ArmekEiL

Microcontroller Tools

Getting started with MDK

Create applications with pVision®
for Arm® Cortex®-M microcontrollers

pVision - a X
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
15 H 3| B9 C|e=|n | F = = | o Vas@lec s @|Bd- A
SHEe ¥§ | sTM32F74E Fiasn VR B ¢ &
Project L]] HITP Serverc® |] Abstracttat < &
=% Project: HTTP Server 103 MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; ~
=& STM32F746 Flash X 110 | wmpq
=15 Source ﬁ; MPU_BASE ~
L] HTTP Server.c el 12U Config
L) HTTP Server CGl.c o MPU_CTRL_ENABLE Msi
B Web 5 MPU_CTRL_ENABLE Pos |
€0-c MPU_CTRL HENMIENA Msk v|*
[Web files) | S -
&+ Documentation B Manage Run-Time Environment X
L1 Abstract.bdt
[% Board Support Software Component Sel. Variant Version Description
@ cmsis © € Board Support STM32F746G-Discovery |~|1.00 | STMicroelectronics STM32F746G-Discovery Kit -
@€ CMSIS Driver ® ¢ CMsis Cortex Mi ller Software Interface C.
5 @ Device © € CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver
B9 Newwork © € Compiler ARM Compiler Software Extensicns
ET Net CM3 LI (CC | 1 @ Device Startup, System Setup
] Net_Config.c (COR | & g File System MDK-Pro 650 | File Access on various storage devices
L] NetConfig ETHO | & & Graphics MDK-Pro 5300 Userinterface on graphical LCD displays
L] Net Config HTTP_| & & Graphics Display Display Interface including configuration for emWIN
] Net Config TCPh | o @ Network MDK-Pro 650 IP Networking using Ethemet or Serial protocols
L] Net_Config_UDP.h @ CORe [%| Release ~|650 Networking Core for Cortex-M (Release)
o & Interface Connection Mechanism
o @ Senice Network Services L
© € Socket Network protocol
® & usk MDK-Pro 650 USB Communication with various device classes =
Validation Qutput Description
= A Keil MDK-Pro::Network:CORE Additional software components required i‘
S require CMSIS:RTOS Select component from st
@ ARM:CMSIS:RTOS:Keil RTX CMSIS-RTOS RTX implementation for Cortex-M, SC000, and SC300 =l
Resolve Select Packs Detais OK Cancel
v
ns | 04 Templates < >
ST-Link Debugger L110C6

Preface

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1997-2020 Arm Germany GmbH
All rights reserved.

Arm®, Keil®, uVision®, Cortex®, TrustZone®, CoreSight™ and ULINK™ are
trademarks or registered trademarks of Arm Germany GmbH and Arm Ltd.

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.

PC® s a registered trademark of International Business Machines Corporation.

NOTE
We assume you are familiar with Microsoft Windows, the hardware, and the
instruction set of the Arm® Cortex®-M processor.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started with MDK: Create Applications with pVision

Preface

Thank you for using the Arm Keil® MDK Microcontroller Development Kit. To
provide you with the best software tools for developing Arm Cortex-M processor
based embedded applications we design our tools to make software engineering
easy and productive. Arm also offers complementary products such as the
ULINK™ debug and trace adapters and a range of evaluation boards. MDK is
expandable with various third-party tools, starter kits, and debug adapters.

Chapter overview

The book starts with the installation of MDK and describes the software
components along with complete workflow from starting a project up to
debugging on hardware. It contains the following chapters:

MDK Introduction provides an overview about the MDK Tools, the software
packs, and describes the product installation along with the use of example
projects.

CMSIS is a software framework for embedded applications that run on Cortex-M
based microcontrollers. It provides consistent software interfaces and hardware
abstraction layers that simplify software reuse.

Software Components enable retargeting of 1/0O functions for various standard
I/0 channels and add board support for a wide range of evaluation boards.

Create Applications guides you towards creating and modifying projects using
CMSIS and device-related software components. A hands-on tutorial shows the
main configuration dialogs for setting tool options.

Debug Applications describes the process of debugging applications on real
hardware and explains how to connect to development boards using a wide range
of debug adapters.

MDK-Middleware gives an overview of the middleware components available
for users of the MDK-Professional and MDK-Plus editions. It also explains how
to create applications that use the MDK-Middleware and contains essential tips
and tricks to get you started quickly.

Preface

Contents
PrETACE ..t 3
CRAPTET OVEIVIBW ...t 3
MDK INTrOAUCTION ... 7
IMDK TOOIS ...ttt sttt b 7
SOTIWAIE PACKS ... e 8
YT S =l [o] 3PS 8
LICENSE TYPES .ttt ettt 8
INSEAITALION ... s 9
Software and hardware reqUIrEMENTSccvoverirerererieeeiee e 9
INSEAIT IMIDK ...ttt ens 9
INStall SOFtWAre PACKS........cvviiiiiiiieieieiee e 10
MDK-Professional Trial LICENSE.........couvriiiriineieieieieese s 12
Verify Installation using Example Projectsccocevevviviinininiicncneiens 14
ACCESS DOCUMENTALION ...t 18
REQUESE ASSISTANCE ...e.vvevviiieiie ettt e ettt sresbe e besbeere e besre e e e nre e 18
ON-1INE LEAIMING......civiieieieieiieii e 18
CIMSIS e 19
CMSIS-CORE ...ttt 20
USING CMSIS-CORE ..ottt 20
CMSIS-RTOS2....coeeeeteete ettt 23
SOTIWAIE CONCEPLS ...ttt 23
USING KEIT RTXS ..ottt 24
Component Viewer for RTX RTOS ... 29
CMSIS-DSP...iite e 30
(081 Y I T I Y- S 32
(O0a] 01 To 0] 21 1[0 o SRS 33
Validation Suites for Drivers and RTOS ... 34
Software COMPONENTS......cuciiiiiie e 35
USE SOFtWAIE PACKSvvevieiiciie ettt sttt nne e 35
Software COmMpPONENt OVEIVIEW.coviiriiriiiieniesie e 36
Product Lifecycle Management with Software Packsccocceocvvviinnnnee. 37
Software Version Control Systems (SVCS)coovvveeiiiiieieneee e 39
Compiler:EVENT RECOTTENc.eiuiiiiiieiie e 39
COMPIIELIIO e 40
2T o TN o] 010] S PSSR 42
FOT CHBNTS ..ttt e 43
Create APPHCALIONS.coviiiiieiie e e 44

MVision Project from SCratChc.cccvviiiiiiie e 44

Getting Started with MDK: Create Applications with pVision

Setup NeW HVISION PrOJECTccviiieiiie e 45
Add main.c SoUrce Code File........ccoovviiiiiiiiiieeeee e 47
Configure Project OPLIONSccvoeierrerieeeise s 49
Build the Application ProjeCtccccivveieiiiic e 52
Project With CMSIS-RTOS2ccoiiiiiie e s 52
COPY aN EXAMPIE.....oeiiiieieieesee s 53
Add CMSIS-RTO2 COMPONENT ...t 54
Add RTOS INITIAHZATION ..o 56
Configure Keil RTX5 RTOS ..o 57
Implement USer Threads...........coovviieieieiiisse e 57
Device Configuration Variations...........cccccvveieiiiiieeic s 58
EXample: STM32CUDEccociiiiiiccce et 59
Example: MCUXpresso Config TOOIS.........ccccvrerereiiiiiiisenise e 63
Secure/noN-SECUre ProgrammMiNgccceeveierieerresieseesreseeseesreeeesreseesresreseeseesses 67
Create Armv8-M SOftWare Projectsccccvevveevieiieiieeie e s 68
Debug APPLICALIONS ..o 69
Debugger CONNEBCLIONocieiecicc et s re e 69
USING the DEDUGOETcuviiiiiiiiieieieeie et 70
DebUQG TOOIDANeoiiiice e e 71
ComMMEAND WINAOW ..ot 72
DisassemBly WINUOWcc.ooiiiiieiiise e 72
COMPONENT VIBWET ...ttt 73
EVENE RECOMTEN ...ttt e 74
SYSTEM ANAIYZET ... 76
BreakPOINTS ...t s 77
WALCH WINAOW ... 78
Call Stack and Locals WINOW...........cceoeieiiiiinenie e 78
REGISTEr WINUOW ...t 79
LT g aTo] AoV T o [0 TSR 79
Peripheral REQISIEISovi et 80
LI oL TP P TP OPPTRPPP 81
Trace with Serial Wire OUEPUL.........cceiviiiiriie e 82
Trace EXCEPLIONSeeeeiiiiiiie ittt sttt nne s 84
LOGIC ANAIYZET ... 85
Debug (Printf) VIBWETcoiiiiieiiieie s 86
EVENT COUNTETS. ...ttt neee 87
Trace With 4-Pin OUIPULooiiiieee e e 88
Trace with On-Chip Trace BUfer........cccooevviiiii i 88
MDK-MIAAIBWATEoevieieceeie e 89
NETWOrK COMPONENL.......couiiiiiiiitiitiie ettt 91
File System COMPONENT.........coviiiiiiiieie s 93

USB COMPONENTottt ettt bt sn e b e e nae e e 94

6 Preface

Graphics COMPONENTcciiieieieeie et st ra e sre e re e e sreeres 95
MDed 10T COMPONENTESveviiiieiierieie e 96
FTP Server EXamMPIe........ccoiiiii e 96
USING MIAAIEWAIE ... et 97

USB Device HID EXaMPIE......ccooiiiieiiiiececece e 99
INOBX ottt 107
NOTE

This user’s guide describes how to create projects for Arm Cortex-M
microcontrollers using the uVision IDE/Debugger.

Getting Started with MDK: Create Applications with uVision

MDK Introduction

MDK helps you to create embedded applications for more than 7,500 Arm
Cortex-M processor-based devices. MDK is a powerful, yet easy to learn and use
development system. It consists of MDK-Core and software packs, which can be
downloaded and installed based on the requirements of your application.

MDK-Core Arm C/C++ Compiler
uV|-5|on e With safety qualification
with pack management
Device CMSIS MDK-Middleware
Network .
. USB Mbed TLS
CMSIS Drivers CMSIS-RTOS File System

MDK Tools

v
=2
3]
©
o
(]
_
©
2
&
(=]
)

MDK Tools

The MDK Tools include all the components that you need to create, build, and
debug an embedded application for Arm based microcontroller devices.
MDK-Core consists of the Keil puVision IDE and debugger with leading support
for Cortex-M processor-based microcontroller devices.

MDK includes the Arm C/C++ Compiler with assembler, linker, and highly
optimize run-time libraries tailored for optimum code size and performance. Arm
Compiler version 6 is based on the innovative LLVM technology and supports
the latest C language standards including C++11 and C++14. It is also available
with a TUV certified qualification kit for safety applications, as well as long-term
support and maintenance.

MDK Introduction

Software Packs

Software packs contain device support, CMSIS components, middleware, board
support, code templates, and example projects. They may be added any time to
MDK-Core, making new device support and middleware updates independent
from the toolchain. pVision IDE manages the provided software components that
are available for the application as building blocks.

MDK Editions

The product selector, available at keil.com/editions, gives an overview of the
features enabled in each edition:

= MDK-Lite is code size restricted to 32 KByte and intended for product
evaluation, small projects, and the educational market.

= MDK-Essential supports all Cortex-M processor-based microcontrollers up
to Cortex-M55.

= MDK-Plus adds middleware libraries for IPv4 networking, USB Device, File
System, and Graphics. It supports Arm Cortex-M, Arm Cortex-R4, ARM7,
and ARMO processor-based microcontrollers.

= MDK-Professional contains all features of MDK-Plus. In addition, it
supports IPv4/IPv6 dual-stack networking and a USB Host stack. It also gives
access to the safety-qualified version of the Arm Compiler with all required
documents and certificates.

