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High-power all-solid-state batteries using sulfide
superionic conductors
Yuki Kato1,2,3*†, Satoshi Hori2†, Toshiya Saito1, Kota Suzuki2, Masaaki Hirayama2, Akio Mitsui4,
Masao Yonemura5, Hideki Iba1 and Ryoji Kanno2*

Compared with lithium-ion batteries with liquid electrolytes, all-solid-state batteries o�er an attractive option owing to
their potential in improving the safety and achieving both high power and high energy densities. Despite extensive research
e�orts, the development of all-solid-state batteries still falls short of expectation largely because of the lack of suitable
candidate materials for the electrolyte required for practical applications. Here we report lithium superionic conductors with
an exceptionally high conductivity (25mS cm−1 for Li9.54Si1.74P1.44S11.7Cl0.3), as well as high stability (∼0V versus Li metal for
Li9.6P3S12). A fabricated all-solid-state cell based on this lithium conductor is found to have very small internal resistance,
especially at 100 ◦C. The cell possesses high specific power that is superior to that of conventional cells with liquid electrolytes.
Stable cycling with a high current density of 18 C (charging/discharging in just three minutes; where C is the C-rate) is
also demonstrated.

So far, batteries and capacitors have generally been powered
by liquid electrolytes1,2. However, owing to some intrinsic
characteristics of liquid electrolytes (for example, low

lithium transport number, complex reaction at the solid/liquid
interface, and thermal instability), it has not been possible to
simultaneously achieve high energy and power in any of the current
electrochemical devices2–5. Therefore, the all-solid-state battery
has been proposed and researched as a potential candidate among
various electrochemical energy storage devices for achieving both
high energy and high power densities6. Moreover, the solidification
of the electrolyte provides an additional advantage for use in
battery applications. In the case of the all-solid-battery system, the
non-liquid nature of the electrolyte allows stacking of the battery
cells in a single package without ionic short circuit. Such a battery
configuration decreases the dead space between single cells, as
shown in Supplementary Fig. 1 (see also Supplementary Video). In
addition, this structure is suitable for applications requiring a high
voltage and limited space, such as vehicle power sources. However,
despite the expected advantages of all-solid-state batteries, their
power characteristics and energy densities must be improved
to allow their application in technologies such as long-range
electric vehicles.

All-solid-state batteries contain a cathode, anode and electrolyte,
and the properties of the batteries depend mostly on the
characteristics of the electrolyte. The low rate capabilities and
low energy densities of the all-solid-state batteries are partly
due to a lack of suitable electrolyte materials that exhibit high
ionic conductivity comparable to liquid electrolytes. Recently,
Li7P3S11 (ref. 7) and LGPS (Li10GeP2S12; ref. 8), which are ionic
conductingmaterials, were discovered. Thesematerials have a body-
centred cubic anion sub-lattice structure9 and exhibit higher ionic
conductivity than liquid electrolytes. However, the former has issues

with chemical stability10, and the latter contains the expensive
element germanium. Thus, at present, no candidate material exists
for an actual battery device. In addition, the potential advantages
of all-solid-state batteries have not yet been realized with cells
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Figure 1 | X-ray di�raction patterns of the LGPS family. Synchrotron X-ray
di�raction patterns of Li9.6P3S12 (upper), Li9.54Si1.74P1.44S11.7Cl0.3 (middle),
and Li10GeP2S12 (lower). All of the patterns were indexed to the same
space group, P42/nmc (137).
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Figure 2 | Ionic conductivity and crystal structure of Li9.54Si1.74P1.44S11.7Cl0.3. a, Arrhenius conductivity plots for the LGPS family and Li9.6P3S12 and
Li9.54Si1.74P1.44S11.7Cl0.3, which were used as electrolytes in this study. b, Crystal structure of Li9.54Si1.74P1.44S11.7Cl0.3. The thermal ellipsoids are drawn with
a 50% probability. The framework structure consists of 1D polyhedral chains (edge-sharing M(4d)X4 and Li(4d)X6) connected by P(2b)X4 tetrahedra.
Conducting lithium is located on the interstitial site of Li(16h), Li(8f) and Li(4c). c, Nuclear distributions of Li atoms in Li9.54Si1.74P1.44S11.7Cl0.3 at 25 ◦C,
calculated using the maximum entropy method at the iso-surface level of−0.06 fm Å−3.

using electrolytes available at present. Therefore, it is expected
that electrolytes exhibiting high ionic conductivity and good
electrochemical stability will provide a suitable electrochemical
interface when combined with suitable electrodes, and allow high
current capability with high charge and discharge reversibility.

