

Microcontroller Tools

Getting started with MDK
Create applications with µVision®

for Arm® Cortex®-M microcontrollers

2 Preface

Information in this document is subject to change without notice and does not

represent a commitment on the part of the manufacturer. The software described

in this document is furnished under license agreement or nondisclosure

agreement and may be used or copied only in accordance with the terms of the

agreement. It is against the law to copy the software on any medium except as

specifically allowed in the license or nondisclosure agreement. The purchaser

may make one copy of the software for backup purposes. No part of this manual

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or information storage and

retrieval systems, for any purpose other than for the purchaser’s personal use,

without written permission.

Copyright © 1997-2020 Arm Germany GmbH

All rights reserved.

Arm®, Keil®, µVision®, Cortex®, TrustZone®, CoreSight™ and ULINK™ are

trademarks or registered trademarks of Arm Germany GmbH and Arm Ltd.

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft

Corporation.

PC® is a registered trademark of International Business Machines Corporation.

NOTE

We assume you are familiar with Microsoft Windows, the hardware, and the

instruction set of the Arm® Cortex®-M processor.

Every effort was made to ensure accuracy in this manual and to give appropriate

credit to persons, companies, and trademarks referenced herein.

Getting Started with MDK: Create Applications with µVision 3

Preface
Thank you for using the Arm Keil® MDK Microcontroller Development Kit. To

provide you with the best software tools for developing Arm Cortex-M processor

based embedded applications we design our tools to make software engineering

easy and productive. Arm also offers complementary products such as the

ULINK™ debug and trace adapters and a range of evaluation boards. MDK is

expandable with various third-party tools, starter kits, and debug adapters.

Chapter overview
The book starts with the installation of MDK and describes the software

components along with complete workflow from starting a project up to

debugging on hardware. It contains the following chapters:

MDK Introduction provides an overview about the MDK Tools, the software

packs, and describes the product installation along with the use of example

projects.

CMSIS is a software framework for embedded applications that run on Cortex-M

based microcontrollers. It provides consistent software interfaces and hardware

abstraction layers that simplify software reuse.

Software Components enable retargeting of I/O functions for various standard

I/O channels and add board support for a wide range of evaluation boards.

Create Applications guides you towards creating and modifying projects using

CMSIS and device-related software components. A hands-on tutorial shows the

main configuration dialogs for setting tool options.

Debug Applications describes the process of debugging applications on real

hardware and explains how to connect to development boards using a wide range

of debug adapters.

MDK-Middleware gives an overview of the middleware components available

for users of the MDK-Professional and MDK-Plus editions. It also explains how

to create applications that use the MDK-Middleware and contains essential tips

and tricks to get you started quickly.

4 Preface

Contents
Preface .. 3
Chapter overview .. 3

MDK Introduction .. 7
MDK Tools ... 7
Software Packs ... 8
MDK Editions ... 8
License Types ... 8
Installation .. 9

Software and hardware requirements ... 9
Install MDK .. 9
Install Software Packs ... 10
MDK-Professional Trial License .. 12
Verify Installation using Example Projects .. 14

Access Documentation ... 18
Request Assistance ... 18
On-line Learning ... 18

CMSIS .. 19
CMSIS-CORE .. 20

Using CMSIS-CORE .. 20
CMSIS-RTOS2 ... 23

Software Concepts .. 23
Using Keil RTX5 .. 24
Component Viewer for RTX RTOS ... 29

CMSIS-DSP .. 30
CMSIS-Driver .. 32

Configuration .. 33
Validation Suites for Drivers and RTOS .. 34

Software Components ... 35
Use Software Packs .. 35

Software Component Overview.. 36
Product Lifecycle Management with Software Packs 37
Software Version Control Systems (SVCS) ... 39

Compiler:Event Recorder ... 39
Compiler:I/O ... 40
Board Support ... 42
IoT Clients .. 43

Create Applications ... 44
µVision Project from Scratch ... 44

Getting Started with MDK: Create Applications with µVision 5

Setup New µVision Project .. 45
Add main.c Source Code File ... 47
Configure Project Options .. 49
Build the Application Project ... 52

Project with CMSIS-RTOS2 .. 52
Copy an Example .. 53
Add CMSIS-RTO2 Component ... 54
Add RTOS Initialization ... 56
Configure Keil RTX5 RTOS .. 57
Implement User Threads ... 57

Device Configuration Variations .. 58
Example: STM32Cube ... 59
Example: MCUXpresso Config Tools .. 63

Secure/non-secure programming .. 67
Create Armv8-M software projects .. 68

Debug Applications ... 69
Debugger Connection ... 69
Using the Debugger .. 70

Debug Toolbar .. 71
Command Window ... 72
Disassembly Window ... 72
Component Viewer ... 73
Event Recorder ... 74
System Analyzer ... 76
Breakpoints ... 77
Watch Window ... 78
Call Stack and Locals Window ... 78
Register Window .. 79
Memory Window .. 79
Peripheral Registers .. 80

Trace ... 81
Trace with Serial Wire Output .. 82
Trace Exceptions .. 84
Logic Analyzer ... 85
Debug (printf) Viewer .. 86
Event Counters.. 87
Trace with 4-Pin Output ... 88
Trace with On-Chip Trace Buffer ... 88

MDK-Middleware ... 89
Network Component ... 91
File System Component .. 93
USB Component ... 94

6 Preface

Graphics Component .. 95
Mbed IoT Componentes ... 96
FTP Server Example ... 96
Using Middleware .. 97

USB Device HID Example ... 99

Index ... 107

NOTE

This user’s guide describes how to create projects for Arm Cortex-M

microcontrollers using the µVision IDE/Debugger.

Getting Started with MDK: Create Applications with µVision 7

MDK Introduction
MDK helps you to create embedded applications for more than 7,500 Arm

Cortex-M processor-based devices. MDK is a powerful, yet easy to learn and use

development system. It consists of MDK-Core and software packs, which can be

downloaded and installed based on the requirements of your application.

MDK Tools
The MDK Tools include all the components that you need to create, build, and

debug an embedded application for Arm based microcontroller devices.

MDK-Core consists of the Keil µVision IDE and debugger with leading support

for Cortex-M processor-based microcontroller devices.

MDK includes the Arm C/C++ Compiler with assembler, linker, and highly

optimize run-time libraries tailored for optimum code size and performance. Arm

Compiler version 6 is based on the innovative LLVM technology and supports

the latest C language standards including C++11 and C++14. It is also available

with a TÜV certified qualification kit for safety applications, as well as long-term

support and maintenance.

8 MDK Introduction

Software Packs
Software packs contain device support, CMSIS components, middleware, board

support, code templates, and example projects. They may be added any time to

MDK-Core, making new device support and middleware updates independent

from the toolchain. µVision IDE manages the provided software components that

are available for the application as building blocks.

MDK Editions
The product selector, available at keil.com/editions, gives an overview of the

features enabled in each edition:

▪ MDK-Lite is code size restricted to 32 KByte and intended for product

evaluation, small projects, and the educational market.

▪ MDK-Essential supports all Cortex-M processor-based microcontrollers up

to Cortex-M55.

▪ MDK-Plus adds middleware libraries for IPv4 networking, USB Device, File

System, and Graphics. It supports Arm Cortex-M, Arm Cortex-R4, ARM7,

and ARM9 processor-based microcontrollers.

▪ MDK-Professional contains all features of MDK-Plus. In addition, it

supports IPv4/IPv6 dual-stack networking and a USB Host stack. It also gives

access to the safety-qualified version of the Arm Compiler with all required

documents and certificates.

License Types
Apart from MDK-Lite, all MDK editions require activation using a license code.

The following licenses types are available:

1. Single-user license (node-locked) grants the right to use the product by one

developer on two computers at the same time.

2. Floating-user license or FlexNet license grants the right to use the product

on different computers by several developers at the same time.

For further details, refer to the Licensing User’s Guide at

keil.com/support/man/docs/license.

http://www.keil.com/
http://www.keil.com/support/man/docs/license

Getting Started with MDK: Create Applications with µVision 9

Installation

Software and hardware requirements

MDK has the following minimum hardware and software requirements:

▪ A PC running a current Microsoft Windows desktop operating system

(32-bit or 64-bit)

▪ 4 GB RAM and 8 GB hard-disk space

▪ 1280 x 800 or higher screen resolution; a mouse or other pointing device

Exact requirements can be found at keil.com/system-requirements/

Install MDK

Download MDK from keil.com/demo/eval/arm.htm and run the installer.

Follow the instructions to install MDK on your local computer. The installation

also adds the software packs for Arm CMSIS, Arm Compiler and

MDK-Middleware.

After the MDK installation is complete, the Pack Installer starts automatically,

which allows you to add supplementary software packs. As a minimum, you need

to install a software pack that supports your target microcontroller device.

NOTE

MDK version 5 can use MDK version 4 projects after installation of the legacy

support from keil.com/mdk5/legacy. This adds support for Arm7, Arm9, and

Cortex-R processor-based devices.

http://www2.keil.com/system-requirements/
http://www.keil.com/demo/eval/arm.htm
http://www.keil.com/mdk5/legacy

10 MDK Introduction

Install Software Packs

The Pack Installer manages software packs on the local computer. The software

packs are stored in the pack root folder (default: %localappdata%\Arm\Packs).

NOTE

To obtain information of published software packs the Pack Installer connects to

keil.com/pack.

The status bar at the bottom of the Pack Installer, shows information about the

Internet connection and the installation progress.

TIP: The device database lists all supported devices and provides download

access to the related software packs. It is available at

https://developer.arm.com/embedded/cmsis/cmsis-packs/devices. If the

Pack Installer does not have Internet access, you can manually install

software packs using the menu command File – Import or by double-

clicking *.PACK files.

 The Pack Installer runs automatically during the installation, but also can

be run from µVision using the menu item Project – Manage – Pack

Installer. To get access to devices and example projects, install the software

pack related to your target device or evaluation board.

http://www.keil.com/pack
https://developer.arm.com/embedded/cmsis/cmsis-packs/devices

Getting Started with MDK: Create Applications with µVision 11

Manage local repositories

While developing a software pack, it is useful to quickly verify how it works in a

µVision project without re-building and re-installing the pack after every

modification.

For this purpose, the folder with the pack’s content shall be added to the list of

managed local repositories. To do this use the Pack Installer menu File -

Manage Local Repositories..., click Add..., select the PDSC file in the pack

folder and press OK:

To ensure that the changes to the pack are applied in the project reload the packs

using µVision menu Project - Manage - Reload Software Packs.

https://www.keil.com/support/man/docs/uv4/uv4_ca_packinst_repo.htm

12 MDK Introduction

MDK-Professional Trial License

MDK has a built-in functionality to request a thirty-day trial license for MDK-

Professional. This removes the code size limits and you can explore and test the

comprehensive middleware.

Start µVision with administration rights.

 In µVision, go to File – License Management... and click Evaluate MDK

Professional

A window opens that shows you the data that is submitted to the Arm Keil server

to generate your personal license key:

When you click OK, your browser opens, and you are directed to a registration

page. Confirm that the information is correct by clicking the Submit button:

Getting Started with MDK: Create Applications with µVision 13

Once done, you receive an email from the Keil web server with the license

number for your evaluation.

In µVision’s License Management dialog, enter the value in the New License ID

Code (LIC) field and click Add LIC:

Now you can use MDK-Professional for thirty days.

14 MDK Introduction

Verify Installation using Example Projects

Once you have selected, downloaded, and installed a software pack for your

device, you can verify your installation using one of the examples provided in the

software pack. To verify the software pack installation, we recommend using a

Blinky example, which typically flashes LEDs on a target board.

TIP: Review the getting started video on keil.com/mdk5/install that explains

how to connect and work with an evaluation kit.

Copy an Example Project

Click Copy and enter the Destination Folder name of your working directory.

NOTE

You must copy the example projects to a working directory of your choice.

▪ Enable Launch µVision to open the example project directly in the IDE.

 In the Pack Installer, select the tab Examples. Use Search fielad in the

toolbar to narrow the list of examples.

http://www.keil.com/mdk5

Getting Started with MDK: Create Applications with µVision 15

▪ Enable Use Pack Folder Structure to copy example projects into a common

folder. This avoids overwriting files from other example projects. Disable

Use Pack Folder Structure to reduce the complexity of the example path.

▪ Click OK to start the copy process.

Use an Example Application with µVision

µVision starts and loads the example project where you can:

The step-by-step instructions show you how to execute these tasks. After copying

the example, µVision starts and looks like the picture below.

TIP: Most example projects contain an Abstract.txt file with essential

information about the operation and hardware configuration.

 Build the application, which compiles and links the related source files.

 Download the application, typically to on-chip Flash ROM of a device.

 Run the application on the target hardware using a debugger.

16 MDK Introduction

Build the Application

The Build Output window shows information about the build process. An error-

free build shows information about the program size.

Download the Application

Connect the target hardware to your computer

using a debug adapter that typically connects

via USB. Several evaluation boards provide

an on-board debug adapter.

Now, review the settings for the debug adapter. Typically, example projects are

pre-configured for evaluation kits; thus, you do not need to modify these settings.

 Build the application using the toolbar button Rebuild.

 Click Options for Target on the toolbar and select the Debug tab. Verify

that the correct debug adapter of the evaluation board you are using is

selected and enabled. For example, CMSIS-DAP Debugger is a common

on-board debug adapter for various starter kits.

Getting Started with MDK: Create Applications with µVision 17

TIP: Click the button Settings to verify communication settings and diagnose

problems with your target hardware. For further details, click the button

Help in the dialogs. If you have any problems, refer to the user guide of the

starter kit.

The Build Output window shows information about the download progress.

Run the Application

 Enable Load Application at Startup for loading the application into the

µVision debugger whenever a debugging session is started.

Enable Run to main() for executing the instructions up to the first

executable statement of the main() function. The instructions are executed

upon each reset.