License Types

Apart from MDK-L.ite, all MDK editions require activation using a license code.
The following licenses types are available:

1. Single-user license (node-locked) grants the right to use the product by one
developer on two computers at the same time.

2. Floating-user license or FlexNet license grants the right to use the product
on different computers by several developers at the same time.

For further details, refer to the Licensing User’s Guide at
keil.com/support/man/docs/license.

http://www.keil.com/
http://www.keil.com/support/man/docs/license

Getting Started with MDK: Create Applications with pVision

Installation

Software and hardware requirements
MDK has the following minimum hardware and software requirements:

= A PC running a current Microsoft Windows desktop operating system
(32-bit or 64-bit)

= 4 GB RAM and 8 GB hard-disk space
= 1280 x 800 or higher screen resolution; a mouse or other pointing device
Exact requirements can be found at keil.com/system-reguirements/

Install MDK

Download MDK from keil.com/demo/eval/arm.htm and run the installer.

Follow the instructions to install MDK on your local computer. The installation
also adds the software packs for Arm CMSIS, Arm Compiler and
MDK-Middleware.

After the MDK installation is complete, the Pack Installer starts automatically,
which allows you to add supplementary software packs. As a minimum, you need
to install a software pack that supports your target microcontroller device.

NOTE

MDK version 5 can use MDK version 4 projects after installation of the legacy
support from keil.com/mdk5/legacy. This adds support for Arm7, Arm9, and
Cortex-R processor-based devices.

http://www2.keil.com/system-requirements/
http://www.keil.com/demo/eval/arm.htm
http://www.keil.com/mdk5/legacy

10 MDK Introduction

Install Software Packs

The Pack Installer manages software packs on the local computer. The software
packs are stored in the pack root folder (default: %localappdata%\Arm\Packs).

@ The Pack Installer runs automatically during the installation, but also can
be run from pVision using the menu item Project — Manage — Pack
Installer. To get access to devices and example projects, install the software
pack related to your target device or evaluation board.

NOTE
To obtain information of published software packs the Pack Installer connects to

keil.com/pack.

{8 Pack Installer - C:\Keil_vH\ARM\PACK - 0 X
File Packs Window Help
,2" Device: ARM - ARMCM23
14| Devices Boards][4 Packs | Examples >
Search: - X Pack Action Description
Device Sy = Device Specific 0Packs ARMCM23 selected -]
=1 All Devices 3755 Devices _a][|| E=-Genenc 16 Packs
.. % ABOV Semiconductor 10 Devices £l ARM::CMSIS @ Uptodate | CMSIS (Cortex Microcontroller Software Interface Standard)
5% Ambiq Micro 10 Devices 5.0.1-dev3 9§ Remove | CMSIS (Cortex Microcontroller Software Interface Standard)
% Analog Devices 20 Devices 5.0.0 (2016-11-11) 9§ Remove | CMSIS (Cortex Microcontroller Software Interface Standard)
S @ ARM 35 Devices @ Previous ARM::CMSIS - Previous Pack Versions
©% ARM Cortex MO 2 Devices B ARM::CMSIS-Driver_Validation Install CMSIS-Driver Validation
%% ARM Cortex MO plus 2 Devices @1 ARM::CMSIS-RTOS_Validation Install CMSIS-RTOS Validation
=% ARM Cortex M3 2 Devices %1 ARM::mbedClient Install ARM mbed Client for Cortex-M devices
2% ARM Cortex Md 4 Devices 1 & ARM:mbedTLS & _Install ARM mbed Cryptographic and SSL/TLS library for Cortex-hM
2% ARM Cortex M7 5 Devices @ ARMz:minar & _Install mbed OS Scheduler for Cortex-IM devices
%2 ARM Cortex M23 2 Devices e [N A € Up to date | Keil ARM Compiler extensions
1 ARMCM23 ARM Cortor M23.0. #- Keil:Jansson & _Install Jansson is a C library for encoding, decoding and manipulat
B ARMCMI3 TZ ARM Cortor M23... - Keil::MDK-Middleware Up to date | Keil MDK-ARM Professional Middleware for ARM Cortex-M
4% ARM Cortex M32 2 Devices &1 hwlPzhwlP & Install WP is 3 light-weight implementation of the TCP/IP protoce |
o %2 ARM SC000 1 Device @ Micrium:RTOS & _Install Micrium software components
o %2 ARMSC200 1 Device % Oryx-Embedded:Middleware | & Install Middleware Package (CycloneTCP, CycloneSSL and Cyclone
% ARMEM Baseline 3 Devices 4 RealTimelogiciSharkSSL-Lite | 4% Install SharkSSL-Lite is a super small and super fast pre-compiled ¢
542 ARMYE-M Mainline 9 Devices 4 RealTimeLogiciSMQ & _Install Simple Message Queues (SMQ) is an easy to use loT publis
#. @ Atmel 763 Devices ha|| K1] LI_‘
Output 2%
Refresh Pack descriptions
|Update available for Keil::LPC54000_DFP (installed: 2.1.0, available: 2.2.0}
Completed to read Pack descriptions ONLINE

The status bar at the bottom of the Pack Installer, shows information about the
Internet connection and the installation progress.

T1P: The device database lists all supported devices and provides download
access to the related software packs. It is available at
https://developer.arm.com/embedded/cmsis/cmsis-packs/devices. If the
Pack Installer does not have Internet access, you can manually install
software packs using the menu command File — Import or by double-
clicking *.PACK files.

http://www.keil.com/pack
https://developer.arm.com/embedded/cmsis/cmsis-packs/devices

Getting Started with MDK: Create Applications with uVision 11

Manage local repositories

While developing a software pack, it is useful to quickly verify how it works in a
KVision project without re-building and re-installing the pack after every
modification.

For this purpose, the folder with the pack’s content shall be added to the list of
managed local repositories. To do this use the Pack Installer menu File -
Manage Local Repositories..., click Add..., select the PDSC file in the pack
folder and press OK:

Manage Local Repositories X

Pack | Repository |
ARM::CMSISDriver:: 2,3.0 C:\02_Git\CMSIS-Driver,
MyVendor: :MVCM3::0.0.9 C: V06 _tempworking'Files

Add... | Remove | oK I Cancel |

To ensure that the changes to the pack are applied in the project reload the packs
using pVision menu Project - Manage - Reload Software Packs.

https://www.keil.com/support/man/docs/uv4/uv4_ca_packinst_repo.htm

12

MDK Introduction

MDK-Professional Trial License

MDK has a built-in functionality to request a thirty-day trial license for MDK-
Professional. This removes the code size limits and you can explore and test the

comprehensive middleware.
Start pVision with administration rights.

&

Professional

In pVision, go to File — License Management... and click Evaluate MDK

Single-User License l Foating License | Floating License Administrator | FexLM License]

Customer Information Computer 1D
MName: | el
Company: | Get LIC via Intemet... |

Email: |

Product | License ID Code...
MDK-Lite Evaluation Version

Support Period

New License D Code (LIC). |

L

Evaluate MDK Professional I

Close

Help

A window opens that shows you the data that is submitted to the Arm Keil server

to generate your personal license key:

Evaluate MDK Professional for 30 Days

S
[|
k.

You are about to request a 30-day MDK Professional
Evaluation License.

The following information will be sent to www.keil.com:

Computer 1D Mumber [CID):
Name;

Email:

Company:

When you click OK, your browser opens, and you are directed to a registration
page. Confirm that the information is correct by clicking the Submit button:

Getting Started with MDK: Create Applications with pVision

Request a free 30 day trial of MDK-Professional

Please validate the information on the following form and submit.
Please make certain your e-mail address is valid. We will send you a License ID Code(LIC) vie e-mail.
Email is sent from licmgr@keil.com so make sure any spam blocker you use is configured to allow this address.

Enter Your Contact Information Below

Computer ID (CID):
First Name:
Last Name:
E-mail:
Company:
[0 1 would like to get assistance during my evaluation.
NOTICE:

If you selectthis check box, you agree that an Arm technical person may
contact you via e-mail

We will process your information in accordance with the Forum section of our Privacy Policy

Please complete the Captcha check
™
\/ I'm not a robot

Once done, you receive an email from the Keil web server with the license
number for your evaluation.

In uwVision’s License Management dialog, enter the value in the New License ID
Code (LIC) field and click Add LIC:

e Management

reCAPTCHA

Privacy - Tems

Single-User License l Floating License] Floating License Administrator | FlexNet License]

Customer Information Computer [D
MName: | e
Company: |

Gt LIC via Intemet... |

Email: |

Product | License ID Code... | Support Period
MDK-Lite Ewvaluation Version

New License ID Code (LIC): 431 ZA-K355H-AAGBB-DRTVA-S5IEK-FI3B2 TR LCTT]I

Evaluate MOK Professional | Close Help

Now you can use MDK-Professional for thirty days.

14

Verify Installation using Example Projects

Once you have selected, downloaded, and installed a software pack for your
device, you can verify your installation using one of the examples provided in the
software pack. To verify the software pack installation, we recommend using a
Blinky example, which typically flashes LEDs on a target board.

TIP: Review the getting started video on keil.com/mdk5/install that explains
how to connect and work with an evaluation kit.

Copy an Example Project

@ Inthe Pack Installer, select the tab Examples. Use Search fielad in the
toolbar to narrow the list of examples.

%% Pack Installer — o
File Packs Window Help
o | Device: ARM - ARM Cortex MO
K| Devices | Boards o] |4l Packs ' Examples |
Search: - X [Show examples from installed Packs anly
Device /| Summary Example Action Description
5% ARM 57 Devices -] CIFAR10 (uVision Simulator) 4 Copy CIFAR10 image recognition CMSIS-NN e = |
=Rt ARM Cortex MO 2 Devices CMSIS RTOS Blinky -CMSDK_CMO (V2M-MPS2) 2 Copy CMSIS RTOS based Blinky example
#-“% ARM Cortex MO plus 3 Devices J CMSIS RTQS Blinky -CMSDK_CMOPlus (WV2M-MP52) 2 Copy CMSIS RTOS based Blinky example J
#-“% ARM Cortex M1 1 Device CMBSIS RTQS Blinky -CMSDK_CM3 (V2M-MPS2) 2 Copy CMSIS RTOS based Blinky example
#-“% ARM Cortex M3 3 Devices CMBSIS RTQS Blinky -CMSDK_CM4_FP (V2M-MPS2) 2 Copy CMSIS RTOS based Blinky example
#-“% ARM Cortex M4 4 Devices CMSIS RTQS Blinky -CMSDK_CM7_SP (V2M-MPS2) 2 Copy CMSIS RTOS based Blinky example
#-“% ARM Cortex M7 6 Devices CMSIS-RTOS Validation (uVision Simulator) <_> Install CMSIS-RTOS Validation Example
#-“% ARM Cortex M23 3 Devices CMBSIS-RTOS2 Blinky (uVisien Simulator) 2 Copy CMSIS-RTOS2 Blinky example
#-“% ARM Cortex M33 10 Devices CMBSIS-RTOS2 FreeRTQS Blinky (uVision Simulator) 2 Copy CMBSIS-RTOS2 Blinky example using Freet
- ARM Cortex M33 (MPS3) 3 Devices |l R amie e m e norrars e TE s ‘ oy o LH
Output R x
Ready ONLINE

MDK Introduction

Click Copy and enter the Destination Folder name of your working directory.

Copy Example X

Destination Folder

|C: \Projects ﬂ Browse... |

¥ Use Pack Folder Structure ¥ Launch pvision

QK | Cancel |

NOTE
You must copy the example projects to a working directory of your choice.

= Enable Launch pVision to open the example project directly in the IDE.

http://www.keil.com/mdk5

Getting Started with MDK: Create Applications with pVision 15

= Enable Use Pack Folder Structure to copy example projects into a common
folder. This avoids overwriting files from other example projects. Disable
Use Pack Folder Structure to reduce the complexity of the example path.

