

ENGINEERING AND TEST DIVISION 1195 CHURCH STREET, BOHEMIA, LONG ISLAND, NEW YORK 11716 (631) 589-6300

TEST REPORT NO.: 416478-99-01-R18-0852

DAYTON T. BROWN, INC. JOB NO.: 416478

CUSTOMER: SECURAM SYSTEMS, INC. 3325 GRANDE VISTA DRIVE NEWBURY PARK, CA 91320

SUBJECT: ELECTROMAGNETIC SUSCEPTIBILITY TEST PROGRAM PERFORMED ON THREE SAFE LOCKS AND TWO DOOR LOCKS

PURCHASE ORDER NO.: 180801V01

THIS REPORT CONTAINS: 42 PAGES

PREPARED BY:	M. White	M. WHITE
TEST ENGINEER:	A. Alexandre	J. ALEXANDRE
DEPARTMENT MANAGER:	Reyes Costés	R. CORTES
DATE:	SEPTEMBER 6, 2018	

INFORMATION CONTAINED HEREIN MAY BE SUBJECT TO EXPORT CONTROL LAWS. REFER TO INTERNATIONAL TRAFFIC IN ARMS REGULATION (ITAR) OR THE EXPORT ADMINISTRATION REGULATION (EAR) OF 1979. IT IS THE RESPONSIBILITY OF THE RECIPIENT TO OBTAIN ANY REQUIRED LICENSES TO EXPORT ANY CONTROLLED DATA.

THE DATA CONTAINED IN THIS REPORT WAS OBTAINED BY TESTING IN COMPLIANCE WITH THE APPLICABLE TEST SPECIFICATION AS NOTED

Revision History

Revision	Date	Section Affected	Change
-	09/06/18	Original Release	-

Table of Contents

Revision History	2
Table of Contents	3
List of Figures	4
List of Tables	4
1.0 Abstract	
1.1 Test Summary	5
2.0 References	
3.0 Acronyms and Abbreviations	
4.0 Administrative Information	
5.0 Test Sample Information	
5.1 Modifications	
6.0 Test Sample Operation	
6.1 Mode of Operation	
6.2 Susceptibility Criteria	
7.0 General Test Information	
7.1 Test Facility	
7.2 Setup	
8.0 Test Instrumentation	
8.1 Tolerances	
8.2 Instrumentation Characteristics	
9.0 Test Methods	
9.1 Radiated Susceptibility, Method RS105, Transient Electromagnetic Field	
9.1.1 Purpose	
9.1.2 Limit	
9.1.3 Equipment List	
9.1.4 Test Setup	
9.1.5 Calibration	
9.1.6 Test Procedure	
9.1.7 Test Results	
9.1.7.1 RS105, Calibration Data	
9.1.7.2 RS105, Test Data	
9.1.8 RS105, Test Setup Diagram(s)	
9.1.9 RS105, Test Setup Photograph(s)	
10.0 Time Logs	40

List of Figures

Figure 1 - RS105, Required Limit	11
Figure 2 - RS105, Calibration Verification Setup	30
Figure 3 - RS105, Typical Test Setup	31

List of Tables

Table 1 - Revision History	2
Table 2 - EUT Components	
Table 3 - Test Summary	
Table 4 - Acronyms and Abbreviations	
Table 5 - Administrative Information	8
Table 6 - RS105, Equipment List	. 12

1.0 Abstract

This report details the results of the electromagnetic susceptibility test program on the three Safe Locks and two Door Locks. Testing was performed in accordance with Paragraph 2.0 and was performed at Dayton T. Brown, Inc., Bohemia, New York.

The Safe Locks and Door Locks, hereafter are referred to as EUT (Equipment Under Test).

The EUT components are as follows:

EUT	EUT Component Part No. Model No.		Serial No.	
1	Backlit	EC-0601A-BL	Not applicable	1808020001039
I	Swing Bolt	EL-0601	Not applicable	1808020001035
2	Toplit	EC-0601A-PL	Not applicable	1808020001028
2	Swing Bolt	EL-0601-E	Not applicable	1808020001034
2	Prologic	EC-0601A-L01	Not applicable	1808020001036
3	Swing Bolt	EL-0601	Not applicable	1808020001025
4	V8 Door Lock	SH-LNV01	Not applicable	1808020001042
5	Card Lock	Not applicable	Not applicable	DTB-1

Table 2 - EUT Components

Pre and post-test inspections revealed no external physical damage.

1.1 Test Summary

Table 3 lists the tests performed and the corresponding test results:

Table 3 - Test Summary

Test	Test Description	Limit	Met the Spec. Requirements	
			Yes	No
RS105	Radiated Susceptibility, Transient Electromagnetic Field	Figure RS105-1, 50,000 V/m	Х	

The test results recorded in this report relate only to those items tested.

This report shall not be reproduced, except in full, without the written approval of Dayton T. Brown, Inc.

2.0 References

- a) MIL-STD-461G, Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 11 December 2015.
- b) DI-EMCS-80200C, Data Item Description, Electromagnetic Interference Test Report (EMITR), 30 November 2007.

