurable. Some

studies have shown that immune system-related genes can play a

role in ALS pathogenesis, including Treg cells that have a protective

effect. For example, Foxp3, TGF-b, IL-4, and Gata3 mRNA levels

were found to be reduced in patients with rapidly progressing ALS

(106). In addition, research in mice expressing SOD1 suggests that

deleting the gene in astrocytes or bone marrow compartments slows

ALS progression (107). Moreover, peripheral immune cells have

been shown to contribute to neurodegeneration (108). The study

also found that the presence of clonally expanded TEMRA CD8 T

cells in the peripheral blood of ALS4 patients may serve as a

potential biomarker for exploring the disease’s pathogenesis

(109). Furthermore, the levels of CD4+ T lymphocytes in the

blood of ALS patients have been linked to evaluating cognitive

impairment and age (110). TERT expression was found to be

reduced in ALS patients (111) and a study showed that the AGS-

499 compound improved motor neuron survival and delayed ALS

progression in mice by promoting TERT expression in the brain in

a dose-dependent manner (112). This suggests that TERT could be

a promising target for the development of ALS therapies.

In conclusion, neurodegenerative diseases such as AD, PD, HD,

and ALS can impact individuals at different life stages and pose a

significant burden on affected individuals and society. Despite

extensive research, current treatments for these diseases are

limited and ineffective, making it crucial to better understand the

under ly ing patho log ica l mechani sms and causes o f

neurodegenerative diseases. Upon reviewing the literature, it is

evident that there is a scarcity of studies that focus on the role of

TERT in neurodegenerative diseases, especially in the context of

immune aging. Thus, exploring the potential connection between

TERT’s antioxidant effects and T cell senescence could be a
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promising avenue for future research and could offer new insights

into the treatment of neurodegenerative diseases.
4 Conclusion and future prospects

The search for effective solutions to neurodegenerative diseases has

become increasingly urgent due to the slow progress in research on

these diseases. Aging is the main risk factor and the pathological

changes it causes are irreversible. T cell senescence has emerged as an

important area of research due to its role in aging and the recent

discovery of its role in neurodegenerative diseases. TERT, which

maintains telomere length and delays cellular senescence, has been

shown to have neuroprotective effects (Figure 1). However, there is

limited research on the relationship between T cell senescence and

neurodegenerative diseases, which has led to a growing interest in

exploring the potential link between TERT and T cells in this context.

This review summarizes the relevant roles of TERT and the potential

relationship between T cell senescence and neurodegenerative diseases,

in order to provide insights into the pathogenesis of these diseases and

pave the way for the development of new therapeutic agents.
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