In the present study, we discovered that lithium superionic
conductors, Li9.54Si1.74P1.44S11.7Cl0.3 and Li9.6P3S12, showed the highest
ionic conductivity reported for lithium conductivity, and high
electrochemical stability versus lithium metal. These materials
enabled the development of all-solid-state cells with extremely
desirable electrochemical characteristics and demonstrated the
advantages expected from all-solid-state devices.

Characteristics of superionic conductors
Both Li9.54Si1.74P1.44S11.7Cl0.3 andLi9.6P3S12 were confirmed to have the
LGPS-type crystal structure8 by X-ray diffraction patterns (Fig. 1)
and the neutron Rietveld refinement technique (Supplementary
Figs 2 and 3). The structural parameters are listed in Supplementary
Tables 1 and 2. Their ionic conductivity is summarized in
Fig. 2a, along with the values reported for previous LGPS
electrolytes. These conductivity data are also summarized in
Supplementary Table 3. The highest conductivity value obtained
at room temperature for the chlorine-doped silicon-based system
(25mS cm−1, Li9.54Si1.74P1.44S11.7Cl0.3) was twice that of the original
LGPS (ref. 8) and is the highest value reported so far for lithium
superionic conductors. The anisotropic thermal displacement of
lithium (Fig. 2b) and nuclear density distribution (Fig. 2c) indicate
the three-dimensional (3D) conduction pathways (1D along the
c axis + 2D in the ab plane) in Li9.54Si1.74P1.44S11.7Cl0.3. The
1D pathway is a unique characteristic in the LGPS family8,11,12.
However, the 2D conduction mode has not yet been experimentally
observed at room temperature (only reported at 750K (ref. 11)),
despite its expected contribution towards increasing the ionic

conductivity11,12. Therefore, this is the first example of widely
distributed 3D conduction pathways in the LGPS-type structure
at 25 ◦C, which leads to the highest ionic conductivity. Such
lithium distribution might be induced by the small amount of
chlorine mainly located in the unique Cl(1)(8g ) sites, present in the
P(2b)X4 tetrahedra.

We also report the material Li9.6P3S12, which has an LGPS
structure and exhibits high electrochemical stability. Figure 3
shows the electrochemical stability of this material towards lithium
metal, which was examined using charge and discharge data
obtained from the Li/solid electrolyte/LiCoO2 cells13. The initial
efficiency of the charge/discharge cycle is an indication of the
stability of the electrolyte, as lithium reacts with the electrolyte at
the electrode/electrolyte interface during the first charge cycle13.
Li9.6P3S12 exhibited an excellent efficiency of 90%, as calculated from
the discharge/charge capacity ratio and efficiency was improved
during cycling (see Supplementary Fig. 4). This indicates that almost
all of the lithium from the cathode was deposited as metallic lithium
during charging. In contrast, the original LGPS showed a lower
efficiency of 61%, indicating that a significant quantity of lithium
was consumed during the reaction, generating an interfacial layer at
the LGPS/lithium anode interface.

These superionic conductors were developed on the basis of
synthesis strategies that are different from those used previously for
the LGPS-type materials (for example, Si and Sn systems), which
were based on the simple substitution of constituent elements14–16.
To improve conductivity and electrochemical stability, our strategy
is based on double substitution with aliovalent-ion doping, similar
to that used for the Si–Cl system, as well as a complete material
search on the simple ternary Li–P–S system. These materials were
developed and purified using both compositional and reaction
process optimization, and may indicate a new direction for the
discovery of new materials for superionic conductors.
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Figure 3 | Electrochemical stability of the LGPS family. Electrochemical
stabilities of the electrolytes with the LGPS-type structure, characterized by
the LiCoO2/solid electrolyte/Li cell. Coulombic e�ciency, η, was calculated
as η = (discharge capacity)/(charge capacity)× 100. η for the Li9.6P3S12,
Li10GeP2S12 and Li9.54Si1.74P1.44S11.7Cl0.3 cells was 90%, 61% and 39%,
respectively. The consumed capacity during the first charge–discharge
process indicates the occurrence of side reactions leading to the generation
of the surface layer.