 Click Download on the toolbar to load the application to your target

hardware.

 Click Start/Stop Debug Session on the toolbar to start debugging the

application on hardware.

 Click Run on the debug toolbar to start executing the application. LEDs

should flash on the target hardware.

18

Access Documentation
MDK provides online manuals and context-sensitive help. The µVision Help

menu opens the main help system that includes the µVision User’s Guide, getting

started manuals, compiler, linker and assembler reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation

and explain dialog options and settings.

You can press F1 in the editor to access help on language elements like RTOS

functions, compiler directives, or library routines. Use F1 in the command line of

the Output window for help on debug commands, and some error and warning

messages.

The Books window may include device reference guides, data sheets, or board

manuals. You can even add your own documentation and enable it in the Books

window using the menu Project – Manage – Components, Environment,

Books – Books.

The Manage Run-Time Environment dialog offers access to documentation via

links in the Description column.

In the Project window, you can right-click a software component group and open

the documentation of the corresponding element.

Access the µVision User’s Guide on-line: keil.com/support/man/docs/uv4.

Request Assistance
If you have suggestions or you have discovered an issue with the software, please

report them to us. Support information can be found at keil.com/support.

When reporting an issue, include your license code (if you have one) and product

version, available from the µVision menu Help – About.

On-line Learning
Our keil.com/learn website helps you to learn more about the programming of

Arm Cortex-based microcontrollers. It contains tutorials, further documentation,

as well as useful links to other websites.

Selected videos showing the tools and different aspects of software development

are available at keil.com/video.

http://www.keil.com/support/man/docs/uv4
http://www.keil.com/support
http://www.keil.com/learn
https://www2.keil.com/video

Getting Started with MDK: Create Applications with µVision 19

CMSIS
The Cortex Microcontroller Software Interface Standard (CMSIS) provides a

standardized software framework for embedded applications that run on Cortex

based microcontrollers. CMSIS enables consistent and simple software interfaces

to the processor and the peripherals, simplifying software reuse, reducing the

learning curve for microcontroller developers.

CMSIS is available under an Apache 2.0 license and is publicly developed on

GitHub: https://github.com/ARM-software/CMSIS_5.

NOTE

This chapter is a reference section. The chapter Create Applications on page 44

shows you how to use CMSIS for creating application code.

CMSIS provides a common approach to interface peripherals, real-time operating

systems, and middleware components. The CMSIS application software

components are:

▪ CMSIS-CORE: Defines the API for the Cortex-M processor core and

peripherals and includes a consistent system startup code. The software

components ::CMSIS:CORE and ::Device:Startup are all you need to

create and run applications on the native processor that uses exceptions,

interrupts, and device peripherals.

▪ CMSIS-RTOS2: Provides a standardized real-time operating system API

and enables software templates, middleware libraries, and other components

that can work across supported RTOS systems. This manual explains the

usage of the Keil RTX5 implementation.

▪ CMSIS-DSP: Is a library collection for digital signal processing (DSP) with

over 60 Functions for various data types: fix-point (fractional q7, q15, q31)

and single precision floating-point (32-bit).

▪ CMSIS-Driver: Is a software API that describes peripheral driver interfaces

for middleware components and user applications. The CMSIS-Driver API is

designed to be generic and independent of a specific RTOS making it

reusable across a wide range of supported microcontroller devices.

▪ CMSIS-Zone: Defines methods to describe and partition system resources

into multiple projects and execution areas. The system resources may include

multiple processors, memory areas, peripherals and related interrupts.

https://github.com/ARM-software/CMSIS_5

20 CMSIS

CMSIS-CORE
This section explains the usage of CMSIS-CORE in applications that run natively

on a Cortex-M processor. This type of operation is known as bare-metal, because

it does not use a real-time operating system.

Using CMSIS-CORE

A native Cortex-M application with CMSIS uses the software component

::CMSIS:CORE, which should be used together with the software component

::Device:Startup. These components provide the following key files:

The startup_<device>.s file with reset

handler and exception vectors.

The system_<device>.c configuration

file for basic device setup.

The <device>.h header file for user

code access to the microcontroller

device. This file is included in C

source files and defines:

▪ Peripheral access with

standardized register layout.

▪ Access to interrupts and exceptions, and the Nested Interrupt Vector

Controller (NVIC).

▪ Intrinsic functions to generate special instructions, for example to

activate sleep mode.

▪ Systick timer (SYSTICK) functions to configure and start a periodic

timer interrupt.

▪ Debug access for printf-style I/O and ITM communication via on-chip

CoreSight.

The partition_<device>.h header file contains the initial setup of the TrustZone

hardware in an Armv8-M system (refer to section Secure/non-secure

programming).

NOTE

In actual file names, <device> is the name of the microcontroller device.

Getting Started with MDK: Create Applications with µVision 21

Adding CMSIS-CORE Components to the Project

The files for the components ::CMSIS:CORE and ::Device:Startup are added

to a project using the µVision dialog Manage Run-Time Environment. Just

select the software components as shown below:

The µVision environment adds the related files.

Source Code Example

The following source code lines show the usage of the CMSIS-CORE layer.

Example of using the CMSIS-CORE layer

#include "stm32f4xx.h" // File name depends on device used

uint32_t volatile msTicks; // Counter for millisecond Interval

uint32_t volatile frequency; // Frequency for timer

void SysTick_Handler (void) { // SysTick Interrupt Handler

 msTicks++; // Increment Counter

}

void WaitForTick (void) {

 uint32_t curTicks;

 curTicks = msTicks; // Save Current SysTick Value

 while (msTicks == curTicks) { // Wait for next SysTick Interrupt

 __WFE (); // Power-Down until next Event

 }

http://www.keil.com/pack/doc/cmsis/Core/html/group__intrinsic___c_p_u__gr.html#gad3efec76c3bfa2b8528ded530386c563

22 CMSIS

}

void TIM1_UP_IRQHandler (void) { // Timer Interrupt Handler

 ; // Add user code here

}

void timer1_init(int frequency) { // Set up Timer (device specific)

 NVIC_SetPriority (TIM1_UP_IRQn, 1); // Set Timer priority

 NVIC_EnableIRQ (TIM1_UP_IRQn); // Enable Timer Interrupt

}

// Configure & Initialize the MCU

void Device_Initialization (void) {

 if (SysTick_Config (SystemCoreClock / 1000)) { // SysTick 1ms

 : // Handle Error

 }

 timer1_init (frequency); // Setup device-specific timer

}

// The processor clock is initialized by CMSIS startup + system file

int main (void) { // User application starts here

 Device_Initialization (); // Configure & Initialize MCU

 while (1) { // Endless Loop (the Super-Loop)

 __disable_irq (); // Disable all interrupts

 // Get_InputValues ();

 __enable_irq (); // Enable all interrupts

 // Process_Values ();

 WaitForTick (); // Synchronize to SysTick Timer

 }

}

For more information, right-click the group CMSIS in the Project window, and

choose Open Documentation, or refer to the CMSIS-CORE documentation

arm-software.github.io/CMSIS_5/Core/html/index.html.

http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga5bb7f43ad92937c039dee3d36c3c2798
http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga530ad9fda2ed1c8b70e439ecfe80591f
http://www.keil.com/pack/doc/cmsis/Core/html/group___sys_tick__gr.html#gabe47de40e9b0ad465b752297a9d9f427
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#gaeb8e5f7564a8ea23678fe3c987b04013
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#ga0f98dfbd252b89d12564472dbeba9c27
https://arm-software.github.io/CMSIS_5/Core/html/index.html

Getting Started with MDK: Create Applications with µVision 23

CMSIS-RTOS2
This section introduces the CMSIS-RTOS2 API and the Keil RTX5 real-time

operating system, describes their features and advantages, and explains

configuration settings of Keil RTX5.

NOTE

MDK is compatible with many third-party RTOS solutions. However,

CMSIS-RTOS Keil RTX5 is feature-rich and tailored towards the requirements of

deeply embedded systems. Also, it is well integrated into MDK.

While CMSIS-RTOS Keil RTX5 is open source, a variant certified for functional

safety applications is available as well. See keil.com/fusa-rts for details.

Software Concepts

There are two basic design concepts for embedded applications:

▪ Infinite Loop Design: involves running the program as an endless loop.

Program functions (threads) are called from within the loop, while interrupt

service routines (ISRs) perform time-critical jobs including some data

processing.

▪ RTOS Design: involves running several threads with a real-time operating

system (RTOS). The RTOS provides inter-thread communication and time

management functions. A pre-emptive RTOS reduces the complexity of

interrupt functions, because high-priority threads can perform time-critical

data processing.

Infinite Loop Design

Running an embedded program in an endless loop is an adequate solution for

simple embedded applications. Time-critical functions, typically triggered by

hardware interrupts, execute in an ISR that also performs any required data

processing. The main loop contains only basic operations that are not time-critical

and run in the background.

https://www2.keil.com/fusa-rts

24 CMSIS

Advantages of an RTOS Kernel

RTOS kernels, like the Keil RTX5, are based on the idea of parallel execution

threads (tasks). As in the real world, your application will have to fulfill multiple

different tasks. An RTOS-based application recreates this model in your software

with various benefits:

▪ Thread priority and run-time scheduling is reliably handled by the RTOS.

▪ The RTOS provides a well-defined interface for communication between

threads.

▪ A pre-emptive multi-tasking concept simplifies the progressive enhancement

of an application even across a larger development team. New functionality

can be added without risking the response time of more critical threads.

▪ Infinite loop software concepts often poll for occurred interrupts. In contrast,

RTOS kernels themselves are interrupt driven and can largely eliminate

polling. This allows the CPU to sleep or process threads more often.

Modern RTOS kernels are transparent to the interrupt system, which is

mandatory for systems with hard real-time requirements. Communication

facilities can be used for IRQ-to-task communication.

Using Keil RTX5

The Keil RTX 5 implements the CMSIS-RTOS API v2 as a native RTOS

interface for Cortex-M processor-based devices.

Once the execution reaches main(), there is a recommended order to initialize the

hardware and start the kernel. The main() of your application should implement at

least the following in the given order:

1. Initialization and configuration of hardware including peripheral, memory,

pin, clock, and interrupt system.

2. Update SystemCoreClock using the respective CMSIS-CORE function.

3. Initialize CMSIS-RTOS kernel using osKernelInitialize.

4. Optionally, create a new thread app_main, which is used as a main thread

using osThreadNew. Alternatively, threads can be created in main() directly.

5. Start RTOS scheduler using osKernelStart. osKernelStart does not return in

case of successful execution. Any application code after osKernelStart will

not be executed unless osKernelStart fails.

Getting Started with MDK: Create Applications with µVision 25

The software component ::CMSIS:RTOS2 (API):Keil RTX5 must be used

together with the components ::CMSIS:CORE and ::Device:Startup explained

in Using CMSIS-CORE section.

Central Keil RTX5 files are:

The header file cmsis_os2.h exposes the RTX functionality to the user

application via CMSIS-RTOS2 API.

The configuration files RTX_Config.c/.h define thread options, timer

configurations, and RTX kernel settings.

The file RTX_<core>.lib contains the library with RTOS functions and gets

included when RTX5 is used in a library variant. In this case rtx_lib.c file

contains the RTX5 library configuration.

Section Project with CMSIS-RTOS2 gives an example how to setup a project

based on Keil RTX5.

Adding Keil RTX5 Components to the Project

The files for the components ::CMSIS:RTOS2 (API):Keil RTX5,

::CMSIS:CORE and ::Device:Startup are added to a project using the µVision

dialog Manage Run-Time Environment. Just select the software components as

shown below:

26 CMSIS

Library variant of Keil RTX5 has more compact code, while source variant

allows full program debug and supports RTOS-aware debugging via Event

Recorder support.

CMSIS-RTOS2 API Functions

The file cmsis_os2.h is a standard header file that defines interfaces to every

CMSIS-RTOS API v2 compliant RTOS.

All definitions in the header file are prefixed with os to give a unique name space

for the CMSIS-RTOS functions.

All definitions and functions that belong to a module are grouped and have a

common prefix, for example, osThread for threads.

Refer to section Reference: CMSIS-RTOS2 API of the online documentation at

arm-software.github.io/CMSIS_5/RTOS2/html/index.html, for more

information.

Keil RTX5 Configuration

The file RTX_Config.h contains configuration parameters for Keil RTX5. A

copy of this file is part of every project using the RTX component.

You can set various system parameters such as the Tick Timer frequency, Round-

Robin time slice, specify configurations for specific RTOS objects, such as

https://arm-software.github.io/CMSIS_5/RTOS2/html/index.html

Getting Started with MDK: Create Applications with µVision 27

threads, timers, event flags, mutexes, semaphores, memory pools, and message

queues, as well configure Event Recorder operation.

For more information about configuration options, open the RTX documentation

from the Manage Run-Time Environment window. The section Configure

RTX v5 describes all available settings:

arm-software.github.io/CMSIS_5/RTOS2/html/config_rtx5.html

CMSIS-RTOS User Code Templates

MDK provides user code templates you can use to create C source code for the

application.

 In the Project window, right click a group, select Add New Item to Group,

choose User Code Template, select any template and click Add.

https://arm-software.github.io/CMSIS_5/RTOS2/html/config_rtx5.html

28 CMSIS

Source Code Example

Once these files are part of the project, developers can start using the CMSIS-

RTOS2 RTX functions.

The code example shows the use of CMSIS-RTOS RTX functions.

