## DATA SHEET

## BLW96 <br> HF/VHF power transistor

## DESCRIPTION

N-P-N silicon planar epitaxial transistor intended for use in class-A, $A B$ and $B$ operated high power industrial and military transmitting equipment in the h.f. and v.h.f. band. The transistor presents excellent performance as a linear amplifier in s.s.b. applications. It is resistance stabilized and is guaranteed to withstand severe load mismatch
conditions. Transistors are supplied in matched $h_{\text {FE }}$ groups.

The transistor has a $1 / 2$ " flange envelope with a ceramic cap. All leads are isolated from the flange.

QUICK REFERENCE DATA
R.F. performance up to $T_{h}=25^{\circ} \mathrm{C}$

| MODE OF OPERATION | $\begin{gathered} \mathrm{V}_{\mathrm{CE}} \\ \mathrm{~V} \end{gathered}$ | $\begin{gathered} \mathbf{f} \\ \mathbf{M H z} \end{gathered}$ | $\begin{aligned} & P_{L} \\ & \mathbf{W} \end{aligned}$ | $\begin{aligned} & \mathrm{G}_{\mathrm{p}} \\ & \mathrm{~dB} \end{aligned}$ | $\begin{gathered} \eta \\ \% \end{gathered}$ | $\begin{gathered} d_{3} \\ d B \end{gathered}$ | $\begin{gathered} d_{5} \\ d B \end{gathered}$ | $\begin{gathered} \mathbf{I}_{\mathbf{C ( Z S})} \\ \left(\mathrm{I}_{\mathbf{C}}\right) \\ \mathbf{A} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s.s.b. (class-AB) | 50 | 1,6-28 | 25-200 (P.E.P.) | > 13,5 | $>\quad 40^{(1)}$ | $<\quad-30$ | < -30 | 0,1 |
| c.w. (class-B) | 50 | 108 | 200 | typ. 6,5 | typ. 67 | - | - | (6) |
| s.s.b. (class-A) | 40 | 28 | 50 (P.E.P.) | typ. 19 | - | typ. -40 | $<\quad-40$ | (4) |

## Note

1. $\eta_{\mathrm{dt}}$ at 200 W P.E.P.

## PIN CONFIGURATION



Fig. 1 Simplified outline. SOT121B.

PINNING - SOT121B.

| PIN | DESCRIPTION |
| :---: | :--- |
| 1 | collector |
| 2 | emitter |
| 3 | base |
| 4 | emitter |

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage ( $\mathrm{V}_{\mathrm{BE}}=0$ )
peak value
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)
Collector current (average)
Collector current (peak value); $\mathfrak{f}>1 \mathrm{MHz}$
R.F. power dissipation ( $\mathrm{f}>1 \mathrm{MHz}$ ); $\mathrm{T}_{\mathrm{mb}}=45^{\circ} \mathrm{C}$

Storage temperature
Operating junction temperature


Fig. 2 D.C. SOAR.

|  |  |  |  |
| :--- | :--- | ---: | :--- |
| $V_{\text {CESM }}$ | max. | 110 | V |
| $\mathrm{~V}_{\text {CEO }}$ | max. | 55 V |  |
| $\mathrm{~V}_{\text {EBO }}$ | max. | 4 | V |
| $\mathrm{I}_{\mathrm{C}(A V)}$ | max. | 12 | A |
| $\mathrm{I}_{\mathrm{CM}}$ | max. | 40 | A |
| $\mathrm{P}_{\text {rf }}$ | max. | 340 | W |
| $\mathrm{~T}_{\text {stg }}$ | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}_{\mathrm{j}}$ | max. | 200 | ${ }^{\circ} \mathrm{C}$ |



## THERMAL RESISTANCE

(dissipation $=150 \mathrm{~W} ; \mathrm{T}_{\mathrm{mb}}=100^{\circ} \mathrm{C}$, i.e. $\mathrm{T}_{\mathrm{h}}=70^{\circ} \mathrm{C}$ )
From junction to mounting base (d.c. dissipation)
From junction to mounting base (r.f. dissipation)
From mounting base to heatsink

| $\mathrm{R}_{\text {th }} \mathrm{j}$-mb(dc) | = | 0,63 | K/W |
| :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {th j-mb(ff) }}$ |  | 0,45 | K/W |
| $\mathrm{R}_{\text {th mb-h }}$ | = | 0,2 |  |