3.0 Acronyms and Abbreviations

The following acronyms and abbreviations may be used throughout this document:

Acronym/ Description Acronym/ Description				
Abbreviation	Description	Abbreviation	Description	
А	Amperes	HERF	Hazards of Electromagnetic Radiation to Fuel	
AC	Alternating Current	HERO	Hazards of Electromagnetic Radiation to Ordnance	
AF	Audio Frequency	HERP	Hazards of Electromagnetic Radiation to Personnel	
Amp	Amplifier	HIRF	High Intensity Radiated Fields	
Amps	Amperes	HPM	High Power Microwave	
ASŴ	Anti-submarine Warfare	Hz	Hertz	
BIT	Built in Test	ISM	Industrial, Scientific and Medical	
BW	Bandwidth	ISO	International Organization for Standardization	
CI	Commercial Item	k	Kilo	
dB	Decibels	LISN	Line Impedance Stabilization Network	
DC	Direct Current	М	Mega	
DoD or DOD	Department of Defense	m	milli	
DRG	Double Ridge Guide	m	Meter	
DTB	Dayton T. Brown, Inc.	μ	micro	
E3 or E ³	Electromagnetic Environmental Effects	NDI	Non-Developmental Item	
E-Field	Electric Field	n	nano	
ELF	Extremely Low Frequency	Ω	Ohm	
EMC	Electromagnetic Compatibility	р	pico	
EMCON	Emission Control	P-Static	Precipitation Static	
EME	Electromagnetic Environment	PRF	Pulse Repetition Frequency	
EMF	Electromotive Force	PWM	Pulse Width Modulation	
EMI	Electromagnetic Interference	RBW	Resolution Bandwidth	
EMICP	Electromagnetic Interference Control Procedure	RF	Radio Frequency	
EMITP	Electromagnetic Interference Test Procedure	rms	Root-mean-square	
EMITR	Electromagnetic Interference Test Report	Т	Tesla	
EMP	Electromagnetic Pulse	TEM	Transverse Electromagnetic	
ERP	Effective Radiated Power	TPD	Terminal Protection Device	
ESD	Electrostatic Discharge	UHF	Ultra High Frequency	
EUT	Equipment Under Test	UUT	Unit Under Test	
F	Farad	V	Volts	
FCC	Federal Communication Commission	VHF	Very High Frequency	
G	Giga	VBW	Video Bandwidth	
H	Henries	VLF	Very Low Frequency	
H-field	Magnetic Field	W	Watts	
GFE	Government Furnished Equipment			

Table 4 - Acronyms and Abbreviations

4.0 Administrative Information

Table C Advaice at water	
Table 5 - Administrative	Information

a)	EUT Quantity Received:	3 Safe Locks and 2 Door Locks
b)	Date EUT Received:	Hand carried by customer August 15, 2018
C)	Date(s) Tested:	August 14, 2018 through August 15, 2018
d)	Date EUT Shipped:	Hand carried by customer August 15, 2018
e)	Customer Representative(s) F	Present During All or Part of the Testing:
	Name	Affiliation
	Jeremy Brookes	SecuRam Systems, Inc.
	Saveta Persaud	SecuRam Systems, Inc.

5.0 Test Sample Information

5.1 Modifications

No modifications were made to the EUT during the course of this testing program.

6.0 Test Sample Operation

6.1 Mode of Operation

All testing was performed with the EUT operating as follows:

- Operational: Safe lock assembly in the locked position installed on the safe
- Operational: Door lock assembly in the locked position in free space

6.2 Susceptibility Criteria

During susceptibility testing, operation of the EUT was monitored by the customer representative and DTB technician for the following:

- Any indication of malfunction or degradation of operation.
- Lock mechanism to function properly after X, Y and Z positions were tested with 50 kV pulse.

7.0 General Test Information

7.1 Test Facility

All testing was performed at Dayton T. Brown, Inc., Bohemia, New York.

7.2 Setup

The EUT (Safe Lock) was mounted in a safe in accordance with Figure 4 of MIL-STD-461G. The safe was placed on 5 cm foam that sat on the ground plane of the shielded enclosure floor.

The EUT (Door Lock) was placed on a non-conductive bench in accordance with Figure 3 of MIL-STD-461G. The non-conductive bench sat on the ground plane of the shielded enclosure floor.

Photograph(s) of the test setups are included in each test method.

8.0 Test Instrumentation

8.1 Tolerances

With any testing method there will be parameter variations due to the nature of testing. These parameter variations are controlled to be within a suitable range of the requirements of the specification. If no tolerances are given from the specification or customer procedure, any required parameter will have a tolerance of +/-20%.

8.2 Instrumentation Characteristics

Measurements are made using test equipment with performance monitored and, whenever possible, calibrated by the Dayton T. Brown, Inc. Metrology Department. The calibration system is set up to meet the applicable requirements stipulated in ISO/IEC 17025, ISO 9001, ANSI/NCSL Z540.1-1994 (R2002), and ISO10012. All measuring instruments are calibrated with traceability to intrinsic, International, or National Standards such as NIST (National Institute of Standards and Technology) at periodic intervals. Details are on file at Dayton T. Brown, Inc., and will be made available upon request.

9.0 Test Methods

9.1 Radiated Susceptibility, Method RS105, Transient Electromagnetic Field

9.1.1 Purpose

The purpose of this test is to verify the ability of the EUT to withstand transient electromagnetic fields.