#include "cmsis_os2.h" // CMSIS RTOS2 header file

void app_main (void *argument) {

 tid_phaseA = osThreadNew(phaseA, NULL, NULL);

 osDelay(osWaitForever);

 while(1);

}

int main (void) {

 // System Initialization

 SystemCoreClockUpdate();

 osKernelInitialize(); // Initialize CMSIS-RTOS

 osThreadNew(app_main, NULL, NULL); // Create application main thread

 if (osKernelGetState() == osKernelReady) {

 osKernelStart(); // Start thread execution

 }

while(1);

}

Section Project with CMSIS-RTOS2 explains in details how to setup an RTOS-

based application using Keil RTX5.

http://www.keil.com/pack/doc/cmsis/RTOS/html/cmsis__os_8h.html

Getting Started with MDK: Create Applications with µVision 29

Component Viewer for RTX RTOS

Keil RTX5 comes with an SCVD file for the Component Viewer for RTOS

aware debugging. In the debugger, open View – Watch Windows – RTX

RTOS. This window shows system state information and the running threads.

The System property shows

general information about the

RTOS configuration in the

application.

The Threads property shows

details about thread execution of

the application. For each thread,

it shows information about

priority, execution state and

stack usage.

If the option Stack usage

watermark is enabled for

Thread Configuration in the

file RTX_Config.h, the field

Stack shows the stack load. This

allows you to:

▪ Identify stack overflows

during thread execution

or

▪ Optimize and reduce the

stack space used for

threads.

Information about other RTX5 objects, such as mutexes, semaphores, message

queues, is provided in corresponding properties as well.

NOTE

The µVision debugger also provides a view with detailed runtime information.

Refer to Event Recorder on page 74 for more information.

30 CMSIS

CMSIS-DSP
The CMSIS-DSP library is a suite of common digital signal processing (DSP)

functions. The library is available in several variants optimized for different Arm

Cortex-M processors.

When enabling the software component ::CMSIS:DSP in the Manage Run-

Time Environment dialog, the appropriate library for the selected device is

automatically included into the project. It is also possible to select source-code

variant,.

The code example below shows the use of CMSIS-DSP library functions.

Multiplication of two matrixes using DSP functions

#include "arm_math.h" // ARM::CMSIS:DSP

const float32_t buf_A[9] = { // Matrix A buffer and values

 1.0, 32.0, 4.0,

 1.0, 32.0, 64.0,

 1.0, 16.0, 4.0,

};

float32_t buf_AT[9]; // Buffer for A Transpose (AT)

float32_t buf_ATmA[9] ; // Buffer for (AT * A)

arm_matrix_instance_f32 A; // Matrix A

arm_matrix_instance_f32 AT; // Matrix AT(A transpose)

arm_matrix_instance_f32 ATmA; // Matrix ATmA(AT multiplied by A)

uint32_t rows = 3; // Matrix rows

uint32_t cols = 3; // Matrix columns

int main(void) {

 // Initialize all matrixes with rows, columns, and data array

 arm_mat_init_f32 (&A, rows, cols, (float32_t *)buf_A); // Matrix A

 arm_mat_init_f32 (&AT, rows, cols, buf_AT); // Matrix AT

 arm_mat_init_f32 (&ATmA, rows, cols, buf_ATmA); // Matrix ATmA

 arm_mat_trans_f32 (&A, &AT); // Calculate A Transpose (AT)

 arm_mat_mult_f32 (&AT, &A, &ATmA); // Multiply AT with A

 while (1);

}

Getting Started with MDK: Create Applications with µVision 31

For more information, refer to the CMSIS-DSP documentation on

arm-software.github.io/CMSIS_5/DSP/html/index.html.

https://arm-software.github.io/CMSIS_5/DSP/html/index.html

32 CMSIS

CMSIS-Driver
Device-specific CMSIS-Drivers provide the interface between the middleware

and the microcontroller peripherals. These drivers are not limited to the MDK-

Middleware and are useful for various other middleware stacks to utilize those

peripherals.

The device-specific drivers are usually part of the software pack that supports the

microcontroller device and comply with the CMSIS-Driver standard. The device

database on https://developer.arm.com/embedded/cmsis/cmsis-packs/devices/

lists drivers included in the software pack for the device.

Middleware components usually have various configuration files that connect to

these drivers. Depending on the device, an RTE_Device.h file configures the

drivers to the actual pin connection of the microcontroller device. Some devices

require specific third-party tools to configure the hardware correctly.

The middleware/application code connects to a driver instance via a control

struct. The name of this control struct reflects the peripheral interface of the

device. Drivers for most of the communication peripherals are part of the

software packs that provide device support.

https://developer.arm.com/embedded/cmsis/cmsis-packs/devices/

Getting Started with MDK: Create Applications with µVision 33

Use traditional C source code to implement missing drivers according the

CMSIS-Driver standard.

Refer to arm-software.github.io/CMSIS_5/Driver/html/index.html for detailed

information about the API interface of these CMSIS drivers.

ARM::CMSIS-Driver pack contains example CMSIS-Driver implementations

for such interfaces as WiFi, Ethernet, Flash, I2C and SPI.

Configuration

There are multiple ways to configure a CMSIS-Driver. The classical method is

using the RTE_Device.h file that comes with the device support.

Other devices may be configured using third party graphical configuration tools

that allow the user to configure the device pin locations and the corresponding

drivers. Usually, these configuration tools automatically create the required C

code for import into the µVision project.

Using RTE_Device.h

For most devices, the RTE_Device.h file configures the drivers to the actual pin

connection of the microcontroller device:

Using the Configuration Wizard view, you can configure the driver interfaces in

a graphical mode without the need to edit manually the #defines in this header

file.

https://arm-software.github.io/CMSIS_5/Driver/html/index.html
https://arm-software.github.io/CMSIS-Driver/General/html/index.html

34 CMSIS

Using STM32CubeMX

MDK supports CMSIS-Driver configuration for STM32 devices using

STM32CubeMX. This graphical software configuration tool allows you to

generate C initialization code using graphical wizards for STMicroelectronics

devices.

Simply select the required CMSIS-Driver in the Manage Run-Time Environment

window and choose Device:STM32Cube Framework (API):STM32CubeMX.

This will open STM32CubeMX for device and driver configuration. Once

finished, generate the configuration code and import it into µVision.

For more information, visit the online documentation at

keil.com/pack/doc/STM32Cube/General/html/index.html.

Validation Suites for Drivers and RTOS
Software packs to validate user-written CMSIS-Drivers or a new implementation

of a CMSIS-RTOS are available from keil.com/pack. They contain the source

code and documentation of the validation suites along with required configuration

files, and examples that show the usage on various target platforms.

The CMSIS-Driver validation suite performs the following tests:

▪ Generic validation of API function calls

▪ Validation of configuration parameters

▪ Validation of communication with loopback tests

▪ Validation of communication parameters such as baudrate

▪ Validation of event functions

The test results can be printed to a console, output via ITM printf, or output to a

memory buffer. Refer to the Driver Validation section in the documentation at

arm-software.github.io/CMSIS_5/Driver/html/driverValidation.html.

The CMSIS-RTOS validation suite performs generic validation of various RTOS

features. The test cases verify the functional behavior, test invalid parameters and

call management functions from ISR.

The validation output can be printed to a console, output via ITM printf, or output

to a memory buffer. Refer to the section RTOS Validation in the documentation

at arm-software.github.io/CMSIS_5/RTOS2/html/rtosValidation.html.

http://www.keil.com/pack/doc/STM32Cube/General/html/index.html
http://www.keil.com/pack
https://arm-software.github.io/CMSIS_5/Driver/html/driverValidation.html
https://arm-software.github.io/CMSIS_5/RTOS2/html/rtosValidation.html

Getting Started with MDK: Create Applications with µVision 35

Software Components
The development of complex embedded applications requires a modular

architecture with multiple own and third-party components used. MDK and

CMSIS allow to easily integrate and maintain software components in your

projects.

Use Software Packs
Software packs contain information about microcontroller devices and software

components that are available for the application as building blocks.

The device information pre-configures development tools for you and shows only

the options that are relevant for the selected device.

TIP: Only devices that are part of the installed software packs are shown. If you

are missing a device, use the Pack Installer to add the related software

pack. The search box helps you to narrow down the list of devices.

 Start µVision and use the menu Project - New µVision Project. After you

have selected a project directory and specified the project name, select a

target device.

36 Software Components

TIP: The links in the column Description provide access to the documentation of

each software component.

NOTE

The notation ::<Component Class>:<Group>:<Name> is used to refer to

components. For example, ::CMSIS:CORE refers to the component CMSIS-

CORE selected in the dialog above.

Software Component Overview

The following table shows the software components included with a typical MDK

installation. Depending on your MDK edition and selected device, some of these

software components might not be available in the Manage Run-Time

Environment window. In case you have installed additional software packs, more

software components will be available.

 After selecting the device, the Manage Run-Time Environment window

shows the related software components for this device.

Getting Started with MDK: Create Applications with µVision 37

Software Component Description Page

CMSIS CMSIS interface components, such as CORE, DSP,
and CMSIS-RTOS.

19

CMSIS Driver Unified device drivers for middleware and user
applications.

19

Compiler Arm Compiler specific software components to retarget
I/O operations for example for printf style debugging.
Event recorder for debugging software components and
user application code.

39

Board Support Interfaces to the peripherals of evaluation boards. 42

IoT Clients Components for communication with cloud services. 43

Device System startup and low-level device drivers. 58

File System Middleware component for file access on various
storage device types.

93

Graphics Middleware component for creating graphical user
interfaces.

95

Network Middleware component for TCP/IP networking using
Ethernet or serial protocols.

91

USB Middleware component for USB Host and USB Device
supporting standard USB Device classes.

94

Mbed IoT Components Mbed libraries for secure communication and
cryptography

96

Product Lifecycle Management with Software
Packs

MDK allows you to install multiple versions of a software pack. This enables

product lifecycle management (PLM) as it is common for many projects.

There are four distinct phases of PLM:

▪ Concept: Definition of major project requirements and exploration with a

functional prototype.

▪ Design: Prototype testing and implementation of the product based on the

final technical features and requirements.

▪ Release: The product is manufactured and brought to market.

▪ Service: Maintenance of the products including support for customers;

finally, phase-out or end-of-life.

38 Software Components

In the concept and design phase, you normally want to use the latest software

packs to be able to incorporate new features and bug fixes quickly. Before

product release, you will freeze the software components to a known tested state.

In the product service phase, use the fixed versions of the software components to

support customers in the field.

When the project is completed, disable the option Use latest version of all

installed Software Packs and specify the software packs with the settings under

Selection:

▪ latest: use the latest version of a software pack. Software components are

updated when a newer software pack version is installed.

▪ fixed: specify an installed version of the software pack. Software components

in the project target will use these versions.

▪ excluded: no software components from this software pack are used.

The colors indicate the usage of software components in the current project

target:

The dialog Select Software Packs helps you to manage the versions of each

software pack in your project:

Some software components from this pack are used. Some Software Components from this Pack are used.

Getting Started with MDK: Create Applications with µVision 39

Software Version Control Systems (SVCS)

µVision carries template files for GIT, SVN, CVS, and others to support

Software Version Control Systems (SVCS).

Application note 279 “Using Git for Project Management with µVision”

(keil.com/appnotes/docs/apnt_279.asp) describes how to establish a robust

workflow for version control of projects using software packs.

Compiler:Event Recorder
Modern microcontroller applications often contain middleware components,

which are normally a "black box" to the application programmer. Even when

comprehensive documentation and source code is provided, analyzing of

potential issues is challenging.

The software component Compiler:Event Recorder uses event annotations in

the application code or software component libraries to provide event timing and

data information while the program is executing. This event information is stored

in an event buffer on the target system that is continuously read by the debug unit

and displayed in the event recorder window of the µVision debugger.

During program execution, the µVision debugger reads the content of the event

buffer using a debug adapter that is connected via JTAG or SWD to the

CoreSight Debug Access Port (DAP). The event recorder requires no trace

hardware and can therefore be used on any Cortex-M processor-based device.

Some software components from this pack are used, but the pack is

excluded.

No software component from this pack is used.

http://www.keil.com/appnotes/docs/apnt_279.asp

40 Software Components

To display the data stored in the event buffer in a human readable way, you need

to create a Software Component Viewer Description (SCVD) file. Refer to:

keil.com/pack/doc/compiler/EventRecorder/html/index.html

The section Event Recorder on page 74 shows how to use the event recorder in a

debug session.

Compiler:I/O
The software component Compiler:I/O allows you to retarget I/O functions of

the standard C run-time library. Application code frequently uses standard I/O

library functions, such as printf(), scanf(), or fgetc() to perform input/output

operations.

The structure of these functions in the standard Arm Compiler C run-time library

is:

The high-level and low-level functions are not target-dependent and use the

system I/O functions to interface with hardware.

The MicroLib of the Arm Compiler C run-time library interfaces with the

hardware via low-level functions. The MicroLib implements a reduced set of

high-level functions and therefore does not implement system I/O functions.

The software component Compiler:I/O retargets the I/O functions for the various

standard I/O channels: File, STDERR, STDIN, STDOUT, and TTY:

http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

Getting Started with MDK: Create Applications with µVision 41

I/O Channel Description

File Channel for all file related operations (fscanf, fprintf, fopen, fclose, etc.)

STDERR Standard error stream of the application to output diagnostic messages.

STDIN Standard input stream going into the application (scanf etc.).

STDOUT Standard output stream of the application (printf etc.).

TTY Teletypewriter which is the last resort for an error output.

The variant selection allows you to change the hardware interface of the I/O

channel.

Variant Description

File System Use the File System component as the interface for File related operations

EVR

Breakpoint

Use the event recorder to display printf debug messages

When the I/O channel is used, the application stops with BKPT instruction.

ITM Use Instrumentation Trace Macrocell (ITM) for I/O communication via the debugger.

User Retarget I/O functions to a user defined routine (such as USART, keyboard).

The software component Compiler adds the file

retarget_io.c that will be configured acording to the

variant settings. For the User variant, user code

templates are available that help you to implement

your own functionality. Refer to the documentation

for more information.

