WATER FORCE SELECTION GUIDE

Location of Protection

The Water Force system allows a complete or partial perimeter type of protection by holding back the flood water at a distance from walls rather than protecting individual openings.

Semi

 perimeter protection- Set up with angles or on a sloped terrain

360° protection

- Complete on all sides - Both extremities (ends) joined together

Water

Remember to Use Water Pumps:

Any water collecting between the building and the Water Force needs to be evacuated by pumps \& hoses. Be sure not to trap water against the property.

Things that can affect the quantity of water behind the barriers are:

- Seepage rate of the barrier when full, approximately $0.5-0.7 \mathrm{gpm} / \mathrm{ft}$ (inside edge)
- Unpredictable volumes of rain
- Review gutter drainage \& make plan to redirect that excess water over the other side of the Water Force
- Drainage that could backflow when it exceeds capacity
- Factors affecting the layout of the terrain. ie:
gravity, slopes, hills, etc.

How to Determine Required Length

The Water Force units are constructed with a 4:1 ratio, meaning the skirt length is 4 times the height of protection. You will need this overall measurement when determining the space needed to effectively deploy the unit.

Key

\qquad

[^0]Measuring Line to determine Length Needed

1. Select height of protection needed
a. Height can vary based on landscaping- hills, slopes, \& water flow concerns
b. Take into consideration lowest point of property line as water will gravitate here
2. Review chart above for distance required for placement of Water Force
a. Add 2 ft for clear path needed
3. Walk a clear path around perimeter to review any obstructions
a. Increase length as needed to avoid any obstructions or creating corners
b. The Water Force needs a completely unobstructed path in order to lay down flat.
4. Measure red line () distance to determine overall length.
a. Connecting edge joints need to be at least $5 \mathrm{ft}(1.5 \mathrm{~m})$ away from corners

Use laser measure tool to direct towards the property to maintain the proper distance while walking the perimeter while measuring the length.

How to Determine Required Length for Corners

Making corners requires folding material over itself. As a result, additional length is needed based on height

Additional Length Needed to Create a Corner

Considerations

- Take any obstructions into consideration (pools, trees, sheds, garden, etc.)
- Corners can be created by folding unit properly. Curving Water Gates around bends will maximize length of unit.
- Different heights can be joined based on height of flood concerns.
- On site evaluations are available upon request \& for a fee.

Please refer to our services for more information.

Tips \& Tricks

Lifting \& securing the ends, helps seal the edge against water infiltration

Units can be joined together to achieve desired length

Corners are created to go around turns, buildings \& obstructions

Place objects to raise Water Force to dry out, prior to storage

What we need to give you a quote:

1) Plot Survey

(Example shown here)

- Point out where water is coming from
- Note any obstructions (trees, stairs, fence, curbs, etc.)
- Indicate areas where topography changes
- Identify where storm drains \& down spouts are located
- Indicate proposed position of unit (Sectional, Semi perimeter, or 360° protection)

2) Photos \& Videos

- Send photos of complete area needing protecting
- Indicate entrances, obstructions \& other possible issue areas
- Video: a full walk around of property with voice dictation

3) Address of property to review Google Map visuals.

Questions? Visit us at www.quickdams.com or call 888-761-4405

[^0]: - 0

 2 ft Clear path around Perimeter