Fabrication and performance of all-solid-state cells
Using these developed superionic conductors, we constructed two
types of cell, namely high-voltage and large-current-type cells. A
schematic drawing of the all-solid-state cell constructed herein is
shown in Supplementary Fig. 5. The high-voltage cell required
a wide operating potential to improve the capacity. The graphite
anode, which has a potential of 0–0.5V versus Li, resulted in a
higher cell voltage. Lithium titanium oxide, Li4Ti5O12, was used as
the anode in the large-current-type cells. The selection of a suitable
electrolyte in the electrode composite is key to improving the overall
cell characteristics, and the best combinations of cathode composite,
anode composite, and separator are summarized in Supplementary
Table 4 along with the internal resistances (Supplementary Fig. 6)
and specific energies of the corresponding cells. The high-voltage-
type cell required an electrolyte with a wide operating potential, and
therefore, Li9.6P3S12, which has a high stability of∼0V versus Li, was
used as the anode composite. In contrast, the large-current system
required an electrolyte with high ionic conductivity, and therefore,
Li9.54Si1.74P1.44S11.7Cl0.3, which has the best ionic conductivity of those
tested, was employed.

Charge and discharge experiments were carried out at various
current rates for both types of cell, that is, for a cell with the
original LGPS system, and for the lithium-ion cell prepared herein
(Supplementary Fig. 7). The charge and discharge rates of a battery
are scaled by the C-rate, at which a battery is (dis)charged relative
to its maximum capacity. The C-rate is determined as follows: rate
nC means that the current will (dis)charge the full capacity in
1/n hour. The all-solid-state cells exhibited superior performance
compared with the lithium-ion cells between −30 and 100 ◦C. In
addition, the performance of the all-solid-state cells was further
improved on using the present solid electrolytes. The all-solid-state
cells exhibited excellent rate capabilities, with discharge current

densities of 150C at 25 ◦C and 1,500C at 100 ◦C, as shown in
Fig. 4a. The all-solid-state cells exhibited excellent cyclability over
30 cycles under a current density of 0.1 C at 25 ◦C (Fig. 4b). The
absence of elemental diffusion and little increase in the interfacial
resistance after cyclingwere indicators of the good chemical stability
of Li9.54Si1.74P1.44S11.7Cl0.3 (Supplementary Fig. 8). At 100 ◦C, the all-
solid-state system also showed excellent cycling performance, with
a high charge–discharge current density of 18C (charge/discharge
times of 3min, see Fig. 4c,d). Conventional lithium-ion cells cannot
operate at this temperature, owing to the thermal instability of the
liquid electrolytes. The shape change in the charge–discharge curve
during the cycling test is attributed to the decreased crystallinity of
LiCoO2 (refs 17,18), owing to the extreme cycling conditions. We
determined that the all-solid-state cells exhibited excellent cycling
performance, with ∼75% of the first discharge capacity remaining
after over 500 cycles, and a Coulombic efficiency of 100% as shown
in Fig. 4e,f.