ITM in the Cortex-M3/M4/M7 supports printf style

debugging. If you choose the variant ITM, the I/O

42 Software Components

library functions perform I/O operations via the Debug (printf) Viewer window.

As ITM is not available in Cortex-M0/M0+ devices, you can use the event

recorder to display printf debug messages. Use the EVR variant of the STDOUT

I/O channel for this purpose (works with all Cortex-M based devices).

For more details refer to:

keil.com/pack/doc/compiler/RetargetIO/html/index.html

Board Support
There are a couple of interfaces that are frequently used on development boards,

such as LEDs, push buttons, joysticks, A/D and D/A converters, LCDs, and

touchscreens as well as external sensors such as thermometers, accelerometers,

magnetometers, and gyroscopes.

The Board Support Interface API provides standardized access to these

interfaces. This enables software developers to concentrate on their application

code instead of checking device manuals for register settings to toggle a GPIO.

Many Device Family Packs (DFPs) have board support included. You can choose

board support from the Manage Run-Time Environment window:

Be sure to select the correct Variant to enable the correct pin configurations for

your development board.

You can add board support to your custom board by creating the required support

files for your board’s software pack. Refer to the API documentation available at:

keil.com/pack/doc/mw/Board/html/index.html

https://www.keil.com/pack/doc/compiler/RetargetIO/html/index.html
http://www.keil.com/pack/doc/mw/Board/html/index.html

Getting Started with MDK: Create Applications with µVision 43

IoT Clients
A set of MDK-Packs provides building blocks that enable secure connection from

a device to a cloud provider of choice.

MDK-Middleware Network Component, lwIP and various WiFi modules

(through CMSIS WiFi-Driver) are supported as underlying network stacks.

Reference Socket (API) implementations are provided in the MDK::IoT_Socket

pack. mbed TLS contains required components to secure the connection. Finally,

communication with a cloud service is enabled with IoT Clients available for the

following providers:

▪ Amazon AWS IoT

▪ Google Cloud IoT

▪ IBM Watson IoT

▪ Microsoft Azure IoT Hub

▪ Paho MQTT (Eclipse)

The software packs are generic (device-independent) and can be found in the

Pack Installer.

Additional information is provided at: keil.com/iot.

http://www2.keil.com/iot

44 Create Applications

Create Applications
This chapter guides you through the steps required to create a projects using

CMSIS components described in the previous chapter.

For many popular development boards MDK already provides ready-to-use

CMSIS based examples. It is always beneficial to take such an example as a

starting point as explained in Verify Installation using Example Projects and

then modify it for own application needs.

Device vendors may also provide MDK example applications in separate

deliverables not indexed in the MDK Pack Installer explained in Install Software

Packs. Development and configuration tools from device vendors may also allow

export of application projects into Keil MDK format. These two options should

be explored if no examples are found in MDK Pack Installer.

This chapter is structured as follows:

▪ Section µVision Project from Scratch explains how to start a new project

from scratch and can be followed when there is no example applications

available.

▪ Section Project with CMSIS-RTOS2 shows how to easily convert an

existing application with infinite loop design into Real-Time OS based

system using CMSIS-RTOS2 API.

▪ Device Configuration Variations explains integrations with device vendor

tools for device startup.

▪ Finally, section Secure/non-secure programming guides through the project

setup for devices based on Armv8-M architecture.

NOTE

The example code in this chapter works for the MIMXRT1050-EVK evaluation

board (populated with MIMXRT1052DVL6B device). Adapt the code for other

starter kits or boards.

µVision Project from Scratch
This section describes the steps for setting up a new CMSIS based project from

scratch:

▪ Setup New µVision Project: create a project file and select the

microcontroller device along with the relevant CMSIS components.

Getting Started with MDK: Create Applications with µVision 45

▪ Add main.c Source Code File: Add main.c file to the project with initial

code for main() function and device initialization.

▪ Configure Project Options: adjust project settings to ensure that the project

can be built correctly.

▪ Build the Application Project: compile and link the application for

programming it onto the target microcontroller device.

▪ Using the Debugger guides you through the steps to connect your evaluation

board to the PC and to download the application to the target.

Setup New µVision Project

From the µVision menu bar, choose Project – New µVision Project.

Next, the dialog Select Device for Target opens.

Select an empty folder and enter the project name, for example, MyProject.

Click Save, which creates an empty project file with the specified name

(MyProject.uvprojx).

46 Create Applications

The device selection defines essential tool settings such as compiler controls, the

memory layout for the linker, and the Flash programming algorithms. However,

in some cases (especially for more complex devices) additional configurations are

required to achieve correct project build and debug. This is explained in step

Configure Project Options.

Then the Manage Run-Time Environment dialog opens and shows the software

components that are installed and available for the selected device.

Following components need to be added for CMSIS-based project:

Select the target device and, if necessary, the target CPU in a multi-core

device. In our case this is MIMXRT1052DVL6B and click OK.

TIP: If the target device is not available in the list – verify that the

corresponding Device Family Pack (DFP) is installed as explained in Install

Software Packs.

Expand ::CMSIS and enable CORE.

Expand ::Device::Startup and enable one of the offered variants. In our

case it is just one: MIMXRT1052_startup.

Getting Started with MDK: Create Applications with µVision 47

Other components can be added depending on the application needs. In our case

we limit to the bare minimum.

The Validation Output field may show dependencies to other software

components that are required based on the current selection. In such case click

Resolve button to automatically resolve all dependencies and enable other

required

TIP: A click on a message highlights the related software component.

In our example shown above there is no extra dependencies to resolve.

The selected software components are included into the project together with the

device startup file and CMSIS system files. The Project window displays the

selected software components along with the related files. Double-click on a file

to open it in the editor.

Add main.c Source Code File

Now we can add the main.c file with initial program code.

Click OK.

In the Project window, right-click Source Group 1 and open the dialog

Add New Item to Group.

Click on C File (.c) specify the file name, in our case main.c and click Add.

48 Create Applications

This creates the file main.c in the project group Source Group 1. Add following

content to the file:

/* --

 * main.c file

 * --*/

#include "RTE_Components.h" // Component selection

#include CMSIS_device_header // Device header

uint32_t volatile msTicks; // Counter for millisecond Interval

void SysTick_Handler (void) { // SysTick Interrupt Handler

 msTicks++; // Increment Counter

}

void WaitForTick (void) {

 uint32_t curTicks;

 curTicks = msTicks; // Save Current SysTick Value

 while (msTicks == curTicks) { // Wait for next SysTick Interrupt

 __WFE (); // Power-Down until next Event

 }

}

// Configure & Initialize the MCU

void Device_Initialization (void) {

 SystemInit(); // Device initialization

 SystemCoreClockUpdate(); // Clock setup

 if (SysTick_Config (SystemCoreClock / 1000)) { // SysTick 1ms

 ; // Handle Error

 }

}

http://www.keil.com/pack/doc/cmsis/Core/html/group__intrinsic___c_p_u__gr.html#gad3efec76c3bfa2b8528ded530386c563
http://www.keil.com/pack/doc/cmsis/Core/html/group___sys_tick__gr.html#gabe47de40e9b0ad465b752297a9d9f427
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6

Getting Started with MDK: Create Applications with µVision 49

// The processor clock is initialized by CMSIS startup + system file

int main (void) { // User application starts here

 Device_Initialization (); // Configure & Initialize MCU

 while (1) { // Endless Loop (the Super-Loop)

 __disable_irq (); // Disable all interrupts

 // Get_InputValues ();

 __enable_irq (); // Enable all interrupts

 // Process_Values ();

 WaitForTick (); // Synchronize to SysTick Timer

 }

}

For many devices the build process described in step Build the Application

Project will succeed already after this this step.

In some cases (and in our example for MIMXRT1052) additional changes in the

project configurations are required as explained in Configure Project Options

section below.

Device Initialization

System initialization in our simple example is done in the Device_initialization()

function using only CMSIS-Core API.

Silicon vendors provide the device-specific file system_<device>.c (in our case

system_MIMXRT2052.c) that implements SystemInit and

SystemCoreClockUpdate functions. This file gets automatically added to the

project with the selection of ::Device::Startup component in the Manage Run-

Time Environment in the previous step.

Real-world examples often require complex configuration for pins and

peripherals with a significant part of the system setup relying on the device

hardware abstraction layer (HAL) provided by the vendor.

Section Device Configuration Variations explains additional details and

provides examples on device configuration using external tools.

Configure Project Options

For some devices new projects cannot be built and programmed onto the device

with default settings and require special configuration options. This is often a

reason why starting with a ready-to-use example can be beneficial.

Click Options for Target... button on the toolbar to access the

configuration options.

http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#gaeb8e5f7564a8ea23678fe3c987b04013
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#ga0f98dfbd252b89d12564472dbeba9c27

50 Create Applications

It contains multiple tabs that provide configuration options for corresponding

functionality.

Changes required for getting started depend on the target device and software

components used in the project. Subsections below explain the modifications

required in the specified dialog tabs for the MIMXRT1052 used in our example.

C/C++ (AC6) dialog

To exclude mostly just informative warnings generated by the Arm Compiler 6

select AC5-like Warnings in the Warnings field of the C/C++ (AC6) tab.

Linker dialog

Complex devices or programs may require use of a scatter file to specify memory

layout. The figure below highlights the changes required in our example:

1. Unchecking the flag Use Memory Layout from Target Dialog enables use

of custom scatter file provided in the item 4 below.

2. R/O and R/W Bases define the start addresses for read only (code and

constants) and read-write areas respectively.

3. Disable warning #6314 for unused memory objects.

Getting Started with MDK: Create Applications with µVision 51

4. The Device Family Pack (DFP) contains some preconfigured scatter files that

are copied into the new project. To simplify project configuration, we will

execute the program from the on-chip RAM and hence choose in the drop-

down menu for the Scatter file the

.\RTE\Device\MIMXRT1052DVL6B\MIMXRT1052xxxxx_ram.scf.

Debug dialog

To ensure that the program loads to RAM and we can debug it, following changes

are required in the Debug tab.

/*---

 * evkbimxrt1050_ram.ini file

 --/

FUNC void Setup (void) {

 SP = _RDWORD(0x00000000); // Setup Stack Pointer

 PC = _RDWORD(0x00000004); // Setup Program Counter

 _WDWORD(0xE000ED08, 0x00000000); // Setup VTOR

}

FUNC void OnResetExec (void) { // executes upon software RESET

 Setup(); // Setup for Running

}

LOAD %L INCREMENTAL // Download

Setup(); // Setup for Running

// g, main

Utilities dialog

In the project folder create a new file that will be used to initialize the debug

session (in our case - evkbimxrt1050_ram.ini) and provide path to it in the

Initialization File field.

For this example, add the following content to the file:

In the Utilities dialog, uncheck the option Update Target before

Debugging to ensure that the debugger doesn’t try to load program to Flash.

52 Create Applications

Build the Application Project

Use Rebuild toolbar button to build the application, which compiles and links

all related source files. Build Output shows information about the build process.

An error-free build displays program size information, zero errors, and zero

warnings.

The section Debug Applications guides you through the steps to connect your

evaluation board to the PC and download the application to the target hardware.

Project with CMSIS-RTOS2
The section shows how to setup a simple project based on CMSIS-RTOS2. The

project uses device HAL to control on-board LED.

To avoid making project configuration and device initialization from scratch we

take an existing blinky example in infinite-loop design delivered with the DFP

and modify it to operate based on CMSIS-RTOS2 API. Following steps are

required:

1. Copy an Example: copy an existing example and verify that it works

2. Add CMSIS-RTO2 Component: add CMSIS-RTOS2 API and RTX5 kernel

to the

Getting Started with MDK: Create Applications with µVision 53

3. Add RTOS Initialization: add main.c file that initializes the device and

RTOS.

4. Configure Keil RTX5 RTOS: modify the RTOS settings according to the

application needs.

5. Implement User Threads: implement user code.

6. Build and Run the program: the step is same as explained in the previous

section.

In our case we will use a simple iled_blinky example for IMXRT1050-EVK

board.

Copy an Example

Section Verify Installation using Example Projects explains the steps needed to

copy, build and run an example project. In our example we use target iled_blinky

debug that executes the program from on-chip RAM.

54 Create Applications

Add CMSIS-RTO2 Component

Next, add the RTOS software component:

To build the project with the iled_blinky debug target, the SPI flash related

file fsl_flexspi_nor_boot.c has to be excluded from the build.

Find this file in the Project window under Device component, right-click on

it, then select Options for Component Class ‘Device’ and in the

Properties tab uncheck Include in target build. Press OK. The file will be

marked with a corresponding symbol

Expand ::CMSIS::RTOS2 (API) and enable Keil RTX5. In the Variant

column select Source to have the RTOS added to the project as a source

code that also supports detailed debugging using Event Recorder. For

reduced code size, use the Library variant instead. Press OK.

Getting Started with MDK: Create Applications with µVision 55

Keil RTX5 code appears in the Project window under CMSIS component.

In our case for MIMRT1052 we need to change the Assembler Option so

that Keil RTX5 file irq4_cm4f.s can be assembled correctly.

For that go to the Options for Target.. – Asm tab and in the dropdown

menu Assembler Option select armclang (Auto Select) instead of

armclang (GNU Syntax) configured by default in the original example.

Press OK.

 Alternatively, the assembler option can be specified for the irq4_cm4f.s file

only. For that find this file in the Project window under CMSIS component,

right-click on it, then select Options for Component Class ‘CMSIS’ and in

the Asm tab choose armclang (Arm Syntax) from the drop-down menu in

Assembler Option field. Press OK.

56 Create Applications

Add RTOS Initialization

Add template application code using pre-configured User Code Templates

containing routines that resemble the functionality of the software component.

This adds the file main.c to the project group source. The file contains the

necessary functions for minimal CMSIS-RTOS application.