= Click OK to start the copy process.

Use an Example Application with pVision

MVision starts and loads the example project where you can:

LOAD

¥2 Download the application, typically to on-chip Flash ROM of a device.
@] Run the application on the target hardware using a debugger.

The step-by-step instructions show you how to execute these tasks. After copying
the example, pVision starts and looks like the picture below.

File Edit View Project Flash Debug Peripherals Tools —SVCS

SHd| a| | | | count VR a-|ecoa- B
B 2] 8] vaes U B
Project - _—

=% Project: Blinky The 'RTX_Blinky' project mple CMSIS RTOS Kernel based example for ~
g V2M-MPS2 ARM ' Cortex-M@" micro. ing ARM 'V2M-MPS2' Evaluat: Board
&5 Sourc ware Interface Standard (CMSIS)

& 5 Documentation

L) Abstractit
@€ Board Support
@€ CMsis .
@@ Device driver. Four LEDs are

This example simulates Half step driver mode and
Cu rotation direction

The Blinky progra

Simulator:

Fastiiodels configured for Fastrodels MPs2 Simulator
[l — [F v
e [@oo. Ore v | < 2
Build Output L |
ULINK2/ME Cortex Debugger L1 CAP NUM| SCRL OVR R/W

T1P: Most example projects contain an Abstract.txt file with essential
information about the operation and hardware configuration.

16 MDK Introduction

Build the Application

The Build Output window shows information about the build process. An error-
free build shows information about the program size.

Build Output a B
* Using Compiler 'V5.06 update € (build 750)', folder: 'C:\Keil vS5\ARM\ARMCC\Bin' -

Rebuild target 'VZM-MP52'

compiling GLCD Fonts.c...

compiling Blinky.c...

compiling GLCD V2ZM-MPS2.c...

compiling LED VZM-MP52.c...

assembling startup CMSDK CMO.s. ..

compiling RTX Conf CM.c...

compiling system CMSDE CMO.c...

linking...
Program Size: Code=3597& RO-data=€732 EW-data=9%2 ZI-data=3620
" . \Out\Blinky.axf" - 0 Error(s), 0 Warning(s).

Build Time Elapsed: 00:00:01

Download the Application

Connect the target hardware to your computer
using a debug adapter that typically connects
via USB. Several evaluation boards provide
an on-board debug adapter.

Now, review the settings for the debug adapter. Typically, example projects are
pre-configured for evaluation Kits; thus, you do not need to modify these settings.

£% Click Options for Target on the toolbar and select the Debug tab. Verify
that the correct debug adapter of the evaluation board you are using is
selected and enabled. For example, CMSIS-DAP Debugger is a common
on-board debug adapter for various starter Kits.

kA Options for Target 'STM32FT46 Flash' X

Device] Target] Output] Listing] User] C,-'CH] Asm] Linker Ltilities]
" Use Simulator with restrictions Settings * Use: w || Settings |

[~ Limit Speedto Real-Time

W Load Application at Startup ¥ Run to main() [v Load Application at Startup ¥ Run to main()

Getting Started with MDK: Create Applications with pVision

17

> Enable Load Application at Startup for loading the application into the

MVision debugger whenever a debugging session is started.

Enable Run to main() for executing the instructions up to the first

executable statement of the main() function. The instructions are executed
upon each reset.

T1P: Click the button Settings to verify communication settings and diagnose

LOAD

problems with your target hardware. For further details, click the button

Help in the dialogs. If you have any problems, refer to the user guide of the
starter kit.

Click Download on the toolbar to load the application to your target
hardware.

Build Output

Load "C:\\Workspaces\\MDX\\STM32\\MDE\\Boards\\ST\\STM32F746G_Discovery\\Blinky\\Flasn\\Blinky.ax"
Erase Done.

Programming Done.

Verify OK.

Application running ...

Flash Load finished at 14:38:29

The Build Output window shows information about the download progress.

Run the Application

@Q

Click Start/Stop Debug Session on the toolbar to start debugging the
application on hardware.

Click Run on the debug toolbar to start executing the application. LEDs
should flash on the target hardware.

18

Access Documentation

MDK provides online manuals and context-sensitive help. The pVision Help
menu opens the main help system that includes the uVision User’s Guide, getting
started manuals, compiler, linker and assembler reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation
and explain dialog options and settings.

You can press F1 in the editor to access help on language elements like RTOS
functions, compiler directives, or library routines. Use F1 in the command line of
the Output window for help on debug commands, and some error and warning
messages.

The Books window may include device reference guides, data sheets, or board
manuals. You can even add your own documentation and enable it in the Books
window using the menu Project — Manage — Components, Environment,
Books — Books.

The Manage Run-Time Environment dialog offers access to documentation via
links in the Description column.

In the Project window, you can right-click a software component group and open
the documentation of the corresponding element.

Access the nVision User’s Guide on-line: keil.com/support/man/docs/uv4.

Request Assistance

If you have suggestions or you have discovered an issue with the software, please
report them to us. Support information can be found at keil.com/support.

When reporting an issue, include your license code (if you have one) and product
version, available from the pVision menu Help — About.

On-line Learning

Our keil.com/learn website helps you to learn more about the programming of
Arm Cortex-based microcontrollers. It contains tutorials, further documentation,
as well as useful links to other websites.

Selected videos showing the tools and different aspects of software development
are available at keil.com/video.

http://www.keil.com/support/man/docs/uv4
http://www.keil.com/support
http://www.keil.com/learn
https://www2.keil.com/video

Getting Started with MDK: Create Applications with pVision 19

CMSIS

The Cortex Microcontroller Software Interface Standard (CMSIS) provides a
standardized software framework for embedded applications that run on Cortex
based microcontrollers. CMSIS enables consistent and simple software interfaces
to the processor and the peripherals, simplifying software reuse, reducing the
learning curve for microcontroller developers.

CMSIS is available under an Apache 2.0 license and is publicly developed on
GitHub: https://github.com/ARM-software/CMSIS 5.

NOTE
This chapter is a reference section. The chapter Create Applications on page 44
shows you how to use CMSIS for creating application code.

CMSIS provides a common approach to interface peripherals, real-time operating
systems, and middleware components. The CMSIS application software
components are:

= CMSIS-CORE: Defines the API for the Cortex-M processor core and
peripherals and includes a consistent system startup code. The software
components ::CMSIS:CORE and ::Device:Startup are all you need to
create and run applications on the native processor that uses exceptions,
interrupts, and device peripherals.

= CMSIS-RTOS2: Provides a standardized real-time operating system API
and enables software templates, middleware libraries, and other components
that can work across supported RTOS systems. This manual explains the
usage of the Keil RTX5 implementation.

= CMSIS-DSP: Is a library collection for digital signal processing (DSP) with
over 60 Functions for various data types: fix-point (fractional q7, q15, q31)
and single precision floating-point (32-bit).

= CMSIS-Driver: Is a software API that describes peripheral driver interfaces
for middleware components and user applications. The CMSIS-Driver API is
designed to be generic and independent of a specific RTOS making it
reusable across a wide range of supported microcontroller devices.

= CMSIS-Zone: Defines methods to describe and partition system resources
into multiple projects and execution areas. The system resources may include
multiple processors, memory areas, peripherals and related interrupts.

https://github.com/ARM-software/CMSIS_5

20 CMSIS

CMSIS-CORE

This section explains the usage of CMSIS-CORE in applications that run natively
on a Cortex-M processor. This type of operation is known as bare-metal, because
it does not use a real-time operating system.

Using CMSIS-CORE

A native Cortex-M application with CMSIS uses the software component
::CMSIS:CORE, which should be used together with the software component
::Device:Startup. These components provide the following key files:

The startup_<device>.s file with reset startup_<device>.c [) CMSIS-CORE device fles

handler and exception vectors.
p-) ' CMSIS device startup D CMSIS-CORE header files
The system_<device>.c configuration] ser program
file for basic device setup.
. . system_<device>.c partition_<device>.h
The <device>.h header file for user _

d to the mi troller CMSIS system & clock Secure attributes &
co e aCCGS.S 0 e . Icrocon i configuration interrupt assignment
device. This file is included in C
source files and defines: ;

<user>.c/c++ <device>.h
= Peripheral access with Usmeri=i CMsls
standardized register layout. main{() { ...) device peripheral access

= Access to interrupts and exceptions, and the Nested Interrupt Vector
Controller (NVIC).

= Intrinsic functions to generate special instructions, for example to
activate sleep mode.

= Systick timer (SYSTICK) functions to configure and start a periodic
timer interrupt.

= Debug access for printf-style 1/0 and ITM communication via on-chip
CoreSight.

The partition_<device>.h header file contains the initial setup of the TrustZone
hardware in an Armv8-M system (refer to section Secure/non-secure
programming).

NOTE
In actual file names, <device> is the name of the microcontroller device.

Getting Started with MDK: Create Applications with uVision 21

Adding CMSIS-CORE Components to the Project

The files for the components ::CMSIS:CORE and ::Device:Startup are added
to a project using the pVision dialog Manage Run-Time Environment. Just
select the software components as shown below:

Software Component Sel, Wariant Wersion Description
= ‘ CMSIS Cortex Microcontroller Software Inteface Components =

¥ CORE v 540 CMSIS-CORE for Cortex-h, 5C000, 5C300 ARMvE-M. ARNMvE.1-IM

¥ DsP I_ Source ~ 180 CMSIS-DSP Library for Cortex-M, SCO00, and SC300

@ NN Lib I_ 13.0 CISIS-MM Meural Metwaork Library

€ RTOS (API) 1.00 CIMSI5-RTOS API for Cortex-M, 5C000, and 5C300
4 RTOSZ (API) 213 CMSIS-RTOS AP for Cortex-M, SCO00, and SC300

’ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
’ CMSIS Driver Validation
‘ Compiler ARM Compiler |1.80 Compiler Bxtensions for ARM Compiler 5 and ARM Compiler
@ Data Exchange Data exchange or data formatter o
= ‘ Device Startup, System Setup

@ Startup |7 C Startup ~ 203 Systemn and Startup for Generic Arm Cortex-M32 device
4 File System MDK-Plus ~ 1 6.13.8 |File Access on various storage devices
‘ Graphics MDK-Plus ~|6.10.8 User Interface on graphical LCD displays
‘ loT Client 10T claud client connector
‘ loT Service 10T specific services =
i | o
Validation Output Description

Resalve Select Packs Details oK I Cancel | Help |

The pVision environment adds the related files.

Source Code Example
The following source code lines show the usage of the CMSIS-CORE layer.
Example of using the CMSIS-CORE layer

#include "stm32f4dxx.h" // File name depends on device used

uint32 t volatile msTicks; // Counter for millisecond Interval

uint32 t volatile frequency; // Frequency for timer

void SysTick Handler (void) { // SysTick Interrupt Handler
msTicks++; // Increment Counter

}

void WaitForTick (void) {
uint32 t curTicks;

curTicks = msTicks; // Save Current SysTick Value
while (msTicks == curTicks) { // Wait for next SysTick Interrupt
__WFE (); // Power-Down until next Event

}

http://www.keil.com/pack/doc/cmsis/Core/html/group__intrinsic___c_p_u__gr.html#gad3efec76c3bfa2b8528ded530386c563

22 CMSIS

}

void TIM1 UP IRQHandler (void) { // Timer Interrupt Handler
; // Add user code here

}

void timerl init (int frequency) { // Set up Timer (device specific)
NVIC SetPriority (TIM1 UP IROn, 1); // Set Timer priority
NVIC EnableIRQ (TIM1 UP_ IRQn) ; // Enable Timer Interrupt

}

// Configure & Initialize the MCU
void Device Initialization (void) {
if (SysTick Config (SystemCoreClock / 1000)) { // SysTick 1ms
: // Handle Error

}
timerl init (frequency); // Setup device-specific timer
}

// The processor clock is initialized by CMSIS startup + system file
int main (void) { // User application starts here
Device Initialization (); // Configure & Initialize MCU

while (1) { // Endless Loop (the Super-Loop)
__disable irg (); // Disable all interrupts
// Get InputValues ();
__enable irg (); // Enable all interrupts
// Process Values ();
WaitForTick (); // Synchronize to SysTick Timer
}
}

For more information, right-click the group CMSIS in the Project window, and
choose Open Documentation, or refer to the CMSIS-CORE documentation
arm-software.github.io/CMSIS 5/Core/html/index.html.