Advantage of all-solid-state configuration
Furthermore, the advantage of the all-solid-state configuration is
directly evident on comparing its performance with that of a
lithium-ion cell employing a liquid electrolyte. The lithium-ion
cell was carefully fabricated to have the same configuration as the
all-solid-state cells (Supplementary Fig. 9), to observe the effect
of the state of the electrolyte (liquid or solid). Supplementary
Fig. 7g shows the high rate characteristics of the lithium-ion cell
prepared herein at 25 ◦C. The capacity of the lithium-ion cell
decreased rapidly at a current density of 40mA cm−2 (60 C), despite
having nearly the same resistance as the all-solid-state cell (see
Supplementary Fig. 10 and Supplementary Table 5) at 25 ◦C. At this
current, the capacity of the all-solid-state cell was 75–85.4mAh g−1,
which is ∼3 times higher than that of the lithium-ion cell. The
chronoamperometric study (Fig. 5) clearly indicates that a diffusion
limitation phenomenon occurred in the lithium-ion cell at 25 ◦C as
shown by the straight line passing through the origin in the Cottrell
plot19 (Fig. 5a) and the voltage-independent transient current20
(Fig. 5b). At high currents, a concentration gradient is produced
in the lithium-ion cell, owing to the low diffusion rates of both the
anions and cations of the electrolyte salts in the solution. In contrast,
the all-solid-state cell does not show such diffusion limitation
behaviour. There are two possible reasons that may explain this
observation: the lithium-ion concentration of ∼35mol dm−3 in
the LGPS-type material is much higher than the 1–2mol dm−3
lithium-ion concentration used in a typical liquid electrolyte; and
the ionic transport number (t ∼ 1.0) of the solid electrolyte is
higher than that of the liquid electrolyte (t < about 0.5; ref. 21),
which causes continuous and high lithium-ion diffusion even at
high current drain. Interestingly, the all-solid-state cell exhibited
superior properties at −30 ◦C, as shown in Supplementary Fig. 7h.
The impedance analysis shown in Supplementary Fig. 11 indicates a
large interfacial resistance in the lithium-ion cell at low temperatures
caused by the de-solvation step at the liquid/solid interface22,23.
In contrast, such a reaction did not take place at the solid/solid
interface, which caused low charge transfer resistance. These results
indicate the advantage of fast electrochemical reactions in the all-
solid-state configuration.

An examination of Ragone plots showing the energy density
versus rate property relationships provides a good indication of
the performance of energy storage devices. Figure 6 shows the
Ragone plots for the various electrochemical devices examined
herein. Specific energy and power are plotted on the basis of the
mass of the cathode active material and it allows us to evaluate the
capability of the active materials in each electrochemical system.
In general, the specific power is inversely related to the specific
energy in electrochemical systems as shown in Fig. 6. However, the
specific power of LiNbO3-coated LiCoO2 in the all-solid-state cells
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Figure 4 | Performance of the all-solid-state cells. a, Extraction of discharge curves for the prepared all-solid-state energy devices. The rate nC
corresponds to the full charge and discharge of the theoretical capacity of 0.667 mAh in 1/n h. b, Charge–discharge profiles for all-solid-state cells at a rate
of 0.1 C at 25 ◦C. c,d, Cycling characteristics of the charge–discharge curves for the all-solid-state cell of the normal-type cell and the large-current-type
cell, respectively at 100 ◦C (current density = 18 C). e,f, Cycling characteristics for charge–discharge capacity and e�ciency for the all-solid-state cell of the
normal-type cell and the large-current-type cell, respectively. The current density of 18 C corresponds to the charging and discharging time of∼3 min
(∼80% theoretical capacity). Circle, e�ciency; triangle, charging capacitance; square, discharging capacitance. The specific capacity was calculated on the
basis of the weight of LiNbO3-coated LiCoO2.

was much higher than that of the lithium-ion cell, and was even
higher than those of materials used for supercapacitors. As a result,
the capacity versus rate curves of the present all-solid-state cells are
situated in the upper right area (E > 100Whkg−1, P > 10 kWkg−1),
which has not been achieved for either conventional systems
(lithium-ion batteries and supercapacitors) or advanced batteries
(Li–O2, Li–S, and multivalent cation systems)24–34.

In addition, the possibility of further improving the energy of
the all-solid-state cell is shown in Supplementary Fig. 12. The all-
solid-state cells exhibit good rate capability even in the high energy
density configuration (high active material content or ultrathick
electrode configuration; see Supplementary Table 6), indicating the
large capability of all-solid-state cells for actual device application.

Conclusions
The all-solid-state cells were fabricated on the basis of the new
solid electrolytes, Li9.54Si1.74P1.44S11.7Cl0.3 and Li9.6P3S12, which exhibit