9.1.2 Limit

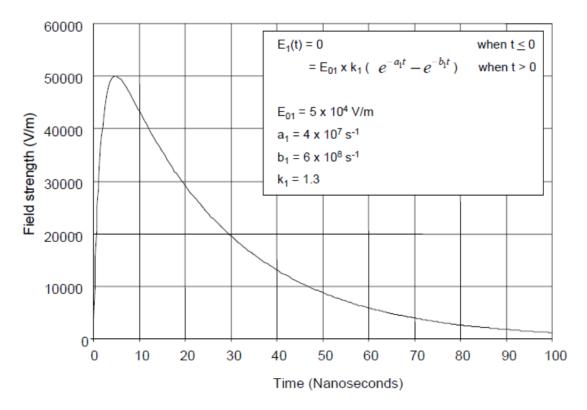


Figure 1 - RS105, Required Limit

9.1.3 Equipment List

ITEM	MANUFACTURER	MODEL	DTB NO.	CAL DUE
				DATE
EMP SIMULATOR SYSTEM	FCC	RS105	01E-043	No Cal
				Required
FACILITY, RS105	DAYTON T. BROWN	RS105 FACILITY	01E-061	No Cal
				Required
OSCILLOSCOPE, DIGITAL 4 CHANNEL	TEKTRONIX	TDS 3054B	21-121	08/19/2018
500MHZ				
SENSOR, MAGNETIC FIELD	FCC	HFP-1000A	27-384	06/09/2019
	1		1	

Table 6 - RS105, Equipment List

9.1.4 Test Setup

The test setup is as detailed in Paragraph 7.2 of this document.

Prior to setting up EUT for testing, the uniform field area of the RS105 test setup was verified to be 1 meter by 1 meter by 1 meter minimum.

The EUT was placed within the working volume of the RS105 antenna array in such a manner that it does not exceed the usable volume of the radiation system (h/3, B/2, A/2)/(x,y,z) as shown in Figure RS105-3 of MIL-STD-461G (h is the maximum vertical separation of the plates). The test sample was located below the RS105 antenna, in the center of the uniform field area. A magnetic field sensor was used to measure the field.

The EUT was supported by dielectric material that produces a minimum distortion of the EM fields.

The test setup employed was as detailed in the test setup photograph(s).

9.1.5 Calibration

Before the EUT was installed in the test setup, the field strength of the RS105 setup was verified.

The magnetic field sensor was placed in the center position of the five-point grid in the vertical plane where the front face of the EUT will be located.

Using the magnetic field sensor, it was verified that the pulsed field produced met the peak amplitude, rise time, and pulse width.

For 50,000 V/m the required magnetic field was 132.63 A/m.

Electric Field Strength = Magnetic Field Strength x Impedance of Air

Where:

Electric Field Strength (Target = 50,000 V/m) Magnetic Field Strength Measured with sensor (Target = 132.63 A/m) Impedance of Air = 377 Ohms

The pulse waveform was recorded on the oscilloscope.

The pulse generator settings and associated pulse drive amplitude were determined to satisfy the field requirements.

This process was repeated at each of the other four points of the grid.

The peak value of the electric or magnetic field for each grid position was verified to be 0 dB < magnitude < 6 dB above limit.

The calibration setup is illustrated in Figure 2.

9.1.6 Test Procedure

The pulse was applied at the calibrated generator setting to ensure that the drive pulse waveform characteristics were consistent with those noted during calibration.

At least 5 pulses at a rate of not more than one pulse per minute were applied.

The EUT was monitored during and after each pulse for signs of susceptibility or degradation of performance.

The EUT was tested in three orthogonal orientations.

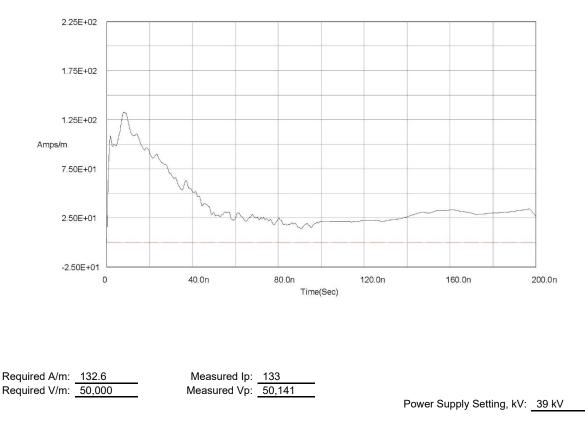
9.1.7 Test Results

No change in indication, malfunction, or degradation in the EUT operation was observed.

Operation of the EUT was performed by the customer representative and visually verified by DTB technician prior to testing. After subjecting the EUT to the electromagnetic pulse of each orientation, operation of the EUT was performed by the customer representative and function of the lock mechanism to be able to open and close properly was visually verified by DTB technician.

See the following test data for detailed test results.

9.1.7.1 RS105, Calibration Data


Test Item:	(3) Safe Locks and (2) Door Locks	Date:	8-14-18
Customer:	SecuRam Systems, Inc.	Job No.:	416478
Test Mode:	Calibration	Amplitude:	50 kV/m
Specification:	MIL-STD-461G	Technician:	P. Kelly
Procedure:	MIL-STD-461G		

Radiated Susceptibility, Method RS105, Transient Electromagnetic Field

RS-105 Simulator H-Field Calibration 8/14/2018 2:54:14 PM

Test Point: CAL CENTER Test Date: 08-14-2018 14:53:36 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04) Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.33E+02 Amps/m Min: 0.00E+00 Amps/m

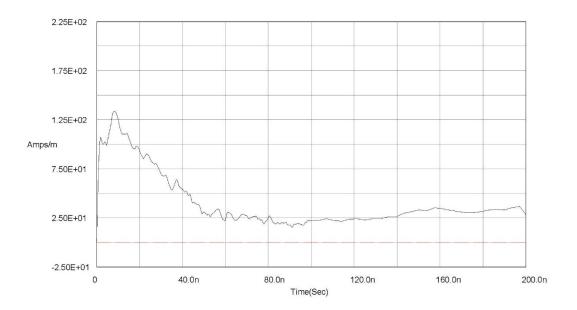
Description :