5' [B] overview X |+ v 7 o »
s = 0 @ o wwwkeil.com/p xhtm m ¥ v L.

(Seusis CMSIS-Core (Cortex-M) versions:3.0

CMSIS-Core support for Cortex-M processor-based devices
General CMSIS-Core(A) Driver | DSP | NN | RTOSvi | RTOSv2 | Pack | SVD | DAP | Zone |

Main Page Usage and Description | Reference |

CMSIS-Core (Cortex-M) =
— Overview
v erview
Processor Support
Tested and Verified Toolchains CMSI5-Core (Cortex-M) implements the basic run-time system for a Cortex-M device and gives the user access
Revision History of CMSIS-Core (Cortex-M) to the processor core and the device peripherals. In detail it defines:

Using CMSIS in Embedded Applications « Hardware Abstraction Layer (HAL) for Cortex-M processor registers with standardized definitions for
Using TrustZone for Amvg-M ;he Et;ysT\ck, NVIC, System Control Block registers, MPU registers, FPU registers, and core access

. unctions.
CMSIS-Core Device Templates System exception names to interface to system exceptions without having compatibility issues.
MISRA-C Deviations Methods to organize header files that makes it easy to learn new Cortex-M microcentroller products
Register Mapping and improve software portability. This includes naming conventions for device-specific interrupts.
Methods for system initialization to be used by each MCU vender. For example, the standardized
SystemInit() functicn is essential for configuring the clock system of the device.

Deprecated List

Reference + Intrinsic functions used to generate CPU instructions that are not supported by standard C functions.
Data Structures « Avariable to determine the system clock frequency which simplifies the setup the SysTick timer.
Data Fields The following sections provide details about the CMSIS-Core (Cortex-M)

= Using CMSIS in Embedded Applications describes the project setup and shows a simple program
example.
+ Using TrustZone® for Armv8-M describes how to use the security extensions available in the Armva-M

Generated on Wed Jul 10 2019 15:20:26 for CMSIS-Core (Cortex-M) Version 5.3.0 by Arm Ltd. Al rights reserved.

http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga5bb7f43ad92937c039dee3d36c3c2798
http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga530ad9fda2ed1c8b70e439ecfe80591f
http://www.keil.com/pack/doc/cmsis/Core/html/group___sys_tick__gr.html#gabe47de40e9b0ad465b752297a9d9f427
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#gaeb8e5f7564a8ea23678fe3c987b04013
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#ga0f98dfbd252b89d12564472dbeba9c27
https://arm-software.github.io/CMSIS_5/Core/html/index.html

Getting Started with MDK: Create Applications with pVision

23

CMSIS-RTOS2

This section introduces the CMSIS-RTOS2 API and the Keil RTX5 real-time
operating system, describes their features and advantages, and explains
configuration settings of Keil RTX5.

NOTE

MDK is compatible with many third-party RTOS solutions. However,
CMSIS-RTOS Keil RTX5 is feature-rich and tailored towards the requirements of
deeply embedded systems. Also, it is well integrated into MDK.

While CMSIS-RTOS Keil RTX5 is open source, a variant certified for functional
safety applications is available as well. See keil.com/fusa-rts for details.

Software Concepts

There are two basic design concepts for embedded applications:

= Infinite Loop Design: involves running the program as an endless loop.
Program functions (threads) are called from within the loop, while interrupt
service routines (ISRs) perform time-critical jobs including some data
processing.

= RTOS Design: involves running several threads with a real-time operating
system (RTOS). The RTOS provides inter-thread communication and time
management functions. A pre-emptive RTOS reduces the complexity of
interrupt functions, because high-priority threads can perform time-critical
data processing.

Infinite Loop Design

Running an embedded program in an endless loop is an adequate solution for
simple embedded applications. Time-critical functions, typically triggered by
hardware interrupts, execute in an ISR that also performs any required data
processing. The main loop contains only basic operations that are not time-critical
and run in the background.

https://www2.keil.com/fusa-rts

24 CMSIS

Advantages of an RTOS Kernel

RTOS kernels, like the Keil RTX5, are based on the idea of parallel execution
threads (tasks). As in the real world, your application will have to fulfill multiple
different tasks. An RTOS-based application recreates this model in your software
with various benefits:

= Thread priority and run-time scheduling is reliably handled by the RTOS.

= The RTOS provides a well-defined interface for communication between
threads.

= A pre-emptive multi-tasking concept simplifies the progressive enhancement
of an application even across a larger development team. New functionality
can be added without risking the response time of more critical threads.

= Infinite loop software concepts often poll for occurred interrupts. In contrast,
RTOS kernels themselves are interrupt driven and can largely eliminate
polling. This allows the CPU to sleep or process threads more often.

Modern RTOS kernels are transparent to the interrupt system, which is
mandatory for systems with hard real-time requirements. Communication
facilities can be used for IRQ-to-task communication.

Using Keil RTX5

The Keil RTX 5 implements the CMSIS-RTOS API v2 as a native RTOS
interface for Cortex-M processor-based devices.

Once the execution reaches main(), there is a recommended order to initialize the
hardware and start the kernel. The main() of your application should implement at
least the following in the given order:

1. Initialization and configuration of hardware including peripheral, memory,
pin, clock, and interrupt system.

2. Update SystemCoreClock using the respective CMSIS-CORE function.
Initialize CMSIS-RTOS kernel using osKernellnitialize.

4. Optionally, create a new thread app_main, which is used as a main thread
using osThreadNew. Alternatively, threads can be created in main() directly.

5. Start RTOS scheduler using osKernelStart. osKernelStart does not return in
case of successful execution. Any application code after osKernelStart will
not be executed unless osKernelStart fails.

Getting Started with MDK: Create Applications with uVision 25

The software component ::CMSIS:RTOS2 (API):Keil RTX5 must be used
together with the components ::CMSIS:CORE and ::Device:Startup explained
in Using CMSIS-CORE section.

Central Keil RTX5 files are:

The header file cmsis_o0s2.h exposes the RTX functionality to the user
application via CMSIS-RTOS2 API.

The configuration files RTX_Config.c/.h define thread options, timer
configurations, and RTX kernel settings.

The file RTX_<core>.lib contains the library with RTOS functions and gets
included when RTX5 is used in a library variant. In this case rtx_lib.c file
contains the RTX5 library configuration.

Section Project with CMSIS-RTOS2 gives an example how to setup a project
based on Keil RTX5.

Adding Keil RTX5 Components to the Project

The files for the components ::CMSIS:RTOS2 (API):Keil RTXS5,
::CMSIS:CORE and ::Device:Startup are added to a project using the pVision
dialog Manage Run-Time Environment. Just select the software components as
shown below:

Software Component Sel, Variant Wersion Description
= ‘ CMSIS Cortex Microcontroller Software Interface Components 1=

¥ CORE v 540 CIMSIS-CORE for Cortex-h. 5C000. 5C300 ARMwE-M. ARNMvE.1-IM

¥ DSP I_ Source ~|1.8.0 CMSIS-DSP Library for Cortex-M, SCO00, and SC300

¥ MM Lib I_ 13.0 CMEIS-MM Meural Metwork Library

€ RTOS (APD) 1.00 CIMSIS-RTOS API for Cortex-M, 5C000, and SC300
24 RTOS2 (API) 213 CIM3I5-RTOS AP for Cortex-I, SC000, and SC300
‘' T ms.s.z CIMSIS-RTOS2 RTX5 for Cortex-h, SC000, SC300, ARME-I, ARNKE

’ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
‘ CMSIS Driver Validation Source I
@ Compiler ARM Compiler |1.8.0 Compiler Extensions for ARM Compiler 5 and ARM Compiler
’ Data Exchange Data exchange or data formatter
= ‘ Device Startup, System Setup

¥ Startup [w C Startup ~ 203 System and Startup for Generic Arm Cortex-M3 device
‘ File System MDK-Plus ~|6.13.8 File Access on various storage devices
‘ Graphics MDK-Plus ~6.10.8 Uzer Interface on graphical LCD displays
’ loT Client 10T cloud client connector -
i | o
Validation Output Description

Resalve Select Packs Details OK I Cancel Help |

26

Library variant of Keil RTX5 has more compact code, while source variant
allows full program debug and supports RTOS-aware debugging via Event
Recorder support.

CMSIS-RTOS2 API Functions

The file cmsis_os2.h is a standard header file that defines interfaces to every
CMSIS-RTOS API v2 compliant RTOS.

All definitions in the header file are prefixed with os to give a unique name space
for the CMSIS-RTOS functions.

All definitions and functions that belong to a module are grouped and have a
common prefix, for example, osThread for threads.

Refer to section Reference: CMSIS-RTOS2 API of the online documentation at
arm-software.qithub.io/CMSIS 5/RTOS2/html/index.html, for more
information.

Keil RTX5 Configuration

The file RTX_Config.h contains configuration parameters for Keil RTX5. A
copy of this file is part of every project using the RTX component.

_1 RTX_Config.h

Expand Al | Collapse Al | hep |

Option Value

-)--Systemn Configuration

Global Dynamic Memory size [bytes] 4096

Kernel Tick Frequency [Hz] 1000
+-Round-Robin Thread switching [v

ISR FIFQ Queue 16 entries

Object Memory usage counters
Thread Configuration
Timer Configuration
Event Flags Configuration
Mutex Configuration
Semaphore Configuration
Memory Pool Configuration

Message Queue Configuration

Oy Y O O 3 O = B

Event Recorder Configuration

Text Editor .\f\ Configuration Wizard [

You can set various system parameters such as the Tick Timer frequency, Round-
Robin time slice, specify configurations for specific RTOS objects, such as

CMSIS

https://arm-software.github.io/CMSIS_5/RTOS2/html/index.html

Getting Started with MDK: Create Applications with uVision 27

threads, timers, event flags, mutexes, semaphores, memory pools, and message
gueues, as well configure Event Recorder operation.

For more information about configuration options, open the RTX documentation
from the Manage Run-Time Environment window. The section Configure
RTX v5 describes all available settings:

arm-software.github.io/CMSIS 5/RTOS2/html/config rtx5.html

CMSIS-RTOS User Code Templates

MDK provides user code templates you can use to create C source code for the
application.

(F Inthe Project window, right click a group, select Add New Item to Group,
choose User Code Template, select any template and click Add.

Add template files) to the project.
@ C Fle{a) et
= Component Mame
@ C++ File {.cpp) =€ cmsis ~
] vl 1 -] . n' 1
\ﬂ Asm Fie () RTOS2:Keil RTX5 CMSIS-RTOS2 'main’ function
RTOS2:Keil RTXS CMSIS-RTOS2 Events
\ﬂ Header Filz (h) RTOS2:Keil RTX5 CM5I5-RTOS2 Memory Pool
=) RTOS2:Keil RTX3 CMSIS-RTOS2 Message Queue
é Tet File (£) RTOS2Keil RTX5 | CMSIS-RTOS2 Mutex
; - RTOS2:Keil RTXS CMSIS-RTOS52 SVC User Table
24| Image File (")
=L RTOS52:Keil RTXS CM5I5-RTOS52 Semaphore
5@ User Code Template RTOS2:Keil RTXS CMSIS-RTOS2 Thread
RTOS2:Keil RTX5 CMSIS-RTOS2 Timer ;l
Type: I User Code Template
Name: Imain.c
Location: IC:\Projects\,BIinky_RTOS |
Add Close Help |

https://arm-software.github.io/CMSIS_5/RTOS2/html/config_rtx5.html

28 CMSIS

Source Code Example

Once these files are part of the project, developers can start using the CMSIS-
RTOS2 RTX functions.