## CHARACTERISTICS

## $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Collector-emitter breakdown voltage

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{BE}}=0 ; \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} \\
& \text { Collector-emitter breakdown voltage }
\end{aligned}
$$ open base; $\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$

Emitter-base breakdown voltage open collector; $\mathrm{I}_{\mathrm{E}}=20 \mathrm{~mA}$
Collector cut-off current

$$
\mathrm{V}_{\mathrm{BE}}=0 ; \mathrm{V}_{\mathrm{CE}}=55 \mathrm{~V}
$$

Second breakdown energy; $L=25 \mathrm{mH} ; \mathrm{f}=50 \mathrm{~Hz}$
open base
$R_{B E}=10 \Omega$
D.C. current gain ${ }^{(1)}$
$\mathrm{I}_{\mathrm{C}}=7 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
D.C. current gain ratio of matched devices ${ }^{(1)}$

$$
\mathrm{I}_{\mathrm{C}}=7 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

Collector-emitter saturation voltage ${ }^{(1)}$

$$
\mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} ; \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A}
$$

Transition frequency at $\mathrm{f}=100 \mathrm{MHz}^{(2)}$

$$
\begin{aligned}
& -\mathrm{I}_{\mathrm{E}}=7 \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=45 \mathrm{~V} \\
& -\mathrm{I}_{\mathrm{E}}=20 \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=45 \mathrm{~V}
\end{aligned}
$$

Collector capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{e}}=0 ; \mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}
$$

Feedback capacitance at $\mathrm{f}=1 \mathrm{MHz}$

$$
\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}
$$

Collecting-flange capacitance

| $\mathrm{V}_{\text {(BR) }}$ CES | > | 110 | V |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {(BR)CEO }}$ | > | 55 | V |
| $\mathrm{V}_{(\mathrm{BR})}$ EBO | > | 4 | V |
| $I_{\text {ces }}$ | < | 10 | mA |
| $\mathrm{E}_{\text {SBO }}$ | > | 20 | mJ |
| $\mathrm{E}_{\text {SBR }}$ | > | 20 | mJ |
| $\mathrm{h}_{\text {FE }}$ | typ. 15 to | $\begin{aligned} & 30 \\ & 50 \end{aligned}$ |  |


| $\mathrm{h}_{\text {FE1 }} / \mathrm{h}_{\text {FE2 }}$ | $\leq$ | 1,2 |
| :--- | :--- | :--- |
| $\mathrm{~V}_{\text {CEsat }}$ | typ. | $1,9 \mathrm{~V}$ |
|  |  |  |
| $\mathrm{f}_{\mathrm{T}}$ | typ. | 235 MHz |
| $\mathrm{f}_{\mathrm{T}}$ | typ. | 245 MHz |

## Notes

1. Measured under pulse conditions: $\mathrm{t}_{\mathrm{p}} \leq 300 \mu \mathrm{~s} ; \delta \leq 0,02$.
2. Measured under pulse conditions: $\mathrm{t}_{\mathrm{p}} \leq 50 \mu \mathrm{~s} ; \delta \leq 0,01$.


Fig. 4 Typical values; $\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}$.



## APPLICATION INFORMATION

R.F. performance in s.s.b. class-AB operation (linear power amplifier)
$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{1}=28,000 \mathrm{MHz} ; \mathrm{f}_{2}=28,001 \mathrm{MHz}$

| OUTPUT POWER W | $G_{p}$ dB | $\begin{gathered} \eta_{\mathrm{dt}}(\%) \quad \mathrm{I}_{\mathrm{C}}(\mathrm{~A}) \\ \text { at } 200 \mathrm{~W} \text { (P.E.P.) } \end{gathered}$ | $\begin{gathered} \mathbf{d}_{3}{ }^{(1)} \\ \mathbf{d B} \end{gathered}$ | $\begin{gathered} d_{5}{ }^{(1)} \\ d B \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{C}(\mathrm{ZS})} \\ \quad \mathrm{A} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25 to 200 (P.E.P.) | > 13,5 | >40 < 5,0 | $<-30$ | <-30 | 0,1 |



Fig. 8 Test circuit; s.s.b. class-AB.