Remarks: Measured V/m = Measured A/m x 377

Test Item:	(3) Safe Locks and (2) Door Locks	Date:	8-14-18
Customer:	SecuRam Systems, Inc.	Job No.:	416478
Test Mode:	Calibration	Amplitude:	50 kV/m
Specification:	MIL-STD-461G	Technician:	P. Kelly
Procedure:	MIL-STD-461G	-	

Required A/m:	132.6	Measured lp:	133
Required V/m:	50,000	Measured Vp:	50,141

Power Supply Setting, kV: 39	kV
------------------------------	----


RS-105 Simulator H-Field Calibration 8/14/2018

3:02:31 PM

Test Point: CAL FRONT LEFT 6 Test Date: 08-14-2018 15:01:51 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04)

Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.33E+02 Amps/m Min: 0.00E+00 Amps/m

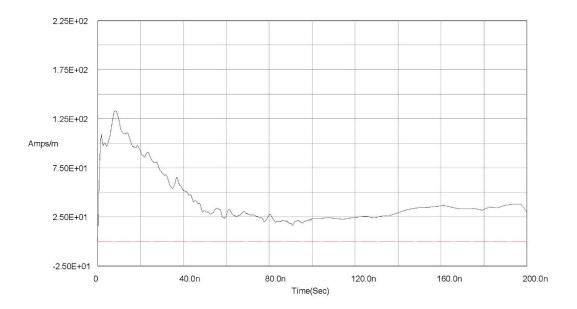
Description :

Measured V/m = Measured A/m x 377 Remarks:

Test Item:	(3) Safe Locks and (2) Door Locks	Date:	8-14-18
Customer:	SecuRam Systems, Inc.	Job No.:	416478
Test Mode:	Calibration	Amplitude:	50 kV/m
Specification:	MIL-STD-461G	Technician:	P. Kelly
Procedure:	MIL-STD-461G		

Required A/m:	132.6	Measured Ip:	133
Required V/m:	50,000	Measured Vp:	50,141

Power Supply Setting, kV: 39 kV


RS-105 Simulator H-Field Calibration 8/14/2018

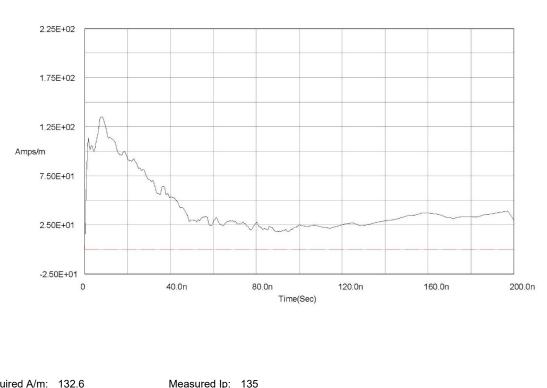
2:51:47 PM

Test Point: CAL LEFT REAR4
Test Date: 08-14-2018 14:50:59
Test Type: Time Domain Acquisition
Facility: Dayton T Brown
Sig Probe: H-FP1000A(01-23-2009)(09-04)

Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.33E+02 Amps/m Min: 0.00E+00 Amps/m

Description

Remarks: Measured V/m = Measured A/m x 377



Test Item:	(3) Safe Locks and (2) Door Locks	Date:	8-14-18
Customer:	SecuRam Systems, Inc.	Job No.:	416478
Test Mode:	Calibration	Amplitude:	50 kV/m
Specification:	MIL-STD-461G	Technician:	P. Kelly
Procedure:	MIL-STD-461G		

Description :

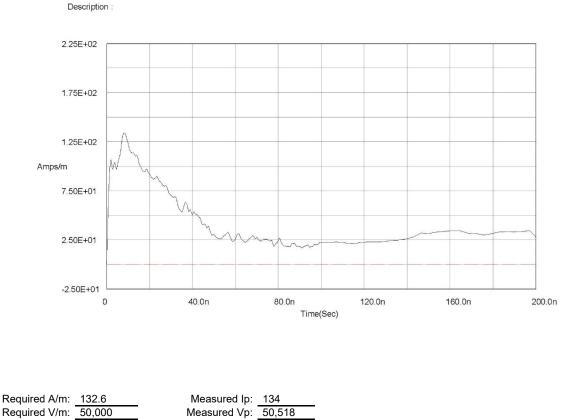
RS-105 Simulator H-Field Calibration

Test Point: CAL FRONT RIGHT-1 Test Date: 08-14-2018 14:37:20 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04) Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.35E+02 Amps/m Min: 0.00E+00 Amps/m

 Required A/m:
 132.6
 Measured Ip:
 135

 Required V/m:
 50,000
 Measured Vp:
 50,895

 Power Supply Setting, kV: 39 kV


Remarks: Measured V/m = Measured A/m x 377

Test Item:	(3) Safe Locks and (2) Door Locks	Date:	8-14-18
Customer:	SecuRam Systems, Inc.	Job No.:	416478
Test Mode:	Calibration	Amplitude:	50 kV/m
Specification:	MIL-STD-461G	Technician:	P. Kelly
Procedure:	MIL-STD-461G		

RS-105 Simulator H-Field Calibration 8/14/2018 2:43:50 PM

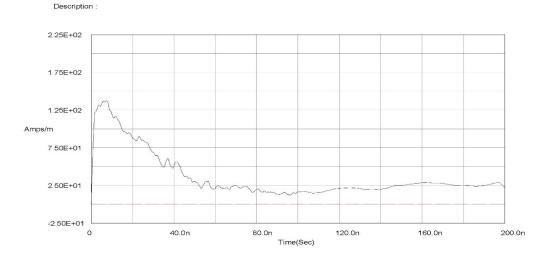
Test Point: CAL RIGHT REAR Test Date: 08-14-2018 14:43:05 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04) Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.34E+02 Amps/m Min: 0.00E+00 Amps/m