excellent ionic conductivity and electrochemical stability. These
provided high power density, and ultrafast charging. The cell
also exhibited improved stability and longer life compared with
cells with liquid electrolyte systems under extreme cell operation
conditions. These results clearly originate from the intrinsic
nature of the new solid electrolytes, indicating the advantages
of the all-solid-state devices over conventional electrochemical
devices. In addition, possibilities exist for increasing the capability
of the solid-state configuration system by using high-energy
cathodic and anodic materials (for example, Li–S system), applying
interfacial control techniques13,35, and effectively utilizing the
nano size effects of solids1,3,36. Although several technological
issues still need to be addressed, including the development of a
processing technology using sheeting and multiple stacking, the
all-solid-state batteries can be considered a future category of
electrochemical devices. These are, thus, promising candidates for
energy storage devices.
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Methods
Synthesis. The starting materials used for the synthesis of the Li9.6P3S12 solid
electrolyte were Li2S (>99.9% purity, Idemitsu Kosan), P2S5 (>99% purity, Sigma
Aldrich), and phosphorus (>99% purity, Kojundo Chemical Laboratory). All of
the procedures were conducted under an argon atmosphere inside a glove box.
All of the reagents were weighed in the appropriate molar ratio and mixed by
planetary ball milling for 120 h. The specimens were then pressed into pellets,
sealed in a quartz tube at 10 Pa, and heated between 230 ◦C and 260 ◦C for 4 h in
a furnace. After heating, the tube was slowly cooled to room temperature. The
solid electrolyte, Li10GeP2S12, was prepared by sintering Li2S (>99.9% purity,
Nippon Chemical Industrial), P2S5 (>99% purity, Sigma Aldrich) and GeS2
(>99.99% purity, Kojundo Chemical Laboratory) in appropriate molar ratios8. In
the case of the solid electrolyte Li9.54Si1.74P1.44S11.7Cl0.3, Li2S (>99.9% purity,
Nippon Chemical Industrial), P2S5 (>99% purity, Sigma Aldrich), SiS2 (>98%
purity, Alfa Aesar) and LiCl (>99.9% purity, Kojundo Chemicals) were mixed in
an appropriate molar ratio. The mixture was then placed in a ZrO2 pot containing
a ZrO2 ball (φ10mm), and the mixture was mechanically milled using the
planetary ball milling apparatus at 370 r.p.m. for 40 h. Following the ball milling
procedure, the mixture was placed in a quartz tube and heated at 475 ◦C for 8 h.

Ionic conductivity measurements. Ionic conductivity values were measured by
the a.c. impedance method under an argon atmosphere with an applied
frequency of 0.1Hz to 3MHz, using a Solartron 1260 frequency response
analyser. The sample was pressed into a pellet (diameter 5.5–12mm; thickness
1–2mm) and heated in a vacuum at the required temperature for each
composition (240 ◦C ≤ T ≤ 550 ◦C). Both sides of the pellet were then coated
with Au to act as current collectors.

Crystal structure analysis. XRD data were obtained using a high-flux
synchrotronic X-ray source at the BL02B2 beamline at SPring-8. The specimen
was sealed in a quartz capillary (about 0.3mm diameter) in a vacuum for the
XRD measurements. The neutron diffraction data were obtained using
time-of-flight diffractometers: iMATERIA at the Material and Life Science
Experimental Facility of the Japan Proton Accelerator Research Complex. In these
studies, samples were sealed in a 6-mm-diameter vanadium cell under Ar using
an indium ring. Structural parameters were refined using the Z-Rietveld
refinement programs37 and profile parameters were refined using a pseudo-Voigt
profile function. Nuclear density distributions were calculated by employing the
maximum entropy method (MEM), using crystal structure factors and standard
deviations obtained by Rietveld refinement. All of the MEM calculations were
performed using the Z-MEM algorithm in the Z-Code software package38, which
employs the conventional Sakata–Sato algorithm with zeroth-order single-pixel
approximation39. The Z-three-dimensional algorithm was used to generate
nuclear density maps of structures40.

Preparation of the all-solid-state cell. All of the preparation processes were
conducted under an argon atmosphere inside a glove box. The cathode of the
all-solid-state cell consisted of LiNbO3-coated LiCoO2 powder, a solid electrolyte
powder, and acetylene black powder (Denki Kagaku Kogyo). Before preparing the
cell, large electrolyte particles were removed using a sieve (10 µm mesh). The
LiNbO3 layer was coated onto commercial LiCoO2 powder (Toda Kogyo) using a
fluidized bed granulator (MP-01, Powrex)41. The LiNbO3-coated LiCoO2, solid
electrolyte (Li10GeP2S12 or Li9.54Si1.74P1.44S11.7Cl0.3), and acetylene black powders
were mixed in a 60:34:6 (wt%) ratio for 5min using a vortex mixer. The anode
consisted of Li4Ti5O12 (Ishihara Sangyo), a solid electrolyte, and acetylene black
powder mixed in a mortar in a 30:60:10 (wt%) ratio. The graphite anode was
prepared by mixing graphite powder (Mitsubishi Chemical) and Li9.6P3S12 in a
40:60 (wt%) ratio. The solid electrolyte powders were used as the separator
during the preparation process, and the cathode/separator/anode layers were
compressed to form a disc-shaped pellet. The all-solid-state cells were prepared
by connecting the cathode and anode to stainless-steel current collectors. The
diameter of the all-solid-state cell was 11.28mm (1 cm2). The thicknesses of the
cathode, electrolyte, Li4Ti5O12 anode, and graphite anode layers were 28, 240, 103
and 29 µm, respectively.