## List of components:

$\mathrm{C} 1=\mathrm{C} 4=\mathrm{C} 10=\mathrm{C} 14=100 \mathrm{pF}$ film dielectric trimmer
$\mathrm{C} 2=27 \mathrm{pF}$ ceramic capacitor ( 500 V )
$\mathrm{C} 3=270 \mathrm{pF}$ polysterene capacitor ( 630 V )
$\mathrm{C} 5=\mathrm{C} 7=\mathrm{C} 8=220 \mathrm{nF}$ multilayer ceramic chip capacitor
$\mathrm{C} 6=27 \mathrm{pF}$ multilayer ceramic chip capacitor ( 500 V ; ATC ${ }^{(2)}$ )
$\mathrm{C} 9=47 \mu \mathrm{~F} / 63 \mathrm{~V}$ electrolytic capacitor
C11 $=2 \times 36 \mathrm{pF}$ multilayer ceramic chip capacitors ( 500 V ; ATC ${ }^{(2)}$ ) in parallel
C12 $=2 \times 43 \mathrm{pF}$ multilayer ceramic chip capacitors ( 500 V ; ATC ${ }^{(2)}$ ) in parallel
$\mathrm{C} 13=43 \mathrm{pF}$ multilayer ceramic chip capacitor ( 500 V ; ATC ${ }^{(2)}$ )
$\mathrm{L} 1=88 \mathrm{nH}$; 3 turns Cu wire ( $1,0 \mathrm{~mm}$ ); int. dia. $9,0 \mathrm{~mm}$; length $6,1 \mathrm{~mm}$; leads $2 \times 5 \mathrm{~mm}$
L2 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312020 36640)
L3 $=150 \mathrm{nH}$; 5 turns Cu wire ( $2,0 \mathrm{~mm}$ ); int. dia. $10,0 \mathrm{~mm}$; length $18,7 \mathrm{~mm}$; leads $2 \times 5 \mathrm{~mm}$
L4 = 197 nH ; 5 turns Cu wire ( $2,0 \mathrm{~mm}$ ); int. dia. $12,0 \mathrm{~mm}$; length $18,6 \mathrm{~mm}$; leads $2 \times 5 \mathrm{~mm}$
R1 $=0,66 \Omega$; parallel connection of $5 \times 3,3 \Omega$ metal film resistors (PR37; $\pm 5 \% ; 1,6 \mathrm{~W}$ each)
R2 $=27 \Omega$ carbon resistor ( $\pm 5 \% ; 0,5 \mathrm{~W}$ )

## Notes

1. Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB .
2. ATC means American Technical Ceramics.

$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V} ; \mathrm{I}_{(\mathrm{ZS})}=0,1 \mathrm{~A} ; \mathrm{f}_{1}=28,000 \mathrm{MHz} ;$
$\mathrm{f}_{2}=28,001 \mathrm{MHz} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$; typical values.

Fig. 9 Intermodulation distortion as a function of output power. ${ }^{(1)}$

$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}(\mathrm{ZS})}=0,1 \mathrm{~A} ; \mathrm{f}_{1}=28,000 \mathrm{MHz}$;
$\mathrm{f}_{2}=28,001 \mathrm{MHz} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$; typical values.

Fig. 10 Double-tone efficiency and power gain as a function of output power.

## Ruggedness

The BLW96 is capable of withstanding full load mismatch (VSWR = 50 through all phases) up to 150 W (P.E.P.) or a load mismatch (VSWR = 5 through all phases) up to 200 W (P.E.P.) under the following conditions:
$V_{C E}=45 \mathrm{~V} ; \mathrm{f}=28 \mathrm{MHz} ; \mathrm{T}_{\mathrm{h}}=70^{\circ} \mathrm{C} ; \mathrm{R}_{\text {th } \mathrm{mb}-\mathrm{h}}=0,2 \mathrm{~K} / \mathrm{W}$.