We reuse the device initialization functions from the original main() function. We

remove the implementation of app_main function as it will be placed in the other

file. As a result, the main.c file contains following code:

/*---

 * CMSIS-RTOS 'main' function template

 --/

#include "RTE_Components.h"

#include CMSIS_device_header

#include "cmsis_os2.h"

#include "board.h"

#include "pin_mux.h"

extern void app_main (void *argument); // application main thread

In the Project window, right-click in the group with the source code (in our

case source and open the dialog Add New Item to Group.

Click on User Code Template to list available code templates for the

software components included in the project. Select CMSIS-RTOS2 ‘main’

function, verify the file name, and click Add.

Getting Started with MDK: Create Applications with µVision 57

int main (void) {

 /* Board pin init */

 BOARD_InitPins();

 BOARD_InitBootClocks();

 // System Initialization

 SystemCoreClockUpdate();

 // ...

 osKernelInitialize(); // Initialize CMSIS-RTOS

 osThreadNew(app_main, NULL, NULL); // Create application main thread

 osKernelStart(); // Start thread execution

 for (;;) {}

}

Note the Board_InitPins() and Board_InitBootClocks() functions that configure

the underlying MIMXRT1052 device. Section Example: MCUXpresso Config

Tools explains device configuration in more details.

Configure Keil RTX5 RTOS

Implement User Threads

The file led_blinky.c, containing the initial main() function, can now be rewritten

using RTOS threads. We implement two user threads: thrLED toggling the LED

and thrSGN acting as a signal thread that triggers thrLED thread with regular

delays.

/*---

 * led_blinky.c file

 --/

#include "cmsis_os2.h"

#include "fsl_gpio.h"

#include "pin_mux.h"

#include "board.h"

static osThreadId_t tid_thrLED; // Thread id of thread: LED

static osThreadId_t tid_thrSGN; // Thread id of thread: SGN

/*---

 thrLED: blink LED

 ---/

__NO_RETURN static void thrLED(void *argument) {

 (void)argument;

 uint32_t active_flag = 1U;

 for (;;) {

In Project window - CMSIS group open RTX_Config.h file and configure

according to the project requirements as explained in

Keil RTX5 Configuration. In our example we can keep default settings.

58 Create Applications

 osThreadFlagsWait(1U, osFlagsWaitAny, osWaitForever);

 GPIO_PinWrite(BOARD_USER_LED_GPIO, BOARD_USER_LED_PIN, active_flag);

 active_flag=!active_flag;

 }

}

/*---

 thrSGN: Signal LED to change

 --/

__NO_RETURN static void thrSGN(void *argument) {

 (void)argument;

 uint32_t last;

 for (;;) {

 osDelay(500U); // Run delay for 500 ticks

 osThreadFlagsSet(tid_thrLED, 1U); // Set flag to thrLED

 }

}

/*---

 * Application main thread

 --/

void app_main(void *argument) {

 (void)argument;

 tid_thrLED = osThreadNew(thrLED, NULL, NULL); // Create LED thread

 if (tid_thrLED == NULL) { /* add error handling */ }

 tid_thrSGN = osThreadNew(thrSGN, NULL, NULL); // Create SGN thread

 if (tid_thrSGN == NULL) { /* add error handling */ }

 osThreadExit();

}

Device Configuration Variations
CMSIS-CORE defines methods for device startup such as SystemInit() and

SystemClock_Config() but the actual implementation details vary between

different vendors.

Some devices perform a significant part of the system setup as part of the device

hardware abstraction layer (HAL). In many cases the HAL components for the

target platform are delivered as part of the Device Family Pack (DFP) and are

available for selection in the Manage Run-Time Environment dialog, typically

under ::Device component.

Device vendors frequently provide a software framework that allows device

configuration with external utilities.

In the following section, device startup variations are exemplified.

Getting Started with MDK: Create Applications with µVision 59

Example: STM32Cube

Many STM32 devices are using the STM32Cube framework that can be

configured with a classical method using the RTE_Device.h configuration file or

by using STM32CubeMX tool.

The classic STM32Cube Framework component provides a specific user code

template that implements the system setup. Using STM32CubeMX, the main.c

file and other source files required for startup are copied into the project below

the STM32CubeMX:Common Sources group.

Setup the Project using the Classic Framework

This example creates a project for the STM32F746G-Discovery kit using the

classical method. In the Manage Run-Time Environment window, select the

following:

Expand ::Device:STM32Cube Framework (API) and enable :Classic.

Expand ::Device and enable :Startup.

Click Resolve to enable other required software components and then OK.

60 Create Applications

The main.c file contains the function SystemClock_Config(). Here, you need to

make the settings for the clock setup:

Code for main.c

:

static void SystemClock_Config (void) {

 RCC_ClkInitTypeDef RCC_ClkInitStruct;

 RCC_OscInitTypeDef RCC_OscInitStruct;

 /* Enable HSE Oscillator and activate PLL with HSE as source */

 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;

 RCC_OscInitStruct.HSEState = RCC_HSE_ON;

 RCC_OscInitStruct.HSIState = RCC_HSI_OFF;

 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

 RCC_OscInitStruct.PLL.PLLM = 25;

 RCC_OscInitStruct.PLL.PLLN = 432;

 RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;

 RCC_OscInitStruct.PLL.PLLQ = 9;

 HAL_RCC_OscConfig(&RCC_OscInitStruct);

 /* Activate the OverDrive to reach the 216 MHz Frequency */

 HAL_PWREx_EnableOverDrive();

 /* Select PLL as system clock source and configure the HCLK, PCLK1 and

PCLK2 clocks dividers */

 RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK

| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);

 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;

 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

 HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7);

}

:

In the Project window, right-click Source Group 1 and open the dialog

Add New Item to Group.

Click on User Code Template to list available code templates for the

software components included in the project. Select ‘main’ module for

STM32Cube and click Add.

Getting Started with MDK: Create Applications with µVision 61

Now, you can start to write your application code using this template.

Setup the Project using STM32CubeMX

This example creates the same project as before using STM32CubeMX. In the

Manage Run-Time Environment window, select the following:

Expand ::Device:STM32Cube Framework (API) and enable

:STM32CubeMX. Expand ::Device and enable :Startup.

Click Resolve to enable other required software components and then OK.

A new window will ask you to start STM32CubeMX.

62 Create Applications

Read more about device setup for a Vision project using STM32CubeMX in

dedicated documentation

keil.com/pack/doc/STM32Cube/General/html/index.html.

 STM32CubeMX is started with the correct device selected:

Configure your device as required. When done, go to Project → Generate

Code to create a GPDSC file. µVision will notify you:

Click Yes to import the project. The main.c and other generated files are

added to a folder called STM32CubeMX:Common Sources.

https://www.keil.com/pack/doc/STM32Cube/General/html/index.html

Getting Started with MDK: Create Applications with µVision 63

Example: MCUXpresso Config Tools

For configuring most of its Kinetis, LPC and iMX RT devices NXP provides

MCUXpresso Config Tools.

Enable Project for Configuration

To configure an MDK project for MCUXpresso Config Tools it has to contain

special components in the Board Support and Device groups. This is already the

case for many example projects available via the Pack Installer but needs to be

ensured for older projects or when creating a project from scratch.

Expand ::Board Support::SDK Project Template:: and enable

:project_template. From the drop-down menu in Variant column choose

either an option for target MCU or if available target board (evkbimxrt1050

in our case). Multiple dependencies may be highlighted in yellow as

required.

64 Create Applications

Configure the Device

When the project contains the components explained in the subsection above

MCUXpresso Config Tools can be used to create the device initialization code.

Click Resolve to enable the required software components and then OK.

Start the MCUXpresso Config Tools. Create a new configuration dialog

opens. The dialog can be also open from File – New… menu.

Select option Create a new configuration based on an existing

IDE/toolchain project and specify the path to the µVision project. In our

case we take an example explained in section Project with CMSIS-

RTOS2.

Getting Started with MDK: Create Applications with µVision 65

Press Finish.

 Wait until Config Tool Overview window opens.

Use available graphical tools to configure device clocks, pins, peripherals,

and DCD as required.

66 Create Applications

 In our example we add a GPIO5 initialization for the user button available

on the board:

Press Update Code button. Review the changes to be applied and press OK.

This updates the necessary files in the Board Support group present in the

project.

Getting Started with MDK: Create Applications with µVision 67

Update Application Code the Device

In our example we just update the thrSGN thread in led_blinky.c file so that the

signal for togging the LED is postponed as long as the user button is pressed:

/*---

 thrSGN: Signal LED to change

 --/

__NO_RETURN static void thrSGN(void *argument) {

 (void)argument;

 uint32_t last;

 for (;;) {

 osDelay(500U); // Run delay for 500 ticks

 while (!GPIO_PinRead (BOARD_USER_BUTTON_GPIO,

 BOARD_USER_BUTTON_GPIO_PIN)){

 osDelay(10); // Delay further while SW8 button is pressed

 }

 osThreadFlagsSet(tid_thrLED, 1U); // Set flag to thrLED

 }

}

Secure/non-secure programming
Embedded system programmers face demanding product requirements that

include cost sensitive hardware, deterministic real time behavior, low-power

operation, and secure asset protection.

Modern applications have a strong need for security. Assets that may require

protection are:

▪ device communication (using cryptography and authentication methods)

▪ secret data (such as keys and personal information)

▪ firmware (against IP theft and reverse engineering)

▪ operation (to maintain service and revenue)

The TrustZone® for Armv8-M security extension is a System on Chip (SoC) and

CPU system-wide approach to security and is optimized for ultra-low power

embedded applications. It enables multiple software security domains that restrict

access to secure memory and I/O to trusted software only.

TrustZone for Armv8-M architecture (Cortex-M23/M33/M35P/M55 cores):

Update application code according to the new device configuration.

This may require including some header files, calling additional

initialization functions in main() and of course implementing application

logic itself.

68 Create Applications

▪ preserves low interrupt latencies for both secure and non-secure domains.

▪ does not impose code or cycle overhead.

▪ introduces efficient instructions for calls to the secure domain.

Create Armv8-M software projects

The steps to create a new software project for an Armv8-M core (Cortex-

M23/M33/M35P/M55) in MDK are:

▪ Define the overall system and memory configuration. This has impact on:

o Setup secure and non-secure projects

o Add startup code and 'main' module to secure and non-secure projects.

o Reflect this configuration in the CMSIS-Core file partition_<device>.h

▪ Define the API of the secure software part in a header file to allow usage

from the non-secure part

▪ Create the application software for the secure and the non-secure part

Application note 291 describes the necessary steps in detail and contains example

projects and best practices for secure and non-secure programming using

Armv8-M targets. It is available at keil.com/appnotes/docs/apnt_291.asp

http://www.keil.com/appnotes/docs/apnt_291.asp

Getting Started with MDK: Create Applications with µVision 69

Debug Applications
The Arm CoreSight™ technology integrated into the Arm Cortex-M processor-

based devices provides powerful debug and trace capabilities. It enables run-

control to start and stop programs, breakpoints, memory access, and Flash

programming. Features like sampling, data trace, exceptions including program

counter (PC) interrupts, and instrumentation trace are available in most devices.

Devices offer instruction trace using Embedded Trace Macrocell (ETM),

Embedded Trace Buffer (ETB), or Micro Trace Buffer (MTB) to enable analysis

of the program execution. Refer to keil.com/coresight for a complete overview

of the debug and trace capabilities.

Debugger Connection
MDK contains the µVision Debugger that connects to various debug/trace

adapters and allows you to program the Flash memory. It supports traditional

features like simple and complex breakpoints, watch windows, and execution

control. Using trace, additional features like event/exception viewers, logic

analyzer, execution profiler, and code coverage are supported.

▪ The ULINKplus and ULINK2 debug

adapters interface to JTAG/SWD debug

connectors and support trace with the

Serial Wire Output (SWO). The

ULINKpro debug/trace adapter also interfaces to ETM trace connectors and

uses streaming trace technology to capture the complete instruction trace for

code coverage and execution profiling. Refer to keil.com/ulink for more

information.

▪ CMSIS-DAP based USB JTAG/SWD

debug interfaces are typically part of an

evaluation board or starter kit and offer

integrated debug features. MDK also

supports several proprietary interfaces that offer a similar technology.

▪ Third-party debug solutions, such as Segger J-Link or J-Trace are supported

in MDK. Some starter kit boards provide the J-Link Lite technology as an on-

board solution.

http://www.keil.com/coresight
http://www.keil.com/ulink

70 Debug Applications

Using the Debugger
As an example, we will debug the Blinky application created in the previous

chapter on hardware. You need to configure the debug connection.

Select the debug adapter and configure debug options.

The device selection already configures the Flash programming algorithm for on-

chip memory. Verify the configuration using the Settings button.

In our example we run the program out of RAM. But in cases when flash memory

is used, the program needs to be loaded into the Flash.

From the toolbar, choose Options for Target, click the Debug tab, enable

Use, and select the applicable debug driver.

From the toolbar, choose Download. The Build Output window shows

messages about the download progress.

Getting Started with MDK: Create Applications with µVision 71

During the start of a debugging session, µVision loads the application, executes

the startup code, and stops at the main C function.

Debug Toolbar

The debug toolbar provides quick access to many debugging commands such as:

Start debugging on hardware. From the toolbar, select Start/Stop Debug

Session.

 Click Run on the toolbar. The LED flashes with a frequency of one second.

 Step steps through the program and into function calls.

 Step Over steps through the program and over function calls.

 Step Out steps out of the current function.

 Stop halts program execution.

 Reset performs a CPU reset.

Show to the next statement to be executed (current PC location).

72 Debug Applications

Command Window

You may also enter debug commands in the Command window.

On the Command Line enter debug commands or press F1 to access detailed

help information.

Disassembly Window

The Disassembly

window shows the

program execution in

assembly code

intermixed with the

source code (when

available). When this is

the active window, then

all debug stepping

commands work at the

assembly level.