The code example shows the use of CMSIS-RTOS RTX functions.
#include "cmsis_os2.h" // CMSIS RTOS2 header file
void app main (void *argument) {

tid phaseA = osThreadNew (phaseA, NULL, NULL);

osDelay (osWaitForever) ;

while (1) ;
}

int main (void) {

// System Initialization
SystemCoreClockUpdate () ;

osKernelInitialize(); // Initialize CMSIS-RTOS
osThreadNew (app main, NULL, NULL); // Create application main thread
if (osKernelGetgtate() == osKernelReady) {
osKernelStart () ; // Start thread execution
}
while (1) ;

}

Section Project with CMSIS-RTOS2 explains in details how to setup an RTOS-
based application using Keil RTX5.

http://www.keil.com/pack/doc/cmsis/RTOS/html/cmsis__os_8h.html

Getting Started with MDK: Create Applications with pVision 29
Component Viewer for RTX RTOS
Keil RTX5 comes with an SCVD file for the Component Viewer for RTOS
aware debugging. In the debugger, open View — Watch Windows — RTX
RTOS. This window shows system state information and the running threads.
The System property shows RIX RTOS =g
general information about the "mj;;“ Value
RTOS configuration in the Kernel D RTCV5S —
appllcatlon ¥ Kernel State osKernelRunning
¥ Kernel Tick Count 201385
The ThreadS property ShOWS ¥ Kernel Tick Frequency 1000
details about thread execution of : E: E*;Ikc* 5
- - tound Robin Timeout
the appllcatlon For eaCh thread’ ¥ Global Dynamic Memory Base: (x20000000, Size: 4096, ...
|t ShOWS InfOI’matIOI’l abOUt ¥ Stack Overrun Check Enabled
priority, execution state and : ;‘Tk :JE:EE""""la‘Er”;ark E;ab'“'
efault Thread Stack Size 256
StaCk Usage ¥ ISR FIFO Queue Size: 16, Used: 0
. =% Threads
If the Optlon _StaCk usage B id: (x200012D0 "osRixldleThread" | osThreadReady, osPriorityldl...
Watermark IS enabled for I id: 0x20001314 "osRtxTimerThread" | osThreadBlocked, osPriority...
Th read Conﬁgu rat|0n |n the 27 id: 0x200000D8 "app_main” osThreacIF‘\unn?ng, osPriority...
fle RTX_Config.h, he fild oy it
StaCk ShOWS the StaCk |0ad. ThiS ¥ Attributes osThreadDetached
allows you to: = Stack Used: 9% [116], Max: 243 [229]
¥ Used 118
= |dentify stack overflows ¢ Max 238
. . @ Top :20001ADS
during thread execution ¢ Coment o001 At
or @ Limit (x20001628
Lo @ Size 1200
= Optimize and reduce the @ Flags 00000000 |
stack space used for T Muteres
'[hl’eads ¥ Message Queues ﬂ

Information about other RTX5 objects, such as mutexes, semaphores, message
queues, is provided in corresponding properties as well.

NOTE

The pVision debugger also provides a view with detailed runtime information.
Refer to Event Recorder on page 74 for more information.

30 CMSIS

CMSIS-DSP

The CMSIS-DSP library is a suite of common digital signal processing (DSP)
functions. The library is available in several variants optimized for different Arm
Cortex-M processors.

When enabling the software component ::CMSIS:DSP in the Manage Run-
Time Environment dialog, the appropriate library for the selected device is
automatically included into the project. It is also possible to select source-code
variant,.

Software Component Sel. Variant Version Description
= ’ CMSIS Cortex Microcontroller Software Interface Components -
¥ CORE v 540 CMSIS-CORE for Cortex-M, 5C000 SC300, ARMwE-IM, ARMWE 1-M
* EN mma CIMSI5-DSP Library for Cortex-Iv, 5C000. and 5C300
¥ NN Lib I_ Library 1.3.0 CIASIS-MM Meural Metwork Library
4 RTOS (APD) ELD.S CMSIS-RTOS APl for Cortex-M, SC000, and SC300
4 RTOS2 (API) 213 CIMSIS-RTOS APl for Cortex-M, SC000. and SC300
N Ll [P PP S e

The code example below shows the use of CMSIS-DSP library functions.

Multiplication of two matrixes using DSP functions

#include "arm math.h" // ARM::CMSIS:DSP

const float32 t buf A[9] = { // Matrix A buffer and values
1.0, 32.0, 4.0,

1.0, 32.0, 64.0,

1.0, 16.0, 4.0,

i

float32 t buf AT[9]; // Buffer for A Transpose (AT)
float32 t buf ATmA[9] ; // Buffer for (AT * A)

arm matrix instance f32 A; // Matrix A

arm matrix instance f£32 AT; // Matrix AT (A transpose)

arm matrix instance f32 ATmA; // Matrix ATmA(AT multiplied by A)
uint32 t rows = 3; // Matrix rows

uint32 t cols = 3; // Matrix columns

int main (void) {
// Initialize all matrixes with rows, columns, and data array
arm mat init £32 (&A, rows, cols, (float32 t *)buf A); // Matrix A

arm mat init £f32 (&AT, rows, cols, buf AT); // Matrix AT
arm mat init £f32 (&ATmA, rows, cols, buf ATmA); // Matrix ATmA
arm mat trans f£32 (&A, &AT); // Calculate A Transpose (AT)

arm mat mult f£32 (&AT, &A, &ATmA); // Multiply AT with A

while (1);

Getting Started with MDK: Create Applications with uVision 31

For more information, refer to the CMSIS-DSP documentation on
arm-software.github.io/CMSIS 5/DSP/html/index.html.

=] EI' [3] Reference X |+ ~ —] X

“ = O T | www.keil.com/pack/doc/CMSIS/DSP/html/modules. html ¥ = 7 &

(sl CMSIS-DSP version 1.7.0

CMSIS DSP Software Library

General | CMSIS-Core(A) | CMSIS-Core(M) Driver m NN | RTOSvl | RTOSv2 | Pack |
SVD | DAP | Zone |
Main Page | Usage and Description & Search
¥ CMSIS-DSP

Reference

CMSIS DSP Software Library
Revision History of CMSIS-DSP

Deprecated List Here is a list of all modules:

Helzes [detail level 12 3]
» Data Structures » Basic Math Functions
» Data Fields » Fast Math Functions

» Complex Math Functions
¥ Filtering Functions

¥ Matrix Functions

* Transform Functions

* Controller Functions

¥ Statistics Functions

¥ Support Functions

¥ Interpolation Functions
F Examples

Generated on Wed Jul 10 2019 15:20:40 for CMSIS-DSP Version 1.7.0 by Arm Ltd. All rights reserved.

https://arm-software.github.io/CMSIS_5/DSP/html/index.html

32 CMSIS

CMSIS-Driver

Device-specific CMSIS-Drivers provide the interface between the middleware
and the microcontroller peripherals. These drivers are not limited to the MDK-

Middleware and are useful for various other middleware stacks to utilize those

peripherals.

The device-specific drivers are usually part of the software pack that supports the
microcontroller device and comply with the CMSIS-Driver standard. The device
database on https://developer.arm.com/embedded/cmsis/cmsis-packs/devices/
lists drivers included in the software pack for the device.

Device Software Packs
Device Pack control Middleware
Startup/System Sv:::

usB E USB Controller USB Device Driver USB Device
Ethernet E Ethernet PHY Ethernet PHY ETH_PHYO

1
Ethernet MAC Ethernet MAC ETH_MACO TCP/IP Networking

RXO/TXO E USART USART Driver

WiFi Driver

SPI0 E SPI Controller SPI Driver

R/ E CAN Controller CAN Driver
SPI1 E SPI Controlier Flash Driver
SDI00 E SDIo MCI Driver File System

[F{s] E Memory Controller NAND Driver
use] use controller USB Host Driver USB Host

RTE_Device.h

Configuration File

Middleware components usually have various configuration files that connect to
these drivers. Depending on the device, an RTE_Device.h file configures the
drivers to the actual pin connection of the microcontroller device. Some devices
require specific third-party tools to configure the hardware correctly.

The middleware/application code connects to a driver instance via a control
struct. The name of this control struct reflects the peripheral interface of the
device. Drivers for most of the communication peripherals are part of the
software packs that provide device support.

https://developer.arm.com/embedded/cmsis/cmsis-packs/devices/

Getting Started with MDK: Create Applications with pVision 33

Use traditional C source code to implement missing drivers according the
CMSIS-Driver standard.

Refer to arm-software.github.io/CMSIS 5/Driver/html/index.html for detailed
information about the API interface of these CMSIS drivers.

ARM::CMSIS-Driver pack contains example CMSIS-Driver implementations
for such interfaces as WiFi, Ethernet, Flash, 12C and SPI.

Configuration

There are multiple ways to configure a CMSIS-Driver. The classical method is
using the RTE_Device.h file that comes with the device support.

Other devices may be configured using third party graphical configuration tools
that allow the user to configure the device pin locations and the corresponding
drivers. Usually, these configuration tools automatically create the required C
code for import into the pVision project.

Using RTE_Device.h

For most devices, the RTE_Device.h file configures the drivers to the actual pin
connection of the microcontroller device:

_] RTE Device.h - X
Bgand Al | Colapsc Al | Hep | T Show Gid
Option Value
=-USB0 Controller [Driver_USBDO and Driver_USBHO] I -
E-Pin Configuration
‘USBO_PPWR (Host} Pg_3 -
USBO_PWR_FAULT (Host) Mot used
USBO_INDOD P17
P20
USBO_IND1 P2 3
Device [Driver_USBDO]
USE1 Controller [Driver_USBD1 and Driver_USEBH1] rd
EMET (Ethernet Interface) [Driver_ETH_MACD] r j
USBO_PPWR (Host)
VBUS drive signal (towards external charge pump or power management
unit).
Text Editor), Configuration Wizard |

Using the Configuration Wizard view, you can configure the driver interfaces in

a graphical mode without the need to edit manually the #defines in this header
file.

https://arm-software.github.io/CMSIS_5/Driver/html/index.html
https://arm-software.github.io/CMSIS-Driver/General/html/index.html

34 CMSIS

Using STM32CubeMX

MDK supports CMSIS-Driver configuration for STM32 devices using
STM32CubeMX. This graphical software configuration tool allows you to
generate C initialization code using graphical wizards for STMicroelectronics
devices.

Simply select the required CMSIS-Driver in the Manage Run-Time Environment
window and choose Device:STM32Cube Framework (API1):STM32CubeMX.
This will open STM32CubeMX for device and driver configuration. Once
finished, generate the configuration code and import it into pVision.

For more information, visit the online documentation at
keil.com/pack/doc/STM32Cube/General/html/index.html.

Validation Suites for Drivers and RTOS

Software packs to validate user-written CMSIS-Drivers or a new implementation
of a CMSIS-RTOS are available from keil.com/pack. They contain the source
code and documentation of the validation suites along with required configuration
files, and examples that show the usage on various target platforms.

The CMSIS-Driver validation suite performs the following tests:
= Generic validation of API function calls
= Validation of configuration parameters
= Validation of communication with loopback tests
= Validation of communication parameters such as baudrate
= Validation of event functions

The test results can be printed to a console, output via ITM printf, or output to a
memory buffer. Refer to the Driver Validation section in the documentation at
arm-software.github.io/CMSIS 5/Driver/html/driverValidation.html.