$V_{C E}=50 \mathrm{~V}$; $\mathrm{I}_{\mathrm{C}(\mathrm{ZS})}=0,1 \mathrm{~A} ; \mathrm{P}_{\mathrm{L}}=200 \mathrm{~W}$ (P.E.P.);
$\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C} ; \mathrm{Z}_{\mathrm{L}}=5 \Omega$; neutralizing capacitor: 47 pF

Fig. 11 Power gain as a function of frequency.

$V_{C E}=50 \mathrm{~V}$; $I_{C(Z S)}=0,1 \mathrm{~A} ; \mathrm{P}_{\mathrm{L}}=200 \mathrm{~W}$ (P.E.P.);
$\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C} ; \mathrm{Z}_{\mathrm{L}}=5 \Omega$; neutralizing capacitor: 47 pF

Fig. 12 Input impedance (series components) as a function of frequency.

Figs 11 and 12 are typical curves and hold for one transistor of a push-pull amplifier with cross-neutralization in s.s.b. class-AB operation.

## HF/VHF power transistor

BLW96
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
$\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$

| $\mathbf{f}(\mathbf{M H z})$ | $\mathbf{V}_{\mathbf{C E}}(\mathbf{V})$ | $\mathbf{P}_{\mathbf{L}}(\mathbf{W})$ | $\mathbf{P}_{\mathbf{S}}(\mathbf{W})$ | $\mathbf{G}_{\mathbf{p}}(\mathbf{d B})$ | $\mathbf{I}_{\mathbf{C}}(\mathbf{A})$ | $\eta(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 108 | 50 | 200 | typ. 45 | typ. 6,5 | typ. 6 | typ. 67 |



Fig. $13 \mathrm{~V}_{\mathrm{CE}}=50 \mathrm{~V} ; \mathrm{f}=108 \mathrm{MHz} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$.


Fig. $14 \mathrm{~V}_{\mathrm{CE}}=50 \mathrm{~V} ; \mathrm{f}=108 \mathrm{MHz} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$; typical values.


Typical values; $\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V} ; \mathrm{P}_{\mathrm{L}}=200 \mathrm{~W} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$;
class-B operation

Fig. 15 Input impedance (series components).


Typical values; $\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V} ; \mathrm{P}_{\mathrm{L}}=200 \mathrm{~W} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$; class-B operation

Fig. 16 Load impedance (series components).


Typical values; $\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V} ; \mathrm{P}_{\mathrm{L}}=200 \mathrm{~W} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$; class-B operation

Fig. 17
R.F. performance in s.s.b. class-A operation (linear power amplifier)
$V_{C E}=40 \mathrm{~V} ; \mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{1}=28,000 \mathrm{MHz} ; \mathrm{f}_{2}=28,001 \mathrm{MHz}$

| OUTPUT POWER $\mathbf{G}_{\mathbf{p}}$ $\mathbf{I}_{\mathbf{C}}$ $\mathbf{d}_{\mathbf{3}}{ }^{(1)}$ <br> $\mathbf{W}$ $\mathbf{d B}$ $\mathbf{A}$ $\mathbf{d B}_{\mathbf{5}}{ }^{(1)}$ <br> $\mathbf{d B}$    <br> typ. 50 (P.E.P.) typ. 19 4 typ. -40 |
| :---: | :---: | :---: | :---: | :---: |



Fig. 18 Test circuit; s.s.b. class-A.