Power Supply Setting, kV: 39 kV

Remarks: Measured V/m = Measured A/m x 377

9.1.7.2 RS105, Test Data

Test Item:	Backlit / Swing Bolt	Date:	8-15-18
Customer:	SecuRam Systems, Inc.	Serial No.:	See Table 2
Test Mode:	Operational	Job No.:	416478
Specification:	MIL-STD-461G	Technician:	P. Kelly
Procedure:	MIL-STD-461G		

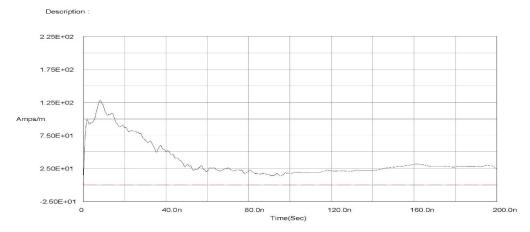

Radiated Susceptibility, Method RS105, Transient Electromagnetic Field

Met Requirement	Yes	X No

Applied Level (V/m)	Number of Pulses	Pulse Rate	Susceptibility Threshold Level (V/m)	Observation
50kV	5	1 Pulse per minute X-Axis	N/A	EUT functioned properly after application of the pulses.
50kV	5	1 Pulse per minute Y-Axis	N/A	EUT functioned properly after application of the pulses.
50kV	5	1 Pulse per minute Z-Axis	N/A	EUT functioned properly after application of the pulses.

RS-105 Simulator H-Field Calibration 8/15/2018 10:19:01 AM

Test Point: X AXIS BACKLIT SWING BOLT Test Date: 08-15-2018 10:17:55 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04)



8/15/2018 10:40:39 AM Test Point: Y AXIS BACKLIT SWING Test Date: 08-15-2018 10:39:38 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04) Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.33E+02 Amps/m Min: 0.00E+00 Amps/m Description : 2.25E+02 1.75E+02 1.25E+02 Amps/m 7.50E+01 2.50E+01 -2.50E+01 80.0n 0 40.0n 120.0n 160.0n 200.0n Time(Sec)

RS-105 Simulator H-Field Calibration

RS-105 Simulator H-Field Calibration

Test Point: Z AXIS BACKLIT SWING Test Date: 08-15-2018 10:49:39 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04) Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.28E+02 Amps/m Min: 0.00E+00 Amps/m

Test Item:	Toplit / Swing Bolt	Date:	8-15-18	
Customer:	SecuRam Systems, Inc.	Serial No.:	See Table 2	
Test Mode:	Operational	Job No.:	416478	
Specification:	MIL-STD-461G	Technician:	P. Kelly	
Procedure:	MIL-STD-461G			

Met Requirement

Yes X No

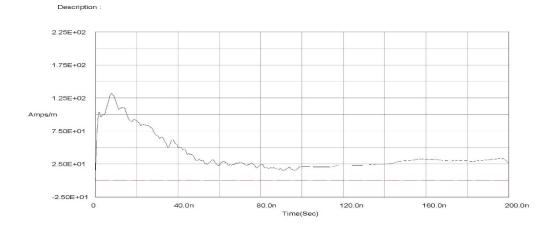
Applied Level (V/m)	Number of Pulses	Pulse Rate	Susceptibility Threshold Level (V/m)	Observation
50kV	5	1 Pulse per minute X-Axis	N/A	EUT functioned properly after application of the pulses.
50kV	5	1 Pulse per minute Y-Axis	N/A	EUT functioned properly after application of the pulses.
50kV	5	1 Pulse per minute Z-Axis	N/A	EUT functioned properly after application of the pulses.

RS-105 Simulator H-Field Calibration 8/15/2018 12:38:24 PM

Test Point: X AXIS TOPLIT SWING BOLT Test Date: 08-15-2018 12:37:10 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04)

Description :

2.25E+02 1.75E+02 1.25E+02 Amps/m 7.50E+01 2.50E+01 -2.50E+01 0 40.0n 80.0n 120.0n 160.0n 200.0n Time(Sec)



Test Point: Y AXIS TOPLIT SWING BOLT Test Date: 08-15-2018 12:50:16 Test Type: Time Domain Acquisition Faoility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04) Description : 2.25E+02 1.75E+02 1.25E+02 Amps/m 7.50E+01 2.50E+01 -2.50E+01 0 40.0n 80.0n 120.0n 160.0n 200.0n Time(Sec)

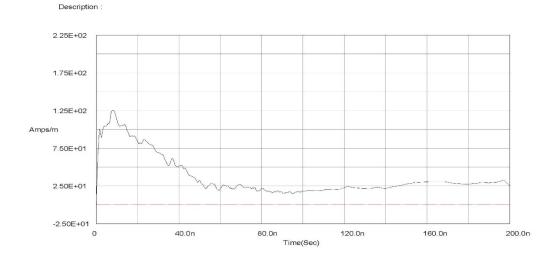
RS-105 Simulator H-Field Calibration

RS-105 Simulator H-Field Calibration 8/15/2018 12:59:22 PM

Test Point: Z AXIS TOPLIT SWING BOLT Test Date: 08-15-2018 12:57:57 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04)