Preparation of the lithium-ion cell. All of the preparation processes were
conducted under an argon atmosphere inside a glove box. The lithium-ion cell
was carefully prepared using the same electrode materials, volume ratios, and
sizes described for the all-solid-state cells. The cathode consisted of
LiNbO3-coated LiCoO2 and acetylene black powder mixed in a 90:10 (wt%) ratio,
whereas the anode consisted of Li4Ti5O12 and acetylene black powder mixed in a
75:25 (wt%) ratio. The electrode powder was mixed with polyvinylidene
difluoride (PVDF, Kureha) as a binder, and N -methyl-2-pyrrolidone (Nacalai
Tesque) as the solvent to yield an electrode slurry. The slurries were then cast
onto an aluminium sheet, and the solvent was removed by drying at 80 ◦C under
vacuum. The electrode layers were pressed and then punched into a disc shape
with a diameter of 11.28mm. After the cathode layer was placed onto the anode

layer (with polypropylene/polyethylene/polypropylene separator, 47% porosity,
Ube Industries), 0.5ml of the liquid organic electrolyte (1 M LiPF6-ethylene
carbonate (EC)/diethyl carbonate (DEC) (50:50, v/v) (Kishida Chemical)) was
dropped onto the cell, and the resulting coin-type cell was sealed. The thicknesses
of the cathode, separator and anode layers were 27, 25 and 103 µm, respectively.

Charge and discharge measurements. Charge and discharge experiments of the
lithium-ion cell and the all-solid-state cells with Li4Ti5O12 anodes were conducted
between 1.0 and 2.6V at −30–100 ◦ C. The dependence of the discharge profiles
on the rate was measured after the cells were charged at 2.6 V in the constant
current charging mode (0.03mA cm−2 (0.045C) to 2.6V) and constant voltage
charging mode (the cell voltage held constant until the charging current reached
0.001mA cm−2 (0.015C)). After charging at 2.6 V, the cells were discharged at a
constant current from 0.03 to 1,000mA cm−2(0.045–1,500C). The cycling
characteristics at 25 ◦C and at 100 ◦C were examined at a current density of
0.067mA cm−2 (0.1 C) and 12mA cm−2 (18 C), respectively. The electrochemical
properties of the cells were determined using a charge–discharge unit
(TOSCAT-3100, Toyo System) and a potentio-galvanostat (Solartron 1260). For
the all-solid-state cells containing a graphite anode, charge–discharge
measurements were conducted according to the conditions for the Li4Ti5O12

anode, with the exception of the operation voltage, which was varied between
2.5V and 4.1V. The specific capacities of the charge–discharge curves were
calculated on the basis of the mass of LiNbO3-coated LiCoO2. The specific
energy E and specific power P for the galvanostatic Ragone plots were calculated
using the following equations:

E=
1
m

∫ T

0
i ∗ Vdt (1)

P=
E
T

(2)

where i, V and T are the static current, cell voltage, and discharge time for
reaching the cutoff voltages, respectively, and m is the mass of the LiCoO2

cathode material. In the present study, m was 4.867mg for all of the
electrochemical systems. The other lines in the Ragone plot were prepared on the
basis of the mass of the active material of the cathode (working electrode)
reported in the literature.

Chronoamperometry measurements. Chronoamperometric measurements were
performed as a function of the voltage step. The cells were maintained at 2.6V
for 3 h before the application of the voltage step. The cell voltage was then
stepped down to the appropriate voltage between 2.5 and 0.1V for discharge. All
of the procedures were conducted in an Ar atmosphere.
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