The CMSIS-RTOS validation suite performs generic validation of various RTOS
features. The test cases verify the functional behavior, test invalid parameters and
call management functions from ISR.

The validation output can be printed to a console, output via ITM printf, or output
to a memory buffer. Refer to the section RTOS Validation in the documentation
at arm-software.github.io/CMSIS 5/RTOS2/html/rtosValidation.html.

http://www.keil.com/pack/doc/STM32Cube/General/html/index.html
http://www.keil.com/pack
https://arm-software.github.io/CMSIS_5/Driver/html/driverValidation.html
https://arm-software.github.io/CMSIS_5/RTOS2/html/rtosValidation.html

Getting Started with MDK: Create Applications with pVision 35

Software Components

The development of complex embedded applications requires a modular
architecture with multiple own and third-party components used. MDK and
CMSIS allow to easily integrate and maintain software components in your
projects.

Use Software Packs

Software packs contain information about microcontroller devices and software
components that are available for the application as building blocks.

The device information pre-configures development tools for you and shows only
the options that are relevant for the selected device.

k2 Start pVision and use the menu Project - New pVision Project. After you
have selected a project directory and specified the project name, select a
target device.

Select Device for Target ‘Target 1'.. X

Device l

| Software Packs j

Vendor: STMicroelectronics
Device: STM32F746BETx

Toolset: ARM
Search: |
Description:
=% STMicroelectronics j The STM32F7 family incorporates high-speed embedded memories and
5 %% STM32FT Series an extensive range of enhanced |/0s and perpherals connected to

two APB buses, three AHE buses and a 32-bit mutti-AHB bus matrix.
+°T§ STM32F745

= STM32FT46
=% STM32FT46BE

- 64-Kbyte of CCM (core coupled memory) data RAM
- LCD parallel interface, 8080/6800 modes

- Timer with quadrature {incremental) encoder input

- 5 V4olerant 1/0s

- Parallel camera interface

W% STMI2FT46BG - True mndom number generatar

- RTC: subsecond accuracy. hardware calendar
+-“TE STM32FT46IE - 96-bit unigue (D

-1 STM3ZF7461G

QK | Cancel | Help

T1P: Only devices that are part of the installed software packs are shown. If you
are missing a device, use the Pack Installer to add the related software
pack. The search box helps you to narrow down the list of devices.

36 Software Components

€ After selecting the device, the Manage Run-Time Environment window
shows the related software components for this device.

m Manage Run-Time Envirenment X
Software Component Sel, Variant Version Description
= @ CMSIS Cortex Microcontroller Software Interface Compenents j
¥ CORE [+ 420 CMSIS-CORE for Cortex-h, SC000, and SC300
¥ DsP r 146 CMSIS-DSP Library for Cortex-h, SCO00, and SC300
€ RTOS (AP)) 1.0 CMBSIS-RTOS APl for Cortex- M. SC000. and SC300
= @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
@ Ethernet (API) 20 Ethernet MAC and PHY Driver API for Cortex-M
@ Ethernet MAC (API) 2.01 Ethernet MAC Driver AP for Cortex-M
¥ Ethemet PHY (API) 200 Ethernet PHY Driver AP for Cortex-M
@ Flash (API) 2.00 Flash Driver APl for Cortex-M
-4 12C (API) 202 ||2C Driver API for Cortex-M
Lrle v 1.1 12C Driver for STM32F7 Series
& MCI (API) 202 |MCI Driver AP| for Cortex-M
4 NAMD (AP]) 201 NAMD Flash Driver APl for Cortex-M
@ SAl (AP 1.00 SAl Driver AP| for Cortex-M
& Pl (AP]) 201 SPI Driver API for Cortex-M
& USART (API) 201 USART Driver APl for Cortex-M
& USB Device (API) 2.01 USB Device Driver AP| for Cortex-h B
@ USE Host (AP 20 USB Host Driver API for Cortex-M
£-3 Compiler ARM Compiler Software Extensions
= @ Device Startup, System Setup
¥ Startup v 1.0.1 System Startup for STMicroelectronics STM32FT Series
@ STM32Cube Framework (API) STM32Cube Framework
Validation Qutput Description
=4 Keil::CMSIS Driver:2C Additional software components required &
=) require Device:5TM32Cube HALDMA Select component from list
¥ Keil:Device:5TM32Cube HAL:DMA DMA controller (DMA) HAL driver
=) require Device:5TM32Cube HAL: Commen Select component from list
Keil:Device:5STM32Cube HAL:Cornmen Common HAL driver
[=1-require Device:5TM32Cube HAL:RCC Select component from list
¥ Keil:Device:5STM32Cube HALRCC Reset and clock control (RCC) HAL driver j
Resolve Select Packs Details Cancel Help

T1P: The links in the column Description provide access to the documentation of
each software component.

NOTE

The notation ::<Component Class>:<Group>:<Name> is used to refer to
components. For example, ::CMSIS:CORE refers to the component CMSIS-
CORE selected in the dialog above.

Software Component Overview

The following table shows the software components included with a typical MDK
installation. Depending on your MDK edition and selected device, some of these
software components might not be available in the Manage Run-Time
Environment window. In case you have installed additional software packs, more
software components will be available.

Getting Started with MDK: Create Applications with pVision

37

Software Component Description Page

CMSIS CMSIS interface components, such as CORE, DSP, 19
and CMSIS-RTOS.

CMSIS Driver Unified device drivers for middleware and user 19
applications.

Compiler Arm Compiler specific software components to retarget 39

I/0O operations for example for printf style debugging.
Event recorder for debugging software components and
user application code.

Board Support Interfaces to the peripherals of evaluation boards. 42

loT Clients Components for communication with cloud services. 43

Device System startup and low-level device drivers. 58

File System Middleware component for file access on various 93
storage device types.

Graphics Middleware component for creating graphical user 95
interfaces.

Network Middleware component for TCP/IP networking using 91
Ethernet or serial protocols.

UsB Middleware component for USB Host and USB Device 94
supporting standard USB Device classes.

Mbed lIoT Components Mbed libraries for secure communication and 96
cryptography

Product Lifecycle Management with Software
Packs

MDK allows you to install multiple versions of a software pack. This enables
product lifecycle management (PLM) as it is common for many projects.

There are four distinct phases of PLM:

= Concept: Definition of major project requirements and exploration with a
functional prototype.

= Design: Prototype testing and implementation of the product based on the
final technical features and requirements.

= Release: The product is manufactured and brought to market.

= Service: Maintenance of the products including support for customers;
finally, phase-out or end-of-life.

38 Software Components

In the concept and design phase, you normally want to use the latest software
packs to be able to incorporate new features and bug fixes quickly. Before
product release, you will freeze the software components to a known tested state.
In the product service phase, use the fixed versions of the software components to
support customers in the field.

44 The dialog Select Software Packs helps you to manage the versions of each
software pack in your project:

I"" Use latest versions of all installed Software Packs
Pack Selection Version Description
=-ARM:CMEIS latest ~|57.0 CM3SIS (Cortex Microcontroller Software Interface Standard) -~
Iv
™
= ARM::CMSIS-Driver fived v |260 CMSIS Drivers for external devices
2.6.1 [
EI
250 [
241 [
ARM:CMSIS-Driver_Validation excluded | CMSIS-Driver Valicdation
ARM:Musca-51_DFP excluded |~ Musca-51 (with on-chip eMRAM and CryptoCell) device and board support pack
ARM:TFM excluded |~ Trusted Firmware-M (TF-M) reference implementation of Arm's Platform Securit
ARMzmbedCrypto excluded |~ ARM mbed Cryptographic library
ARM:zmbedTLS excluded |~ ARM mbed Cryptographic and S5L/TLS library
Hitex: CMSIS_RTOS_Tutorial excluded | v An Intreduction to using CMSIS RTOS for Cortex-M Microcontrollers
[=-Keil: ARM_Cormpiler fixed ~ (163 Keil ARM Compiler extensions for ARM Compiler 5 and ARM Compiler &
163 [v
1.6.3-devl [
16.2 [
Keil:BulbBoard_BSP excluded |~ Glyn Bulb Board Development Board Support Package
Keil::FIMOplus_DFP excluded |~ Cypress FM0+ Series Device Support
Keil::MDK-Middleware excluded | Middleware for Keil MDK-Professional and MDK-Plus
Keil:532K116_SDK_DFP excluded | v MNXP $32K116 SDK including $32K115 basic CMSIS Device Support Jﬂ
| | 3
Cancel Help

When the project is completed, disable the option Use latest version of all
installed Software Packs and specify the software packs with the settings under
Selection:

= latest: use the latest version of a software pack. Software components are
updated when a newer software pack version is installed.

= fixed: specify an installed version of the software pack. Software components
in the project target will use these versions.

= excluded: no software components from this software pack are used.

The colors indicate the usage of software components in the current project
target:

Some software components from this pack are used.

Getting Started with MDK: Create Applications with pVision

39

Some software components from this pack are used, but the pack is
excluded.
No software component from this pack is used.

Software Version Control Systems (SVCS)

pVision carries template files for GIT, SVN, CVS, and others to support
Software Version Control Systems (SVCS).

Application note 279 “Using Git for Project Management with pVision”
(keil.com/appnotes/docs/apnt 279.asp) describes how to establish a robust
workflow for version control of projects using software packs.

Compiler:Event Recorder

Modern microcontroller applications often contain middleware components,
which are normally a "black box™ to the application programmer. Even when
comprehensive documentation and source code is provided, analyzing of
potential issues is challenging.

The software component Compiler:Event Recorder uses event annotations in
the application code or software component libraries to provide event timing and
data information while the program is executing. This event information is stored
in an event buffer on the target system that is continuously read by the debug unit
and displayed in the event recorder window of the pVision debugger.

Application Code
Event Annotations

!

Event Recorder Debug

l Unit

Event Buffer

Memory

During program execution, the pVision debugger reads the content of the event
buffer using a debug adapter that is connected via JTAG or SWD to the
CoreSight Debug Access Port (DAP). The event recorder requires no trace
hardware and can therefore be used on any Cortex-M processor-based device.

http://www.keil.com/appnotes/docs/apnt_279.asp

40 Software Components

To display the data stored in the event buffer in a human readable way, you need
to create a Software Component Viewer Description (SCVD) file. Refer to:
keil.com/pack/doc/compiler/EventRecorder/html/index.html

The section Event Recorder on page 74 shows how to use the event recorder in a
debug session.

Compiler:1/O

The software component Compiler:1/O allows you to retarget I/O functions of
the standard C run-time library. Application code frequently uses standard 1/0
library functions, such as printf(), scanf(), or fgetc() to perform input/output
operations.

The structure of these functions in the standard Arm Compiler C run-time library
is:

High-Level Functions [
printf, scanf, etc. ‘

Hardware independent

Low-Level Functions ‘
fputc, fgete, etc.

System I/O Functions
_sys_write, _sys_read, etc.

Hardware
dependent

The high-level and low-level functions are not target-dependent and use the
system 1/O functions to interface with hardware.

The MicroLib of the Arm Compiler C run-time library interfaces with the
hardware via low-level functions. The MicroLib implements a reduced set of
high-level functions and therefore does not implement system 1/O functions.