Yes X No

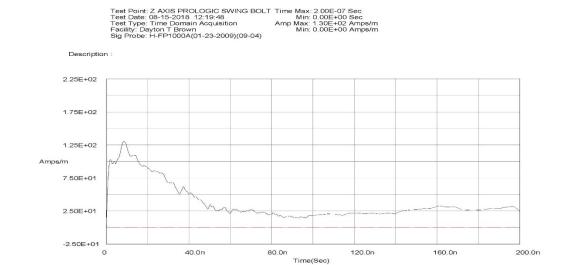
Test Item:	Prologic / Swing Bolt	Date:	8-15-18
Customer:	SecuRam Systems, Inc.	Serial No.:	See Table 2
Test Mode:	Operational	Job No.:	416478
Specification:	MIL-STD-461G	Technician:	P. Kelly
Procedure:	MIL-STD-461G		


Radiated Susceptibility, Method RS105, Transient Electromagnetic Field

Met Requirement

Applied Level (V/m)	Number of Pulses	Pulse Rate	Susceptibility Threshold Level (V/m)	Observation
50kV	5	1 Pulse per minute X-Axis	N/A	EUT functioned properly after application of the pulses.
50kV	5	1 Pulse per minute Y-Axis	N/A	EUT functioned properly after application of the pulses.
50kV	5	1 Pulse per minute Z-Axis	N/A	EUT functioned properly after application of the pulses.

RS-105 Simulator H-Field Calibration



RS-105 Simulator H-Field Calibration Test Point: Y AXIS PROLOGIC SWING BOLT Time Max: 2.00E-07 Sec Test Type: Time Dormain Acquisition Faoilty: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04) Description : 2.25E+02 1.75E+02 1.25E+02 Amps/m 7.50E+01 2.50E+01 -2.50E+01 0 40.0n 80.0n 120.0n 160.0n 200.0n Time(Sec)

RS-105 Simulator H-Field Calibration

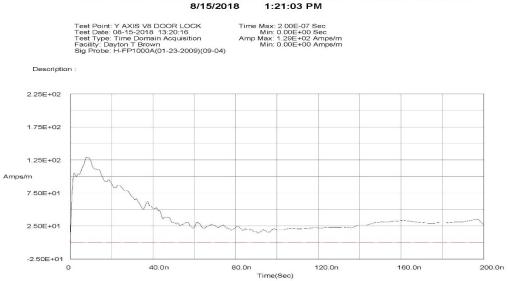
Test Item:	V8 Door Lock	Date:	8-15-18	
Customer:	SecuRam Systems, Inc.	Serial No.:	See Table 2	
Test Mode:	Operational	Job No.:	416478	
Specification:	MIL-STD-461G	Technician:	P. Kelly	
Procedure:	MIL-STD-461G			

Met Requirement Yes

Yes X No

Applied Level (V/m)	Number of Pulses	Pulse Rate	Susceptibility Threshold Level (V/m)	Observation	
50kV	5	1 Pulse per minute X-Axis	N/A	EUT functioned properly after application of the pulse	
50kV	5	1 Pulse per minute Y-Axis	N/A	EUT functioned properly after application of the pulses.	
50kV	5	1 Pulse per minute Z-Axis	N/A	EUT functioned properly after application of the pulses.	

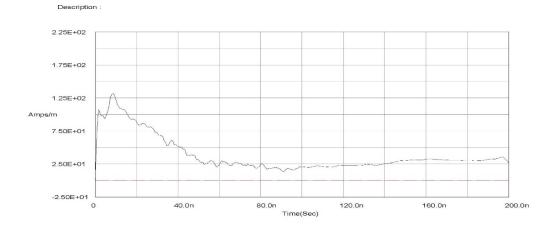
RS-105 Simulator H-Field Calibration


Test Point: X AXIS V8 DOOR LOCK Test Date: 08-15-2018 13:12:10 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04)

Description :

Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.31E+02 Amps/m Min: 0.00E+00 Amps/m

2.25E+02 1.75E+02 Amps/m 7.50E+01 -2.50E+01 0 40.0n 80.0n 120.0n 160.0n 200.0n



RS-105 Simulator H-Field Calibration

RS-105 Simulator H-Field Calibration

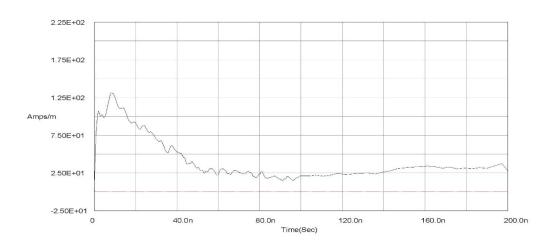
Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.32E+02 Amps/m Min: 0.00E+00 Amps/m

Yes X No

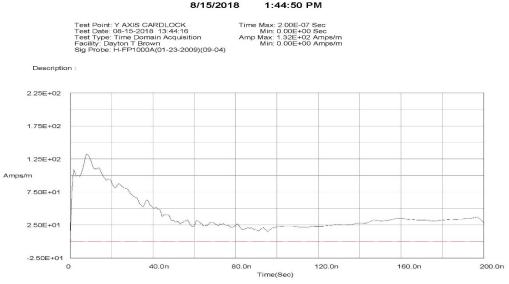
Test Item:	Card Lock	Date:	8-15-18	
Customer:	SecuRam Systems, Inc.	Serial No.:	See Table 2	
Test Mode:	Operational	Job No.:	416478	
Specification:	MIL-STD-461G	Technician:	P. Kelly	
Procedure:	MIL-STD-461G			