The window margin

shows markers for

breakpoints, bookmarks, and for the next execution statement.

Getting Started with MDK: Create Applications with µVision 73

Component Viewer

The Component Viewer shows information about:

▪ Software components that are provided in static memory variables or

structures.

▪ Objects that are addressed by an object handle.

Component Viewer windows containing objects are listed in the menu View –

Watch Windows.

The picture below is an example showing static component information for a

USB HID example project:

For more information refer to

keil.com/pack/doc/compiler/EventRecorder/html/cv_use.html.

https://www.keil.com/pack/doc/compiler/EventRecorder/html/cv_use.html

74 Debug Applications

Event Recorder

The Event Recorder shows execution status and event information and helps to

analyze the operation of software components. MDK-Middleware and the Keil

RTX5 already offer the required description files.

The Event Recorder:

▪ increases the visibility to the dynamic execution of an application program.

▪ provides filter capabilities for the different event types.

▪ allows unrestricted calls to event recorder functions from threads, RTOS

kernel, and ISRs.

▪ implements recording functions that do not disable ISR on Armv7-M.

▪ supplies fast time-deterministic execution of event recorder functions with

minimal code and timing overhead. Thus, event annotations can remain in

production code without the need to create a debug or release build.

To add the Event Recorder to the example from section Project with CMSIS-

RTOS2 on page 52, do the following:

▪ In the Manage Run-Time Environment window, select the component

Compiler:Event Recorder and also verify that the component

CMSIS:RTOS2 (API):Keil RTX5 is selected in Source variant. Press OK.

▪ In the Project window under CMSIS component open RTX_Config.h file,

switch to the Configuration Wizard view, expand Event Recorder

Configuration group and enable Global Initialization.

Getting Started with MDK: Create Applications with µVision 75

▪ In the Project window under Compiler component open

EventRecorderConf.h file, switch to the Configuration Wizard view,

expand Event Recorder group and specify 6000000000 as the Time Stamp

Clock Frequency [Hz]. This ensures correct timestamping for this project.

▪ Rebuild the project, download the code to the target and start a debug session.

 Open the event recorder window from the toolbar or the menu using

View – Analysis Windows – Event Recorder.

While debugging, events issued by Keil RTX5 are displayed in this window.

Event Recorder Configuration group in the RTX_Config.h file allows further

to configure the events to be generated by RTX and captured by Event Recorder.

The documentation explains how to use Event Recorder in a user application:

keil.com/pack/doc/compiler/EventRecorder/html/index.html

http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

76 Debug Applications

System Analyzer

The System Analyzer window provides a graphical analysis tool that can be used

with any Arm Cortex-M based device. It shows:

▪ Incoming events from Compiler:Event Recorder.

▪ RTX5 RTOS thread events and status.

▪ Power measurement data (requires ULINKplus debug adapter).

▪ Exceptions (requires SWO trace and ULINKpro or ULINKplus).

▪ Value changes of VTREGs or variables (requires SWO trace).

For more details refer to documentation:

keil.com/support/man/docs/uv4/uv4_db_dbg_systemanalyzer.htm

Open the System Analyzer from the toolbar or via the menu View -

Analysis Windows - System Analyzer.

https://www.keil.com/mdk5/ulink/ulinkplus
https://www.keil.com/mdk5/ulink/ulinkpro
https://www.keil.com/mdk5/ulink/ulinkplus
https://www.keil.com/support/man/docs/uv4/uv4_db_dbg_systemanalyzer.htm

Getting Started with MDK: Create Applications with µVision 77

Breakpoints

You can set breakpoints

▪ While creating or editing your program source code. Click in the grey margin

of the editor or Disassembly window to set a breakpoint.

▪ Using the breakpoint buttons in the toolbar.

▪ Using the menu Debug – Breakpoints.

▪ Entering commands in the Command window.

▪ Using the context menu of the Disassembly window or editor.

Breakpoints Window

You can define complex

breakpoints using the

Breakpoints window.

Open the Breakpoints

window from the menu

Debug.

Enable or disable

breakpoints using the

checkbox in the field

Current Breakpoints.

Double-click on an

existing breakpoint to

modify the definition.

Enter an Expression to add a new breakpoint. Depending on the expression, one

of the following breakpoint types is defined:

▪ Execution Breakpoint (E): is created when the expression specifies a code

address and triggers when the code address is reached.

▪ Access Breakpoint (A): is created when the expression specifies a memory

access (read, write, or both) and triggers on the access to this memory

address. Use a compare (==) operator to compare for a specified value.

If a Command is specified for a breakpoint, µVision executes the command and

resumes executing the target program.

The Count value specifies the number of times the breakpoint expression is true

before the breakpoint halts program execution.

78 Debug Applications

Watch Window

The Watch window allows you to observe

program symbols, registers, memory areas,

and expressions.

Add variables to the Watch window with:

▪ Click on the field <Enter expression> and double-click or press F2.

▪ In the Editor when the cursor is located on a variable, use the context menu

select Add <item name> to…

▪ Drag and drop a variable into a Watch window.

▪ In the Command window, use the WATCHSET command.

The window content is updated when program execution is halted, or during

program execution when View – Periodic Window Update is enabled.

Call Stack and Locals Window

The Call Stack + Locals window

shows the function nesting and

variables of the current program

location.

When program execution stops, the Call Stack + Locals window automatically

shows the current function nesting along with local variables. Threads are shown

for applications that use the CMSIS-RTOS RTX.

 Open a Watch window from the

toolbar or the menu using

View – Watch Windows.

Open the Call Stack + Locals

window from the toolbar or

the menu using View – Call

Stack Window.

Getting Started with MDK: Create Applications with µVision 79

Register Window

The Register window shows the content of the

microcontroller registers.

You can modify the content of a register by double-

clicking on the value of a register, or pressing F2 to

edit the selected value. Currently modified registers are

highlighted in blue. The window updates the values

when program execution halts.

Memory Window

Monitor memory areas using

Memory Windows.

▪ Enter an expression in the

Address field to monitor the

memory area.

▪ To modify memory content, use the Modify Memory at … command from

context menu of the Memory window double-click on the value.

▪ The Context Menu allows you to select the output format.

▪ To update the Memory Window periodically, enable View – Periodic

Window Update. Use Update Windows in the Toolbox to refresh the

windows manually.

Open the Registers window

from the toolbar or the menu

View – Registers Window.

 Open a Memory window

from the toolbar or the

menu using View –

Memory Windows.

Stop refreshing the Memory window by clicking the Lock button. You can

use the Lock feature to compare values of the same address space by

viewing the same section in a second Memory window.

80 Debug Applications

Peripheral Registers

Peripheral registers are memory mapped registers to which a processor can write

to and read from to control a peripheral. The menu Peripherals provides access

to Core Peripherals, such as the Nested Vector Interrupt Controller or the

System Tick Timer. You can access device peripheral registers using the System

Viewer.

NOTE

The content of the menu Peripherals changes with the selected microcontroller.

System Viewer

System Viewer windows display information

about device peripheral registers.

 With the System Viewer, you can:

▪ View peripheral register properties and

values. Values are updated periodically

when View — Periodic Window Update

is enabled.

▪ Change property values while debugging.

▪ Search for specific properties using TR1 Regular Expressions in the search

field. The appendix of the µVision User’s Guide describes the syntax of

regular expressions.

For details about accessing and using peripheral registers, refer to the online

documentation.

Open a peripheral register from the toolbar

or the menu Peripherals – System

Viewer.

http://www.keil.com/support/man/docs/uv4/uv4_f_search_expr.htm

Getting Started with MDK: Create Applications with µVision 81

Trace
Run/stop debugging, as described previously, has some limitations that become

apparent when testing time-critical programs, such as motor control or complex

communication applications. As an example, breakpoints and single stepping

commands change the dynamic behavior of the system. As an alternative, use the

trace features explained in this section to analyze running systems.

Arm Cortex-M processors integrate CoreSight logic that is able to generate the

following trace information using:

▪ Data Watchpoints record

memory accesses with data

value and program address and,

optionally, stop program

execution.

▪ Exception Trace outputs

details about interrupts and

exceptions.

▪ Instrumented Trace

communicates program events

and enables printf-style debug

messages and the RTOS Event Viewer.

▪ Instruction Trace streams the complete program execution for recording and

analysis.

The Trace Port Interface Unit (TPIU) is available on most Cortex-M3, Cortex-

M4, and Cortex-M7 processor-based microcontrollers and outputs above trace

information via:

▪ Serial Wire Trace Output (SWO) works only in combination with the

Serial Wire Debug mode (not with JTAG) and does not support Instruction

Trace.

▪ 4-Pin Trace Output is available on high-end microcontrollers and has the

high bandwidth required for Instruction Trace.

▪ On some microcontrollers, the trace information can be stored in an on-chip

Trace Buffer that can be read using the standard debug interface.

▪ Cortex-M3, Cortex-M4, and Cortex-M7 has an optional Embedded Trace

Buffer (ETB) that stores all trace data described above.

▪ Cortex-M0+ has an optional Micro Trace Buffer (MTB) that supports

instruction trace only.

82 Debug Applications

The required trace interface needs to be supported by both the microcontroller

and the debug adapter. The following table shows supported trace methods of

various debug adapters.

Feature ULINKpro ULINKplus ULINK2

Serial Wire Output (SWO) ✓ ✓ ✓

Maximum SWO Clock Frequency 200 MHz 60 MHz 3.75 MHz

4-Pin Trace Output for Streaming Trace ✓

Embedded Trace Buffer (ETB) Support ✓ ✓ ✓

Micro Trace Buffer (MTB) Support ✓ ✓ ✓

Trace with Serial Wire Output

To use the serial wire trace output (SWO), use the following steps:

Click Options for Target on the toolbar and select the Debug tab. Verify

that you have selected and enabled the correct debug adapter.

Click the Settings button. In the Debug dialog, select the debug Port: SW

and set the Max Clock frequency for communicating with the debug unit of

the device.

Getting Started with MDK: Create Applications with µVision 83

NOTE

When many trace features are enabled, the Serial Wire Output communication

can overflow. The µVision Status Bar displays such connection errors.

The ULINKpro debug/trace adapter has high trace bandwidth and such

communication overflows are rare. Enable only the trace features that are

currently required to avoid overflows in the trace communication.

Click the Trace tab. Ensure the Core Clock matches the System Core Clock

the MCU is running at. Set Trace Enable and select the Trace Events you

want to monitor.

Enable ITM Stimulus Port 0 for printf-style debugging when using ITM

as the output channel.

84 Debug Applications

Trace Exceptions

The Exception Trace window displays statistical data about exceptions and

interrupts.

To retrieve data in the Trace Exceptions window:

▪ Set Trace Enable in the Debug Settings Trace dialog as described above.

▪ Enable EXCTRC: Exception Tracing.

▪ Set Timestamps Enable.

NOTE

The variable accesses configured in the Logic Analyzer are also shown in the

Trace Data Window.

Click on Trace Windows and select Trace Exceptions from the toolbar or

use the menu View – Trace – Trace Exceptions to open the window.

Getting Started with MDK: Create Applications with µVision 85

Logic Analyzer

The Logic Analyzer window displays changes of up to four variable values over

time. To add a variable to the Logic Analyzer, right click it in while in debug

mode and select Add <variable> to… - Logic Analyzer. Open the Logic

Analyzer window by choosing View - Analysis Windows - Logic Analyzer.

To retrieve data in the Logic Analyzer window:

▪ Set Trace Enable in the Debug Settings Trace dialog as described above.

▪ Set Timestamps Enable.

NOTE

The variable accesses monitored in the Logic Analyzer are also shown in the

Trace Data Window. Refer to the µVision User’s Guide – Debugging for more

information.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

86 Debug Applications

Debug (printf) Viewer

The Debug (printf) Viewer window displays data streams that are transmitted

sequentially through the ITM Stimulus Port 0. To enable printf() debugging, use

the

Compiler:I/O software component as described on page 40.

This fputc() function redirects any printf() messages (as shown below) to the

Debug (printf) Viewer.

 int seconds; // Second counter

 :

 while (1) {

 LED_On (); // Switch on

 delay (); // Delay

 LED_Off (); // Switch off

 delay (); // Delay

 printf ("Seconds=%d\n", seconds++); // Debug output

 }

Click on Serial Windows and select Debug (printf)

Viewer from the toolbar or use the menu View – Serial

Windows – Debug (printf) Viewer to open the

window.

To retrieve data in the Debug (printf) Viewer window:

▪ Set Trace Enable in the Debug Settings Trace dialog as described above.

▪ Set Timestamps Enable.

▪ Enable ITM Stimulus Port 0.

▪ Alternatively, on targets that do not support ITM (such as Arm Cortex-

M0/M0+), you can use the event recorder to display printf messages. The

Compiler component documentation explains how to enable this feature:
keil.com/pack/doc/compiler/RetargetIO/html/_retarget__examples_er.html

ms-its:C:/MDK5/ARM/HLP/ulinkpro.chm::/ulinkpro_tr_stimulusports.htm
http://www.keil.com/pack/doc/compiler/RetargetIO/html/_retarget__examples_er.html

Getting Started with MDK: Create Applications with µVision 87

Event Counters

Event Counters displays cumulative

numbers, which show how often an event is

triggered.

From toolbar use Trace Windows –

Event Counters

From menu View – Trace – Event

Counters

To retrieve data in this window:

▪ Set Trace Enable in the Debug Settings Trace dialog as described above.

▪ Enable Event Counters as needed in the dialog.

Event counters are performance indicators:

▪ CPICNT: Exception overhead cycle: indicates Flash wait states.

▪ EXCCNT: Extra Cycle per Instruction: indicates exception frequency.

▪ SLEEPCNT: Sleep Cycle: indicates the time spend in sleep mode.

▪ LSUCNT: Load Store Unit Cycle: indicates additional cycles required to

execute a multi-cycle load-store instruction.