The software component Compiler:1/O retargets the 1/0 functions for the various
standard 1/0 channels: File, STDERR, STDIN, STDOUT, and TTY:

http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

Getting Started with MDK: Create Applications with uVision

41

Manage Run-Time Envirenment >
Software Component Sel. Variant Version Description
4 Board Su pport MCBE1300 1.0.0 Keil Development Board MCB1800
& Cmsis Cortex Microcontroller Software Interface Components
& CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
=] ‘ Compiler ARM Compiler | 1.2.0 Compiler Extensions for ARM Compiler ARMCC and ARMClang
@ EventRecorder [| DAP 1.1.0 Event Recording using Debug Access Port (DAP
=] ‘ /0 Retarget Input/Cutput
¥ File [~ |File System 1.20 Use retargeting together with the File Syster component
STDERR [~ | Breakpoint |~ 120 Stop program execution at a breakpoint when using STDERR
@ STDIM I ~|1.2.0 Retrieve STDIN from a debug output window using ITM
@ sTooUT [|EWR ~|1.2.0 Redirect STDOUT to a debug cutput window using Event Recorder
@ TV [| User ~|1.2.0 Redirect TTY to a user defined output target
Validation Output Description

Resolve Select Packs Details oK I Cancel Help |

I/0O Channel
File
STDERR
STDIN
STDOUT
TTY

Description

Channel for all file related operations (fscanf, fprintf, fopen, fclose, etc.)
Standard error stream of the application to output diagnostic messages.
Standard input stream going into the application (scanf etc.).

Standard output stream of the application (printf etc.).

Teletypewriter which is the last resort for an error output.

The variant selection allows you to change the hardware interface of the 1/0

channel.

Variant

Description

File System Use the File System component as the interface for File related operations
EVR Use the event recorder to display printf debug messages
Breakpoint When the 1/0 channel is used, the application stops with BKPT instruction.
IT™M Use Instrumentation Trace Macrocell (ITM) for I/O communication via the debugger.
User Retarget I/O functions to a user defined routine (such as USART, keyboard).
Debug [printf) Viewer
The software component Compiler adds the file BD waloc — Oxi0l
retarget_io.c that will be configured acording to the AD value - Ox101
variant settings. For the User variant, user code AD value = 0x101
templates are available that help you to implement o e
your own functionality. Refer to the documentation AD value = 0x101
for more information. D e e
AD value = 0x101
ITM in the Cortex-M3/M4/M7 supports printf style AD value = 0x101
debugging. If you choose the variant ITM, the I/O
1 Call Stack = Locals | 53 Debug (printf) Vi...

42

library functions perform 1/O operations via the Debug (printf) Viewer window.

As ITM is not available in Cortex-M0/MO0+ devices, you can use the event
recorder to display printf debug messages. Use the EVR variant of the STDOUT
1/0 channel for this purpose (works with all Cortex-M based devices).

For more details refer to:
keil.com/pack/doc/compiler/RetargetlO/html/index.html

Board Support

There are a couple of interfaces that are frequently used on development boards,
such as LEDs, push buttons, joysticks, A/D and D/A converters, LCDs, and
touchscreens as well as external sensors such as thermometers, accelerometers,
magnetometers, and gyroscopes.

The Board Support Interface API provides standardized access to these
interfaces. This enables software developers to concentrate on their application
code instead of checking device manuals for register settings to toggle a GPIO.

Many Device Family Packs (DFPs) have board support included. You can choose
board support from the Manage Run-Time Environment window:

Software Component Sel. Variant Version Description
£ @ Board Support STM32F746G-Discovery |z| 1.00 STMicroelectronics STM32F746G-Discovery Kit
= @ Buttons (APT) 1.00 Buttons Interface
¢ Buttons [¥ 1.00 Buttons Interface for STMicroelectronics STM32F746G-Discovery Kit
] @ Drivers Kinetis BSP Drivers
] @ Graphic LCD (APT) 1.00 Graphic LCD Interface
= € LED (AP]) 1.00 LED Interface
¢ LED [¥ 1.00 LED Interface for STMicroelectronics STM32F746G-Discovery Kit
] @ Teouchscreen (APT) 1.00 Touchscreen Interface
] @ emWin LCD (4PT) 11 emWin LCD Interface

Be sure to select the correct VVariant to enable the correct pin configurations for
your development board.

You can add board support to your custom board by creating the required support
files for your board’s software pack. Refer to the APl documentation available at:
keil.com/pack/doc/mw/Board/html/index.html

Software Components

https://www.keil.com/pack/doc/compiler/RetargetIO/html/index.html
http://www.keil.com/pack/doc/mw/Board/html/index.html

Getting Started with MDK: Create Applications with uVision

43

loT Clients

A set of MDK-Packs provides building blocks that enable secure connection from
a device to a cloud provider of choice.

Application

loT client

Mbed TLS

Socket (API)

Network stack

MDK-Middleware Network Component, IwlP and various WiFi modules
(through CMSIS WiFi-Driver) are supported as underlying network stacks.

Reference Socket (API) implementations are provided in the MDK::10T_Socket
pack. mbed TLS contains required components to secure the connection. Finally,
communication with a cloud service is enabled with 10T Clients available for the
following providers:

= Amazon AWS loT
= Google Cloud loT
= |IBM Watson loT

= Microsoft Azure 10T Hub
= Paho MQTT (Eclipse)

The software packs are generic (device-independent) and can be found in the
Pack Installer.

ﬁ Packs r Examples I
Pack Action Description

----MDK-Packs::AWS_IoT_Device & Upto date SDK for connecting to AWS loT from a device using embedded C
----MDK-Packs::Azure_IoT & Upto date Microsoft Azure loT SDKs and Libraries
----MDK-Packs::dSON & Uptodate | Ultralightweight JSON parser in ANSI C
----MDK-Packs::GoogIe_IoT_DE\.ricE & Upto date Google Cloud loT Device Connector
----MDK-Packs::IoT_Socket & Upto date Simple [P Socket (BSD like)
----MDK-Packs::Paho_MQ'l_l' &% Uptodate | Embedded MOTT C/C++ Client Libraries
----MDK-Packs::Watson_IoT_De\.rice & Uptodate | Client libraries and samples for connecting to IBM Watson loT using Embedded C

Additional information is provided at: keil.com/iot.

http://www2.keil.com/iot

44 Create Applications

Create Applications

This chapter guides you through the steps required to create a projects using
CMSIS components described in the previous chapter.

For many popular development boards MDK already provides ready-to-use
CMSIS based examples. It is always beneficial to take such an example as a
starting point as explained in Verify Installation using Example Projects and
then modify it for own application needs.

Device vendors may also provide MDK example applications in separate
deliverables not indexed in the MDK Pack Installer explained in Install Software
Packs. Development and configuration tools from device vendors may also allow
export of application projects into Keil MDK format. These two options should
be explored if no examples are found in MDK Pack Installer.

This chapter is structured as follows:

= Section pVision Project from Scratch explains how to start a new project
from scratch and can be followed when there is no example applications
available.

= Section Project with CMSIS-RTOS2 shows how to easily convert an
existing application with infinite loop design into Real-Time OS based
system using CMSIS-RTOS2 API.

= Device Configuration Variations explains integrations with device vendor
tools for device startup.

= Finally, section Secure/non-secure programming guides through the project
setup for devices based on Armv8-M architecture.

NOTE

The example code in this chapter works for the MIMXRT1050-EVK evaluation
board (populated with MIMXRT1052DVL6B device). Adapt the code for other
starter kits or boards.

uVision Project from Scratch

This section describes the steps for setting up a new CMSIS based project from
scratch:

= Setup New pVision Project: create a project file and select the
microcontroller device along with the relevant CMSIS components.

Getting Started with MDK: Create Applications with uVision 45

Add main.c Source Code File: Add main.c file to the project with initial
code for main() function and device initialization.

Configure Project Options: adjust project settings to ensure that the project

can be built correctly.

Build the Application Project: compile and link the application for
programming it onto the target microcontroller device.

Using the Debugger guides you through the steps to connect your evaluation
board to the PC and to download the application to the target.

Setup New pVision Project

From the pVision menu bar, choose Project — New pVision Project.

=~ Select an empty folder and enter the project name, for example, MyProject.
Click Save, which creates an empty project file with the specified name

(MyProject.uvprojx).

Next, the dialog Select Device for Target opens.

Device |

ISoﬂware Facks

Vendor: NXP
Device: MIMXRT1052DVLEB
Toolset: ARM

Search: I

% MIMXRT1051 -]
2% MIMXRT1052
=% MIMXRT105 200068

€3 MIMXRT1052CV)58
& MIMXRT1052CVLSE
€8 MIMXRT1052DVIEE
=l MIMXRT1052DVLGB

% MIMXRT 1081
A MIMXRT 1062

[I 2 DE

Description:

The MIMXRT1052 are ARM Cortex-M7 based microcontrollers for
embedded applications.

OK I Cancel Help |

46 Create Applications

r= Select the target device and, if necessary, the target CPU in a multi-core
device. In our case this is MIMXRT1052DVL6B and click OK.

T1P: If the target device is not available in the list — verify that the
corresponding Device Family Pack (DFP) is installed as explained in Install
Software Packs.

The device selection defines essential tool settings such as compiler controls, the
memory layout for the linker, and the Flash programming algorithms. However,
in some cases (especially for more complex devices) additional configurations are
required to achieve correct project build and debug. This is explained in step
Configure Project Options.

Then the Manage Run-Time Environment dialog opens and shows the software

components that are installed and available for the selected device.

Following components need to be added for CMSIS-based project:

=~ Expand ::CMSIS and enable CORE.

Expand ::Device::Startup and enable one of the offered variants. In our
case it is just one: MIMXRT1052_startup.

Software Component Sel. Variant Versi... Description
4 Board Support ~ Generic Interfaces for Evaluation and Development Boards =]
= ‘ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE [v 540 | CMSIS-CORE for Cortex-M, SCO00, SC300, ARNMWE-M, ARKWE.T-I
W Dsp ™ Source ~|1.8.0 CIMSIS-DSP Library for Cortex-M, SCO00, and SC300
¥ NNLib I~ 130 |CMSIS-NN Neural Network Library
& RTOS (API) 1.0, CMEIS-RTOS AP for Cortex-M. 5C000, and SC300
& RTOS2 (4PI) 213 |CMSIS-RTOS APl for Cortex-M, 5CO00, and SC300
’ CMSIS Driver MNP MCUXpresso SDK Peripheral CMSIS Drivers
‘ CMSIS Driver Validation API 140 | Run driver validation test for enabled drivers
’ Compiler ARM Cormpiler |1.60 | Compiler Bxtensions for ARM Compiler 3 and ARM Cornpiler &
& Data Exchange Data exchange or data formatter
= ’ Device Startup, Systemn Setup
& CMsls _
’ SDK Drivers MEP MCUXpresso SDK Peripheral Drivers
@ SDK Project Template NXP MCUXpresso SDK RTE Device Project Template
’ SDK Utilities MNXP MCUXpresso SDK Utilities
24 Startup NXP MCUXpresso SDK Start up
@ MIMERT1052 startup |Jv 100
‘ File System MDK-Pro ~ |6.13.8 File Access on various storage devices
’ Graphics MDK-Pro ~ | 6.10.8 | UserInterface on graphical LCD displays -
T ; s
Validation Output Description
Resolve Select Packs Dietails Cancel Help

Getting Started with MDK: Create Applications with pVision 47

Other components can be added depending on the application needs. In our case
we limit to the bare minimum.

The Validation Output field may show dependencies to other software
components that are required based on the current selection. In such case click
Resolve button to automatically resolve all dependencies and enable other
required

T1P: A click on a message highlights the related software component.

In our example shown above there is no extra dependencies to resolve.
= Click OK.

The selected software components are included into the project together with the
device startup file and CMSIS system files. The Project window displays the
selected software components along with the related files. Double-click on a file
to open it in the editor.