Radiated Susceptibility, Method RS105, Transient Electromagnetic Field

Met	Requirement
-----	-------------

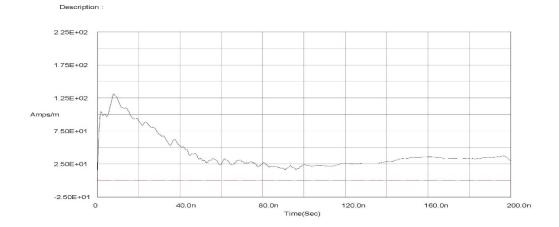

Applied Level (V/m)	Number of Pulses	Pulse Rate	Susceptibility Threshold Level (V/m)	Observation
50kV	5	1 Pulse per minute X-Axis	N/A	EUT functioned properly after application of the pulses.
50kV	5	1 Pulse per minute Y-Axis	N/A	EUT functioned properly after application of the pulses.
50kV	5	1 Pulse per minute Z-Axis	N/A	EUT functioned properly after application of the pulses.

RS-105 Simulator H-Field Calibration 8/15/2018 1:40:24 PM

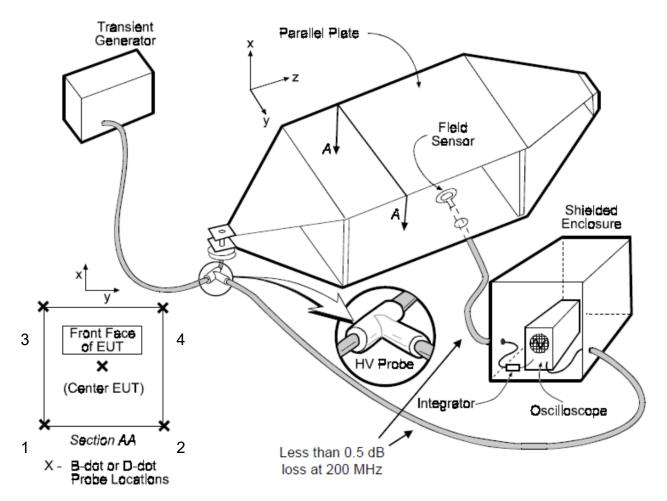

Test Point: X AXIS CARD LOCK Test Date: 08-15-2018 13:39:48 Test Type: Time Domain Acquisition Facility: Dayton T Brown Sig Probe: H-FP1000A(01-23-2009)(09-04)

Description :

Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.32E+02 Amps/m Min: 0.00E+00 Amps/m



RS-105 Simulator H-Field Calibration 8/15/2018 1:44:50 PM


RS-105 Simulator H-Field Calibration

Test Point: Z AXIS CARDLOCK
Test Date: 08-15-2018 13:49:12
Test Type: Time Domain Acquisition
Facility: Dayton T Brown
Sig Probe: H-FP1000A(01-23-2009)(09-04)

Time Max: 2.00E-07 Sec Min: 0.00E+00 Sec Amp Max: 1.31E+02 Amps/m Min: 0.00E+00 Amps/m

9.1.8 RS105, Test Setup Diagram(s)

Figure 2 - RS105, Calibration Verification Setup

TOP VIEW

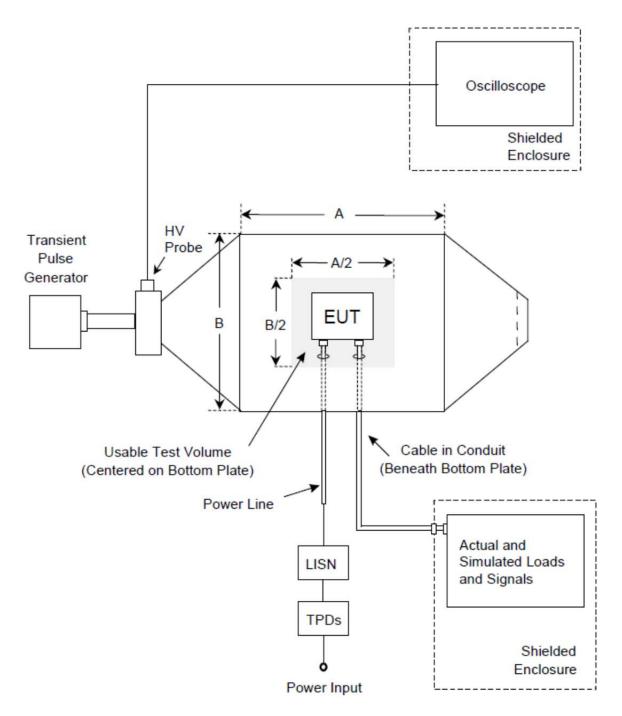


Figure 3 - RS105, Typical Test Setup

9.1.9 RS105, Test Setup Photograph(s)

Backlit / Swing Bolt

Backlit / Swing Bolt

Backlit / Swing Bolt

Prologic / Swing Bolt

Prologic / Swing Bolt

Prologic / Swing Bolt

Toplit / Swing Bolt

Toplit / Swing Bolt

Toplit / Swing Bolt

V8 Door Lock

V8 Door Lock

V8 Door Lock

Card Lock

Card Lock

Card Lock

10.0 Time Logs

	Job No:	416478		Date: _	8/14/18	
M	Test Method:	RSIOS	cals/se	P Technician:	· .	
	Time			Remarks		Init.)
	8.00	Contin			-be set	N
	1630	up for	comple	+ Run c		The second secon
	16:30	63				
			-		•	
		· · · · · · · · · · · · · · · · · · ·				
6						
•				Ω.,		
				<u>10 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - </u>		
						-
		e Const	10			
-						
			1999-1999			