▪ FOLDCNT: Folded Instructions: indicates instructions that execute in zero

cycles.

88 Debug Applications

Trace with 4-Pin Output

Using the 4-pin trace output provides all the features described in the section

Trace with Serial Wire Output, but has a higher trace communication

bandwidth. Instruction trace is also possible.

The ULINKpro debug/trace adapter supports this parallel 4-pin trace output

(also called ETM Trace) which gives detailed insight into program execution.

NOTE

Refer to the µVision User’s Guide – Debugging for more information about the

features described below.

When used with ULINKpro, MDK can stream the instruction trace data for the

following advanced analysis features:

▪ Code Coverage marks code that has been executed and gives statistics on

code execution. This helps to identify sporadic execution errors and is

frequently a requirement for software certification.

▪ The Performance Analyzer records and displays execution times for

functions and program blocks. It shows the processor cycle usage and enables

you to find hotspots in algorithms for optimization.

▪ The Trace Data Window shows the history of executed instructions for

Cortex-M devices.

Trace with On-Chip Trace Buffer

▪ In some cases, trace output pins are not available on the microcontroller or

target hardware. As an alternative, an on-chip Trace Buffer can be used that

supports the Trace Data Window.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

Getting Started with MDK: Create Applications with µVision 89

MDK-Middleware
Today’s microcontroller devices offer a wide range of communication peripherals

to meet many embedded design requirements. Middleware is essential to make

efficient use of these complex on-chip peripherals.

NOTE

This chapter describes the middleware that is part of MDK-Professional and

MDK-Plus. MDK also works with some third-party middleware stacks. Refer to

keil.com/pack for a list of public software packs.

The MDK-Middleware software pack includes royalty-free middleware with

components for TCP/IP networking, USB Host and USB Device

communication, File System for data storage, and a graphical user interface.

Refer to keil.com/middleware for more information.

 This web page provides an overview of the middleware and links to:

▪ MDK-Middleware User’s Guide

▪ Device List along with information about device-specific drivers

▪ Information about Example Projects with usage instructions

The Middleware interfaces to the device peripherals using device-specific

CMSIS-Drivers. Refer to CMSIS-Driver on page 32 for more information.

http://www.keil.com/pack
http://www.keil.com/middleware

90 MDK-Middleware

Combining several components is common for a microcontroller application. The

Manage Run-Time Environment dialog makes it easy to select and combine

different MDK-Middleware components. It is even possible to expand the

middleware component list with third-party components that are supplied as a

software pack.

Typical examples for the usage of MDK-Middleware are:

▪ Web server with storage capabilities: Network and File System Component

▪ USB memory stick: USB Device and File System Component

▪ Industrial control unit with display and logging functionality: Graphics, USB

Host, and File System Component

▪ Refer to the FTP Server Example on page 96 that exemplifies a combination

of several middleware components.

The following sections give an overview for each software component of the

MDK-Middleware.

NOTE

A thirty days evaluation license for MDK-Professional is delivered with each

installation. Refer to the Installation chapter on page 9 for more information.

Getting Started with MDK: Create Applications with µVision 91

Network Component
The Network Component uses TCP/IP communication protocols and contains

support for services, protocol sockets, and physical communication interfaces. It

supports IPv4 and IPv6 connections.

The various services provide program templates for common networking tasks.

▪ Compact Web Server stores web pages in ROM whereas the Full Web

Server uses the File System component for page data storage. Both servers

support dynamic page content using CGI scripting, AJAX, and SOAP

technologies.

▪ FTP or TFTP support file transfer. FTP provides full file manipulation

commands, whereas TFTP can boot load remote devices. Both are available

for the client and server.

▪ Telnet Server provides a command line interface over an IP network.

▪ SNMP Agent reports device information to a network manager using the

Simple Network Management Protocol.

▪ DNS Client resolves domain names to the respective IP address. It makes use

of a freely configurable name server.

▪ SNTP Client synchronizes clocks and enables a device to get an accurate

time signal over the data network.

▪ SMTP Client sends status emails using the Simple Mail Transfer Protocol.

92 MDK-Middleware

All Services rely on a communication socket that can be either TCP (a

connection-oriented, reliable full-duplex protocol), UDP (transaction-oriented

protocol for data streaming), or BSD (Berkeley Sockets interface).

The physical interface can be either Ethernet (for LAN connections) or a serial

connection such as PPP (for a direct connection between two devices) or SLIP

(Internet Protocol over a serial connection).

Depending on the interface, the Network Component relies on a CMSIS-Driver

to be present for providing the device-specific hardware interface. Ethernet

requires an Ethernet MAC and PHY driver, whereas serial connections

(PPP/SLIP) require a UART or a Modem driver.

The Network Core is available in a Debug variant with extensive diagnostic

messages and a Release variant that omits these diagnostics. It supports IP

communication using IPv4 and IPv6. To see events coming from the network

component in the event recorder, you need to enable a debug variant.

Getting Started with MDK: Create Applications with µVision 93

File System Component
The File System Component allows your embedded applications to create, save,

read, and modify files in storage devices such as RAM, NAND or NOR Flash,

memory cards, or USB memory sticks.

Each storage device is accessed and referenced as a Drive. The File System

Component supports multiple drives of the same type. For example, you might

have more than one memory card in your system.

The File System Core is thread-safe, supports simultaneous access to multiple

drives, and uses a FAT system available in two file name variants: Short File

Name (SFN) and Long File Name (LFN) with up to 255 characters. It also

provides a Debug variant with extensive diagnostic messages and a Release

variant that omits these diagnostics. To see events coming from the file system

component in the event recorder, you need to enable a debug variant.

To access the physical media, for example NAND and NOR Flash chips, or

memory cards using MCI or SPI, CMSIS-Driver have to be present.

94 MDK-Middleware

USB Component
The USB Device component implements USB Host and Device functionality

and uses standard device driver classes that are available on most computer

systems, avoiding host driver development.

▪ Human Interface Device Class (HID) implements a keyboard, joystick or

mouse. However, HID can also be used for simple data exchange.

▪ Use the Mass Storage Class (MSC) for file exchange (for example a USB

memory stick).

▪ Communication Device Class (CDC) implements a virtual serial port (using

the sub-class ACM) or a network connection (using the sub-class NCM).

▪ Audio Device Class (ADC) performs audio streaming.

▪ Use the Custom Class for new or unsupported USB classes.

The USB Component supports Composite USB devices that implement multiple

device classes.

This component requires a USB CMSIS-Driver to be present. Depending on the

application, it has to comply with the USB 1.1 (Full-Speed USB) and/or the USB

2.0 (High-Speed USB) specification.

The USB Core is available in a Debug variant with extensive diagnostic

messages and a Release variant that omits these diagnostics. To see events

coming from the USB component in the event recorder, you need to enable the

debug variant.

Getting Started with MDK: Create Applications with µVision 95

Graphics Component
The Graphics Component is a comprehensive library that includes everything

you need to build graphical user interfaces.

Core functions include:

▪ A Window Manager to manipulate any number of windows or dialogs.

▪ Ready-to-use Fonts and window elements, called Widgets, and Dialogs.

▪ Bitmap Support including JPEG and other common formats.

▪ Anti-Aliasing for smooth display.

▪ Flexible, configurable Display and User Interface parameters.

▪ The user interface can be controlled using input devices like a Touch Screen

or a Joystick.

The Graphics Component interfaces to a wide range of display controllers using

preconfigured interfaces for popular displays. Adapt the interface template to

add support for new displays.

The VNC Server allows remote control of your graphical user interface via

TCP/IP using the Network Component.

Demo shows all main features and is a rich source of code snippets for the GUI.

96 MDK-Middleware

Mbed IoT Componentes
Keil MDK provides interfaces to Mbed software components that enable secure

communication and Internet of Things (IoT) connectivity.

▪ Mbed TLS adds cryptographic and SSL/TLS capabilities with a library

collection optimized for embedded systems.

▪ Mbed Crypto supports a wide range of cryptographic operations and

provides a reference implementation of the cryptography interface of the Arm

Platform Security Architecture (PSA).

FTP Server Example
The FTP server example is a reference application that shows a combination of

several middleware components. Refer to Verify Installation using Example

Projects on page 14 for more information on the various example projects that

are available.

When using an FTP Server, you can exchange and manipulate files over a TCP/IP

network. The middleware documentation has more details about the FTP Server

and the reference application:

Getting Started with MDK: Create Applications with µVision 97

Several middleware components are the building blocks of this FTP server. A

File System is required to handle the file manipulation. Various parts of the

Network component build up the networking interface.

The following software components from the MDK-Middleware are required to

create the FTP Server example:

As explained before, CMSIS-Driver provides the interface between the

microcontroller peripherals and the MDK-Middleware.

The Manage Run-Time Environment dialog shows the software components

selected for the FTP Server example:

Using Middleware
Create your own applications using MDK-Middleware components. For more

information, refer to the MDK-Middleware User’s Guide that has sections for

every component describing:

98 MDK-Middleware

▪ Example projects outline key product features of software components. The

examples are tested, implemented, and proven on several evaluation boards.

▪ Resource Requirements describe the thread and stack resources for CMSIS-

RTOS and the memory footprint.

▪ Create an Application contains the required steps for using the components

in an embedded application.

▪ Reference contains the API and file documentation.

The learning platform keil.com/learn offers several tutorials and videos that

exemplify typical use cases of the middleware. Refer also to these application

notes:

▪ USB Host Application with File System and Graphical User Interface:

keil.com/appnotes/docs/apnt_268.asp

▪ Web-Enabled MEMS Sensor Platform:

keil.com/appnotes/docs/apnt_271.asp

▪ Web-Enabled Voice Recorder:

keil.com/appnotes/docs/apnt_272.asp

▪ Analog/Digital Data Logger with USB Device Interface:

keil.com/appnotes/docs/apnt_273.asp

The generic steps to use the various middleware components are:

▪ Add Software Components: in the Manage Run-Time Environment

dialog select the software components that are required for your application.

http://www.keil.com/learn
http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.keil.com/appnotes/docs/apnt_271.asp
http://www.keil.com/appnotes/docs/apnt_272.asp
http://www.keil.com/appnotes/docs/apnt_273.asp

Getting Started with MDK: Create Applications with µVision 99

▪ Configure Middleware: adjust the parameters of the software components in

the related configuration files.

▪ Configure Drivers: identify and configure the peripheral interfaces that

connect the middleware components to physical I/O pins of the

microcontroller.

▪ Implement Application Features: use the API functions of the selected

components to implement the application specific behaviour. Code templates

help you to create the related source code.

▪ Build and Download: after compiling and linking of the application use the

steps described in the chapter Using the Debugger to download the image to

your target hardware.

▪ Verify and Debug: test utilities along with debug and trace features are

described in the chapter Create Applications.

USB Device HID Example

While above steps are generic and apply to all components of the MDK-

Middleware, the following USB Device HID example shows these steps in

practice. This example creates a USB HID Device application that connects a

microcontroller to a host computer via USB. On the PC the utility program

HIDClient.exe is used to control LEDs on the development board.

This USB Device HID example uses the MIMXRT1050-EVK development board

populated with a MIMXRT1052DVL6B microcontroller. It is based on the

project created in section Project with CMSIS-RTOS2 along with the source

files main.c, led_blinky.c and the configuration files.

NOTE

You must adapt the code and configurations when using this example on other

starter kits or evaluation boards.

The HID USB example is also available as a pre-built project in Pack Installer

for many microcontroller device families supporting USB CMSIS_Driver.

Add Software Components

To create the USB Device HID example, start with the project described in

section Project with CMSIS-RTOS2.

Use the Manage Run-Time Environment dialog to add specific software

components.

100 MDK-Middleware

From CMSIS-Driver component:

▪ Select from ::CMSIS Driver:USB Device (API) an appropriate driver

suitable for your application. Some devices may have specific drivers for

USB full-speed and high-speed whereas other microcontrollers may have a

combined driver. Here, select USB1.

From Device component:

▪ Implementation of the USB CMSIS-Driver often relies on the vendor-specific

HAL functions that also need to be added to the project.

In our case in ::Device:SDK Drivers add osa_bm component to expose

operating system abstraction used by the CMSIS-Driver. Other required

HAL components are already selected in the initial CMSIS-RTOS2 example.

From USB Component:

▪ Select ::USB:CORE to include the basic functionality required for USB

communication.

▪ Set ::USB:Device to '1' to create one USB Device instance.

▪ Set ::USB:Device:HID to '1' to create a HID Device Class instance. If you

select multiple instances of the same class or include other device classes,

you will create a Composite USB Device.

Getting Started with MDK: Create Applications with µVision 101

TIP: Click on the hyperlinks in the Description column to view detailed

documentation for each software component.

NOTE

For MDK-Middleware version older than v7.4.0, you also need to add the Keil

RTX5 compatibility layer. Please select ::CMSIS:RTOS (API):Keil RTX5 if not

present in the project yet.

Configure Middleware

Every MDK-Middleware component has a set of configuration files that adjusts

application specific parameters and determines the driver interfaces. Access these

configuration files from the Project window in the component class group. They

usually have names like <Component>_Config_0.c or

<Component>_Config_0.h.

Some of the settings in these files require corresponding settings in the driver and

device configuration file (RTE_Device.h) that is subject of the next section.

For the USB HID Device example, there are two configuration files available:

USBD_Config_0.c and USBD_Config_HID_0.h.

102 MDK-Middleware

The file USBD_Config_0.c contains a number of important settings for the

specific USB Device:

▪ The setting Connect to Hardware via Driver_USBD# specifies the control

struct that reflects the peripheral interface, in this case, the USB controller

used as device interface. For microcontrollers with only one USB controller

the number is ‘1’. Refer to CMSIS-Driver section for more information.

▪ Select High-Speed if supported by the USB controller. Using this setting

requires a driver that supports USB high-speed communication.