List of components:
$\mathrm{C} 1=\mathrm{C} 2=10$ to 780 pF film dielectric trimmer
$\mathrm{C} 3=220 \mathrm{nF}$ polyester capacitor ( 100 V )
$\mathrm{C} 4=100 \mu \mathrm{~F} / 4 \mathrm{~V}$ electrolytic capacitor
$\mathrm{C} 5=2 \times 330 \mathrm{nF}$ polyester capacitors ( 100 V ) in parallel
$\mathrm{C} 6=47 \mu \mathrm{~F} / 63 \mathrm{~V}$ electrolytic capacitor
$\mathrm{C} 7=\mathrm{C} 10=2 \times 82 \mathrm{pF}$ ceramic capacitors (500 V) in parallel
$\mathrm{C} 8=\mathrm{C} 9=10$ to 150 pF air dielectric trimmer
$\mathrm{L} 1=45 \mathrm{nH}$; 2 turns enamelled Cu wire ( $1,6 \mathrm{~mm}$ ); int. dia. $8,0 \mathrm{~mm}$; length $4,0 \mathrm{~mm}$; leads $2 \times 3 \mathrm{~mm}$
L2 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312020 36640)
$\mathrm{L} 3=110 \mathrm{nH}$; 4 turns enamelled Cu wire ( $2,0 \mathrm{~mm}$ ); int. dia. $10,0 \mathrm{~mm}$; length $8,0 \mathrm{~mm}$; leads $2 \times 2 \mathrm{~mm}$
L4 = 210 nH ; 5 turns enamelled Cu wire ( $2,0 \mathrm{~mm}$ ); int. dia. $12,0 \mathrm{~mm}$; length $10,0 \mathrm{~mm}$; leads $2 \times 2 \mathrm{~mm}$
R1 $=27 \Omega$ carbon resistor ( $\pm 5 \% ; 0,5 \mathrm{~W}$ )

## Note

1. Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB .


Fig. 19 Third order intermodulation distortion as a function of output power. ${ }^{(1)}$ Typical values; $\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}$; $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{1}=28,000 \mathrm{MHz} ; \mathrm{f}_{2}=28,001 \mathrm{MHz}$.

## PACKAGE OUTLINE

Flanged ceramic package; 2 mounting holes; 4 leads


DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

| UNIT | $\mathbf{A}$ | $\mathbf{b}$ | $\mathbf{c}$ | $\mathbf{D}$ | $\mathbf{D}_{\mathbf{1}}$ | $\mathbf{F}$ | $\mathbf{H}$ | $\mathbf{L}$ | $\mathbf{p}$ | $\mathbf{Q}$ | $\mathbf{q}$ | $\mathbf{U}_{\mathbf{1}}$ | $\mathbf{U}_{\mathbf{2}}$ | $\mathbf{U}_{\mathbf{3}}$ | $\mathbf{w}_{\mathbf{1}}$ | $\mathbf{w}_{\mathbf{2}}$ | $\boldsymbol{\alpha}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7.27 | 5.82 | 0.16 | 12.86 | 12.83 | 2.67 | 28.45 | 7.93 | 3.30 | 4.45 | 18.42 | 24.90 | 6.48 | 12.32 | 0.51 | 1.02 |  |
|  | 6.17 | 5.56 | 0.10 | 12.59 | 12.57 | 2.41 | 25.52 | 6.32 | 3.05 | 3.91 |  | 24.63 | 6.22 | 12.06 |  |  |  |
| inches | 0.286 | 0.229 | 0.006 | 0.506 | 0.505 | 0.105 | 1.120 | 0.312 | 0.130 | 0.175 |  | 0.725 | 0.98 | 0.255 | 0.485 |  |  |
|  | 0.243 | 0.219 | 0.004 | 0.496 | 0.495 | 0.095 | 1.005 | 0.249 | 0.120 | 0.154 |  | 0.04 |  |  |  |  |  |


| OUTLINE <br> VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT121B |  |  |  | $\square$ | 97-06-28 |

## DEFINITIONS

| Data Sheet Status |  |
| :--- | :--- |
| Objective specification | This data sheet contains target or goal specifications for product development. |
| Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. |
| Product specification | This data sheet contains final product specifications. |
| Limiting values |  |
| Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or <br> more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation <br> of the device at these or at any other conditions above those given in the Characteristics sections of the specification <br> is not implied. Exposure to limiting values for extended periods may affect device reliability. |  |
| Application information | Where application information is given, it is advisory and does not form part of the specification. |

## LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