Dept 01 Log Book, July 2018.xlsx

Job No:	416478	Date:	8/15/17	
Test Method:	RSIUS	Technician:	P Yell (Print out)	
Time		Remarks		Init.
800	Get sates 1	orwant	ave	N
	to DATS AUN	én		N
9.00	to DATS BUIL	1/stall_	1 locks	N
	on sates,			D
10.47	stort Backlike	swingbolt	lock X	N
-	5 hits cutore			R
	ad is ok with	guing t	o next	N.
	Ster backlit s	m-g bolt	luck 4	N.
	Stert backlit s Skrits curture Stert Backlit s	pertorns	checks	N_{i}
	Ster Backlit 5	ing but 10	<u>l</u> z	LY
	5 With Custure	peterne,	CLACK	
1Lw	una	,		\mathcal{N}
1270	Back for Ima	~		N
1275	Catore Chan	es, locks		N
12:49	Stat X axis 1 5 Hits Custon	NOW ICH IC SW	~ 601T	N
	5 Hits custo	- does ci	Locks	
	Start y axis p	NIOSIC FU	m1 0011	1/5
	F With cuto	· perono	r checks	N/
13:18	stat 2 axis p	NOOgic SW	in boir	h/
	the	mal h		1/
13.35	stert X axi	TOPIT	swng bolt	12
	5 Hits Cuito	peron	-s creers	19
	staty gki)			1-15
	s' with custo			1X
	Stert Z avis S' With CUSTO	top/it su		
14:02	Sates comple			
14.12		N lock	x axis	1
19.10	5 With custor	1 Dortur	1 CLOCKI	N
	Ctat VY D	our lock	Uaxis	Ň
	5 Hits CUTO	~ Pertur	~1 Cherry	N
			1	

Dept 01 Log Book, July 2018.xlsx

Job No:	0 c uN	Date:	P Ke M (Print out)
Time 14.24	Stat US Darl	Remarks	
19.29		provens chech	
14:39	stat cond lux	ck on x axis	N
		ch on y axis	
	(With cut	ve perturns	Crechs N
-1	Start Cod 1	ock z axis store perturn	Meet N
1500	terny w	wette	
16.45	complete dota		Ň
	Charles and Articles		

Dept 01 Log Book, July 2018.xlsx

September 10, 2018 416478-99-01-C18-0931

Certificate of Conformance for Electromagnetic Susceptibility Testing

Customer: Securam Systems, Inc. 3325 Grande Vista Drive Newbury Park, CA 91320

Purchase Order No.: 180801V01

EUT Components					
EUT	Component	Part No.	Model No.	Serial No.	
1	Backlit	EC-0601A-BL	Not applicable	1808020001039	
	Swing Bolt	EL-0601	Not applicable	1808020001035	
2	Toplit	EC-0601A-PL	Not applicable	1808020001028	
	Swing Bolt	EL-0601-E	Not applicable	1808020001034	
3	Prologic	EC-0601A-L01	Not applicable	1808020001036	
	Swing Bolt	EL-0601	Not applicable	1808020001025	
4	V8 Door Lock	SH-LNV01	Not applicable	1808020001042	
5	Card Lock	Not applicable	Not applicable	DTB-1	

Specification No(s).: MIL-STD-461G

Test Date(s): August 14, 2018 through August 15, 2018

The testing listed in this report has been performed for SecuRam Systems, Inc.

The Safe Locks and Door Locks were subjected to the following test:

Test	Test Description	Limit	Met the Spec. Requirements	
			Yes	No
RS105	Radiated Susceptibility, Transient Electromagnetic Field	Figure RS105-1, 50,000 V/m	Х	

No change in indication, malfunction, or degradation in the EUT operation was observed during or after the MIL-STD-461G, Method RS105 test.

Operation of the EUT was performed by the customer representative and visually verified by DTB technician prior to testing. After subjecting the EUT to the electromagnetic pulse of each orientation, operation of the EUT was performed by the customer representative and function of the lock mechanism to be able to open and close properly was visually verified by DTB technician.

The test results in this report relate only to the items tested. This report shall not be reproduced, except in full, without the written approval of Dayton T. Brown, Inc.

DAYTON T. BROWN, INC.

A. Alexandre

J. Alexandre Test Engineer

Reyes Cortés

R. Cortes Department Manager

INFORMATION CONTAINED HEREIN MAY BE SUBJECT TO EXPORT CONTROL LAWS. REFER TO INTERNATIONAL TRAFFIC IN ARMS REGULATION (ITAR) OR THE EXPORT ADMINISTRATION REGULATION (EAR) OF 1979. IT IS THE RESPONSIBILITY OF THE RECIPIENT TO OBTAIN ANY REQUIRED LICENSES TO EXPORT ANY CONTROLLED DATA.

CERTIFICATE OF

COMPLETION

this certificate is hereby awarded to

SECURAM SYSTEMS

in recognition of successfully completing Electromagnetic Susceptibility Test Program Performed on three Safe Locks and Two Door Locks: SafeLogic BackLit & SwingBolt, SafeLogic TopLit & SwingBolt, ProLogic L01 & SwingBolt, V8 Door Lock, Card Lock

TEST REPORT #: 416478-99-02-R18-0852

TESTING VOLTAGE: RADIATED SUSCEPTIBILITY, TRANSIENT ELECTROMAGNETIC FIELD (FIGURE RS105-1, G0,000 V/m STANDARD TESTING CODE: MIL-STD-461G

COMPLETED BY AN INDEPENDENT TESTING LAB

September 6, 2018

Date