▪ Set the Max Endpoint 0 Packet Size to 64.

▪ Set the Vendor ID (VID) to a private VID. The USB Implementer’s Forum

www.usb.org/developers/vendor provides more information on how to

apply for a valid vendor ID.

▪ Every device needs a unique Product ID. The host computer's operating

system uses it together with the VID to find a suitable driver for your device.

▪ Set the Manufacturer and the Product String to identify the USB device in

PC operating systems.

The file USBD_Config_HID_0.h contains device class specific Endpoint settings.

In our example, no changes are required.

http://www.usb.org/developers/vendor

Getting Started with MDK: Create Applications with µVision 103

Configure Drivers

Drivers have certain properties that define attributes such as I/O pin assignments,

clock configuration, or usage of DMA channels. For many devices, the

RTE_Device.h configuration file contains these driver properties. It typically

requires configuration of the actual peripheral interfaces used by the application.

Depending on the microcontroller device, you can enable different hardware

peripherals, specify pin settings, or change the clock settings for your

implementation.

In our example no changes from default driver configuration are required.

Implement Application Features

Now, create the code that implements the application specific features.

The middleware provides User Code Templates as starting point for the

application software.

To connect the PC USB application to the microcontroller device, modify the

function USBD_HID0_SetReport(), which handles data coming from the USB

Host. For this example, the data will be created with the utility HIDClient.exe.

In the Project window, right-click Source Group 1 and open the dialog

Add New Item to Group. Select the user code template from

::USB:Device:HID - USB Device HID (Human Interface Device) and

click Add.

104 MDK-Middleware

#include "fsl_gpio.h" // Access to GPIO functions

#include "board.h" // Access to board LED defines

 :

bool USBD_HID0_SetReport (uint8_t rtype, uint8_t req, uint8_t rid,

 const uint8_t *buf, int32_t len) {

 (void)req;

 (void)rid;

 (void)buf;

 (void)len;

 switch (rtype) {

 case HID_REPORT_OUTPUT:

 GPIO_PinWrite(BOARD_USER_LED_GPIO, BOARD_USER_LED_GPIO_PIN, *buf);

 break;

 case HID_REPORT_FEATURE:

 break;

 default:

 break;

 }

 return true;

}

In the file led_blinky.c we need to turn off the periodic LED blinking since the

LED will be now controlled from the PC via USB. Also an additional RTOS

thread is created to initialize the USB, read the button state and report it via the

USB.

#include "cmsis_os2.h"

#include "fsl_gpio.h"

#include "pin_mux.h"

#include "board.h"

#include "rl_usb.h"

static osThreadId_t tid_thrLED; // Thread id of thread: LED

static osThreadId_t tid_thrSGN; // Thread id of thread: SGN

static osThreadId_t tid_thrUSB; // Thread id of thread: USB

/*---

 thrLED: blink LED

 ---/

__NO_RETURN static void thrLED(void *argument) {

 (void)argument;

 uint32_t active_flag = 1U;

 for (;;) {

 osThreadFlagsWait(1U, osFlagsWaitAny, osWaitForever);

 // GPIO_PinWrite(BOARD_USER_LED_GPIO, BOARD_USER_LED_PIN, active_flag);

 active_flag=!active_flag;

 }

}

/*---

 thrSGN: Signal LED to change

 --/

Open the file USBD_User_HID_0.c in the editor and modify the code as

shown below. This will control the LED on the evaluation board.

Open the file led_blinky.c in the editor and modify the code as shown below.

Getting Started with MDK: Create Applications with µVision 105

__NO_RETURN static void thrSGN(void *argument) {

 (void)argument;

 uint32_t last;

 for (;;) {

 osDelay(500U); // Run delay for 500 ticks

 osThreadFlagsSet(tid_thrLED, 1U); // Set flag to thrLED

 }

}

/*---

 thrUSB: Init USB and report button state

 --/

__NO_RETURN static void thrUSB(void *argument) {

 (void)argument;

 uint8_t but, but_state;

 USBD_Initialize (0U); // USB Device 0 Initialization

 USBD_Connect (0U); // USB Device 0 Connect

 for (;;) {

 but = GPIO_PinRead(BOARD_USER_BUTTON_GPIO,

 BOARD_USER_BUTTON_GPIO_PIN)^1U;

 if (but != but_last) {

 but_last = but;

 USBD_HID_GetReportTrigger(0U, 0U, &but, 1U);

 }

 osDelay(100U); // 100 ms delay for sampling buttons

 }

}

/*---

 * Application main thread

 --/

void app_main(void *argument) {

 (void)argument;

 tid_thrLED = osThreadNew(thrLED, NULL, NULL); // Create LED thread

 if (tid_thrLED == NULL) { /* add error handling */ }

 tid_thrSGN = osThreadNew(thrSGN, NULL, NULL); // Create SGN thread

 if (tid_thrBUT == NULL) { /* add error handling */ }

 tid_thrUSB = osThreadNew(thrUSB, NULL, NULL); // Create USB thread

 if (tid_thrUSB == NULL) { /* add error handling */ }

 osThreadExit();

}

Build and Download

Build the project and download it to the target as explained in chapters Create

Applications and Using the Debugger.

106 MDK-Middleware

Verify and Debug

Connect the development board to your PC using another USB cable. This

provides the connection to the USB device peripheral of the microcontroller.

Once the board is connected, a notification appears

that indicates the installation of the device driver

for the USB HID Device.

The utility program HIDClient.exe that is part of

MDK enables testing of the connection between

the PC and the development board. This utility is

located the MDK installation folder

.\Keil\ARM\Utilities\HID_Client\Release.

To test the functionality of the USB HID device run the HIDClient.exe utility

and follow these steps:

▪ Select the Device to establish the communication channel. In our example, it

is “Keil USB Device 0”.

▪ Test the application by changing the Outputs (LEDs) checkboxes. The

respective LEDs shall switch accordingly on the development board.

If you are having problems connecting to the development board, you can use the

debugger to find the root cause.

Use debug windows to narrow down the problem. Breakpoints help you to stop at

certain lines of code so that you can examine the variable contents.

NOTE

Debugging of communication protocols can be difficult. When starting the

debugger or using breakpoints, communication protocol timeouts may exceed

making it hard to debug the application. Therefore, use breakpoints carefully.

In case that the USB communication fails, disconnect USB, reset your target

hardware, run the application, and reconnect it to the PC.

From the toolbar, select Start/Stop Debug Session.

Getting Started with MDK: Create Applications with µVision 107

Index
A
Add New Item to Group 103

Applications

Build ... 52

Configure Device Clock Frequency 47

Create ... 44

Debug ... 69

Manage Run-Time Environment 46

User Code Templates 56

B
Board Support 39, 42, 43

Breakpoints

Access .. 77

Command ... 77

Execution.. 77

Build Output 16, 17, 52, 70

C
CMSIS... 19

CORE ... 20

DSP .. 30

Software Components 19

RTOS ... 23

User code template 27

CMSIS-DAP ... 69

Code Coverage .. 88

Compare memory areas 79

CoreSight .. 81

D
Debug

Breakpoints .. 77

Breakpoints Window 77

Command Window 72

Component Viewer............................... 73

Connection ... 69

Disassembly Window 72

Event Recorder 74

Memory Window 79

Peripheral Registers 80

Register Window 79

Stack and Locals Window 78

Start Session ... 71

System Viewer Window 80

Toolbar ... 71

Using Debugger.................................... 70

Watch Window 78

Debug (printf) Viewer 42, 86

Debug tab .. 16, 70

Device Database .. 10

Device Startup Variations

Setup the Project 59, 61

STM32Cube ... 59

Documentation .. 18

E
Example Code

Clock setup for STM32Cube 60

Example Code

CMSIS-CORE layer 21

CMSIS-DSP library functions 30

Example Projects 14, 89

F
File

cmsis_os.h .. 25

device.h .. 20

RTE_Device.h 32, 33, 59, 101, 103

RTX_<core>.lib 25

RTX_Conf_CM.c 25, 26, 29

startup_<device>.s 20

system_<device>.c 20, 49

File System

FAT .. 93

Flash ... 93

G
Graphics Component

Anti-Aliasing .. 95

Bitmap Support 95

Demo .. 95

Dialogs ... 95

Display ... 95

Fonts ... 95

Joystick .. 95

Touch Screen .. 95

User Interface 95

VNC Server .. 95

Widgets .. 95

Window Manager 95

H
HIDClient.exe ... 106

108 Index

L
Learning Platform 18

M
MDK

Core Install ... 9

Editions .. 8

Installation Requirements 9

Introduction .. 7

License Types ... 8

Tools... 7

Trial license .. 12

Middleware ... 89

Add Software Components................... 99

Adding Software Components........ 21, 25

Configure...................................... 99, 101

Configure Drivers 99, 103

Create an Application 98

Debug ... 99

Example projects 98

File System Component 93

FTP Server Example 96

Graphics Component 95

Implement Application Features .. 99, 103

IoT Connectivity 96

Network Component 91

Resource Requirements 98

USB Device Component 94

Using .. 97

Using Components 98

N
Network Component

BSD .. 92

DNS Client ... 91

Ethernet .. 92

FTP ... 91

Modem ... 92

PPP ... 92

SLIP ... 92

SMTP Client ... 91

SNMP Agent .. 91

SNTP Client ... 91

TCP .. 92

Telnet Server .. 91

TFTP .. 91

UART ... 92

UDP .. 92

Web Server ... 91

O
Options for Target 16, 70

P
Pack Installer ... 10

Performance Analyzer 88

R
Retargeting I/O output 40

RTOS

System and Thread Viewer 29

RTX

API functions 26

Concepts ... 23

Configuration 26

RTOS Kernel advantages 24

Using RTX ... 24

S
Selecting Software Packs 38

Software Component

Compiler .. 40

Software Components

Overview .. 36

Software Packs .. 8

Install.. 10

Install manually 10

Manage versions................................... 38

Product Lifecycle 37

Select .. 38

Use ... 35

Verify Installation 14

Start/Stop Debug Session 17, 71, 106

Support .. 18

T
Trace ... 81

4-Pin Trace Output 81, 88

Data Watchpoints 81

Debug (printf) Viewer 86

ETB .. 81

Event Counters 87

Exception Trace 81

Instruction Trace 81

Instrumented Trace 81

ITM Stimulus 83, 86

Logic Analyzer 85

MTB ... 81

SWO ... 81, 82

TPIU ... 81

Getting Started with MDK: Create Applications with µVision 109

Trace Buffer ... 81

Trace Buffer ... 88

Trace Data Window.............................. 88

Trace Exceptions 84

U
ULINK .. 69

ULINKpro ... 83, 88

USB Device

ADC ... 94

CDC ... 94

Composite Device 94

HID .. 94

MSC ... 94

User Code Templates 27, 103

V
Version Control ... 39

Versioning Software Packs 38

	Preface
	Chapter overview

	MDK Introduction
	MDK Tools
	Software Packs
	MDK Editions
	License Types
	Installation
	Software and hardware requirements
	Install MDK
	Install Software Packs
	Manage local repositories

	MDK-Professional Trial License
	Verify Installation using Example Projects
	Copy an Example Project
	Use an Example Application with µVision
	Build the Application
	Download the Application
	Run the Application

	Access Documentation
	Request Assistance
	On-line Learning

	CMSIS
	CMSIS-CORE
	Using CMSIS-CORE
	Adding CMSIS-CORE Components to the Project
	Source Code Example

	CMSIS-RTOS2
	Software Concepts
	Infinite Loop Design
	Advantages of an RTOS Kernel

	Using Keil RTX5
	Adding Keil RTX5 Components to the Project
	CMSIS-RTOS2 API Functions
	Keil RTX5 Configuration
	CMSIS-RTOS User Code Templates
	Source Code Example

	Component Viewer for RTX RTOS

	CMSIS-DSP
	CMSIS-Driver
	Configuration
	Using RTE_Device.h
	Using STM32CubeMX

	Validation Suites for Drivers and RTOS

	Software Components
	Use Software Packs
	Software Component Overview
	Product Lifecycle Management with Software Packs
	Software Version Control Systems (SVCS)

	Compiler:Event Recorder
	Compiler:I/O
	Board Support
	IoT Clients

	Create Applications
	µVision Project from Scratch
	Setup New µVision Project
	Add main.c Source Code File
	Device Initialization

	Configure Project Options
	C/C++ (AC6) dialog
	Linker dialog
	Debug dialog
	Utilities dialog

	Build the Application Project

	Project with CMSIS-RTOS2
	Copy an Example
	Add CMSIS-RTO2 Component
	Add RTOS Initialization
	Configure Keil RTX5 RTOS
	Implement User Threads

	Device Configuration Variations
	Example: STM32Cube
	Setup the Project using the Classic Framework
	Setup the Project using STM32CubeMX

	Example: MCUXpresso Config Tools
	Enable Project for Configuration
	Configure the Device
	Update Application Code the Device

	Secure/non-secure programming
	Create Armv8-M software projects

	Debug Applications
	Debugger Connection
	Using the Debugger
	Debug Toolbar
	Command Window
	Disassembly Window
	Component Viewer
	Event Recorder
	System Analyzer
	Breakpoints
	Breakpoints Window

	Watch Window
	Call Stack and Locals Window
	Register Window
	Memory Window
	Peripheral Registers
	System Viewer

	Trace
	Trace with Serial Wire Output
	Trace Exceptions
	Logic Analyzer
	Debug (printf) Viewer
	Event Counters
	Trace with 4-Pin Output
	Trace with On-Chip Trace Buffer

	MDK-Middleware
	Network Component
	File System Component
	USB Component
	Graphics Component
	Mbed IoT Componentes
	FTP Server Example
	Using Middleware
	USB Device HID Example
	Add Software Components
	Configure Middleware
	Configure Drivers
	Implement Application Features
	Build and Download
	Verify and Debug

	Index