File Edit View Project Flash Debug Peripherals Tools SVYCS Window Help

15 W@ & || m | &= = | # togqie JER# Q-le o s &-|
@mlﬁl@' |?Q|Targel1 vx\‘é 0‘?@
Praject LN > | _] system MIMXRT1052.c

=% Project: MyProject
=i Target1

'
{1]

2

3 Source Group 1 e
@ cmsis :
5

54 Device 6
7

8

9

0

J startup_MIMXRT1052.5 (Startup:MIMXRT1032_startup)

j system_MIMXRT1052.c (Startup:MIMXRT1032_startup)

j IMIMXRT 103230000 flexspi_nor.scf (Startup:MIMXRT 1052_startup)

L) MIMXRT 10520000 _flexspi_nor_sdram.scf (Startup:MIMXRT1032_startup)
J MIMXRT 103 2x0000_ram.scf (Startup:MIMXRT1032_startup) 12
L1 MIMXRT 1032s0000_sdram.scf (Startup:MIMART 1052_startup) Lo
j IAIMXRT 1053 250000¢_sdram_tet.scf (Startup:MIMXRT 1052 _startup)

Compilers:

ce manual:

e

Add main.c Source Code File

Now we can add the main.c file with initial program code.

= In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group.

== Click on C File (.c) specify the file name, in our case main.c and click Add.

48

Create Applications

)

@ C++ File {.cpp)
\ﬂ Asm File ()
@ Header File ()

= Text File (1)

Qg\ Image File {.*}
1@ User Code Template

Create a new C source file and add it to the project.

Type: I C File {.c)
Name: I main.
Location: I Ci\MyPrograms\MyProject

Add

Close | Help |

This creates the file main.c in the project group Source Group 1. Add following

content to the file:

#include "RTE_Components.h"
#include CMSIS device header

uint32_t volatile msTicks;

void SysTick Handler (void) {
msTicks++;

}

void WaitForTick (void) {
uint32_ t curTicks;
curTicks = msTicks;
while (msTicks == curTicks)
__WFE ();
}

}

// Configure & Initialize the MCU
void Device Initialization (void)

SystemInit () ;
SystemCoreClockUpdate () ;

// Component selection
// Device header

// Counter for millisecond Interval

// SysTick Interrupt Handler
// Increment Counter

// Save Current SysTick Value
// Wait for next SysTick Interrupt
// Power-Down until next Event

// Device initialization
// Clock setup

if (SysTick Config (SystemCoreClock / 1000)) { // SysTick 1ms

; // Handle Error
}

http://www.keil.com/pack/doc/cmsis/Core/html/group__intrinsic___c_p_u__gr.html#gad3efec76c3bfa2b8528ded530386c563
http://www.keil.com/pack/doc/cmsis/Core/html/group___sys_tick__gr.html#gabe47de40e9b0ad465b752297a9d9f427
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6

Getting Started with MDK: Create Applications with pVision 49

// The processor clock is initialized by CMSIS startup + system file

int main (void) { // User application starts here
Device Initialization (); // Configure & Initialize MCU
while (1) { // Endless Loop (the Super-Loop)
__disable irqg (); // Disable all interrupts
// Get InputValues ();
__enable irqg (); // Enable all interrupts
// Process Values ();
WaitForTick () // Synchronize to SysTick Timer

}
}

For many devices the build process described in step Build the Application
Project will succeed already after this this step.

In some cases (and in our example for MIMXRT1052) additional changes in the
project configurations are required as explained in Configure Project Options
section below.

Device Initialization

System initialization in our simple example is done in the Device_initialization()
function using only CMSIS-Core API.

Silicon vendors provide the device-specific file system_<device>.c (in our case
system_MIMXRT2052.c) that implements Systeminit and
SystemCoreClockUpdate functions. This file gets automatically added to the
project with the selection of ::Device::Startup component in the Manage Run-
Time Environment in the previous step.

Real-world examples often require complex configuration for pins and
peripherals with a significant part of the system setup relying on the device
hardware abstraction layer (HAL) provided by the vendor.

Section Device Configuration Variations explains additional details and
provides examples on device configuration using external tools.

Configure Project Options

For some devices new projects cannot be built and programmed onto the device
with default settings and require special configuration options. This is often a
reason why starting with a ready-to-use example can be beneficial.

#% Click Options for Target... button on the toolbar to access the
configuration options.

http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#gaeb8e5f7564a8ea23678fe3c987b04013
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#ga0f98dfbd252b89d12564472dbeba9c27

50

Create Applications

It contains multiple tabs that provide configuration options for corresponding

functionality.

Device Target |O|.rtput| Listingl User | C/C++ (ACK) | Asm | Linkerl Debugl Lhil'rtiesl

Changes required for getting started depend on the target device and software
components used in the project. Subsections below explain the modifications
required in the specified dialog tabs for the MIMXRT1052 used in our example.

C/C++ (ACB6) dialog

To exclude mostly just informative warnings generated by the Arm Compiler 6
select AC5-like Warnings in the Warnings field of the C/C++ (ACS6) tab.

Linker dialog

Complex devices or programs may require use of a scatter file to specify memory
layout. The figure below highlights the changes required in our example:

Misc
controls

Linker
control
sting

Device | Target | Output | Listing | User | C/C++(ACE)| Asm Linker [Debug | wities |

1 se Memory Layout from Target Dialog X/0 Base:
[~ Make RW Sections Position independent R/O Base:| |0x00000000 2
[~ Make RO Sections Position Independent R/W Base| [5x20000000
™ Dont Search Standard Libraries
- 8314
¥ Report ‘might fail' Conditions as Emors gastie Wammgs.U_]

3

Sca‘Fif'[I.-RTE Device\MIMXRT1052DVL6B\MIMXRT 10520000 _ram scf
e

4
<] e

—cpu Cortex-M7fp.dp “.0

~
-diag_suppress 6314 —strict ~scatter " \RTE\Device \MIMXRT1052DVLEB\MIMXRT 1052000cx_ram.:
v

[oK I[Cancel II Defaults l

Help

1. Unchecking the flag Use Memory Layout from Target Dialog enables use
of custom scatter file provided in the item 4 below.

2. R/O and R/W Bases define the start addresses for read only (code and
constants) and read-write areas respectively.

3. Disable warning #6314 for unused memory objects.

Getting Started with MDK: Create Applications with pVision

51

4. The Device Family Pack (DFP) contains some preconfigured scatter files that
are copied into the new project. To simplify project configuration, we will
execute the program from the on-chip RAM and hence choose in the drop-
down menu for the Scatter file the
ARTE\Device\MIMXRT1052DVL6B\MIMXRT1052xxxxx_ram.scf.

Debug dialog

To ensure that the program loads to RAM and we can debug it, following changes
are required in the Debug tab.

sm] Linker Debug lUtiI'rties]

&+ lse: |Crv1SIS-D.'-"-.P Debugger j Settings

¥ Load Application at Startup W Run to main()
Initialization File:

Mevkbimert 1050_ram ini Edit...
I J

Pletoee Puolo Pomion ot

" In the project folder create a new file that will be used to initialize the debug
session (in our case - evkbimxrt1050_ram.ini) and provide path to it in the
Initialization File field.

For this example, add the following content to the file:

2 ——
* evkbimxrtl050 ram.ini file
o e */
FUNC void Setup (void) {
SP = RDWORD (0x00000000) ; // Setup Stack Pointer
PC = RDWORD (0x00000004) ; // Setup Program Counter

_WDWORD (0xE000ED08, 0x00000000) ; // Setup VTOR
}

FUNC void OnResetExec (void) { // executes upon software RESET
Setup () ; // Setup for Running

}

LOAD %L INCREMENTAL // Download

Setup () ; // Setup for Running

// g, main

Utilities dialog

25 |n the Utilities dialog, uncheck the option Update Target before
Debugging to ensure that the debugger doesn’t try to load program to Flash.

52 Create Applications

Device] Target] Output] Listing] User] C/C++ :.%CE::] Asm] Linker] Debug

Configure Flash Menu Command

{+ |se Target Driverfor Flash Programming ¥ Use Debug Driver
— Use Debug Driver — Settings pdate Target before Debugging
Int Fie: | .

Build the Application Project

all related source files. Build Output shows information about the build process.

An error-free build displays program size information, zero errors, and zero
warnings.

Build Qutput

Rebuild started: Project: MyProject

**#* Using Compiler 'Vé.l4', folder: 'C:\Keil v5“\ARM\ARMCLANG‘\Bin'
Bebuild target 'Target 1°'

bling startup MIMXRT1O0SZ.s...
ling main.c...
ystem MIMHRTIOSZ.c...

Code=1703 RC-data=105€ RW-data=4 ZI-data=2€419¢
roject.axf" - 0 Error(s), 0 Warning(s).
Build Time Elapsed: 00:00:03

=1 Build Output | g Find In Files

The section Debug Applications guides you through the steps to connect your
evaluation board to the PC and download the application to the target hardware.

Project with CMSIS-RTOS2

The section shows how to setup a simple project based on CMSIS-RTOS2. The
project uses device HAL to control on-board LED.

To avoid making project configuration and device initialization from scratch we
take an existing blinky example in infinite-loop design delivered with the DFP
and modify it to operate based on CMSIS-RTOS2 API. Following steps are
required:

1. Copy an Example: copy an existing example and verify that it works

2. Add CMSIS-RTO2 Component: add CMSIS-RTOS2 API and RTX5 kernel
to the

Getting Started with MDK: Create Applications with uVision

53

3. Add RTOS Initialization: add main.c file that initializes the device and
RTOS.

4. Configure Keil RTX5 RTOS: modify the RTOS settings according to the
application needs.

5. Implement User Threads: implement user code.

Build and Run the program: the step is same as explained in the previous
section.

In our case we will use a simple iled_blinky example for IMXRT1050-EVK
board.

Copy an Example

File Packs Window Help
e ‘ Device: NXP - MIMXRT1052w00:B
ﬂ/r Devices]r Boards] ﬂ ﬂ Pa{ks/[Examples] ﬂ
Search: - X l_ Show examples from installed Packs only
Device /| Summary Example Action Description
% MIMXRT1015 2 Devices ;I - flexspi_hyper_flash_polling_transfer (EVEB-IMXRT1050) Copy Theflasp\ihyperﬂaship;‘
% MIMERT 1021 4 Devices - flexspi_nor_polling_transfer (EVKB-IMXRT1030) 4 Copy The flexspi_nor_polling_tr
=8 MIMKRT1051 & Devices ~-gpt_timer (EVKB-IMXRT1050) Copy The gpt_timer project is
5--% MIMERT 1052 & Devices ~hello_world (EVKB-IMXRT1030) 4 Copy The Hello World demo ap
-8 MIMXRT1052000A |2 Devices ~~igpio_input_interrupt (EVKB-IMXRT1030) Copy The GPIO Example projec
5 MIMXRT10520008 | |4 Devices -igpio_led_output (EVKB-IMXRT1030) & Copy The GPIO Example projec
oo |ARM Corte gf || R 4 Copy The LED Blinky demo app_|
8 MIMXRT1052C... |ARM Cort.., ~kpp (EVKB-IMXRT1050) 4 Copy The KPP Example project
@3 MIMXRT1052D... |ARM Cort... - Ipi2e_interrupt (EVKB-IMXRT1050) 4 Copy The Ipi2c_functional_inte
-8 MIMXRT1052D.. |ARM Cort.., - IpiZe_interrupt_b2b_transfer_master (EVKB-IMXRT1050) |4 Copy The Ipi2c_interrupt_b2b_t
= MIMKRT1061 4 Devices - |pi2e_interrupt_b2b_transfer_slave (EVKB-IMXRT1050) 4 Copy The Ipi2c_interrupt_b2b_t _
F- MIMXRT1062 4Devices S|l 4] | »
Output 3 x
Ready [[onLNE

Section Verify Installation using Example Projects explains the steps needed to
copy, build and run an example project. In our example we use target iled_blinky
debug that executes the program from on-chip RAM.

54 Create Applications

= To build the project with the iled_blinky debug target, the SPI flash related
file fsl_flexspi_nor_boot.c has to be excluded from the build.

Find this file in the Project window under Device component, right-click on
it, then select Options for Component Class ‘Device’ and in the
Properties tab uncheck Include in target build. Press OK. The file will be
marked with a corresponding symbol i

Settings

~ Layer:
Variant: | ~| | Not Assigned |
Version: [2.0.0 I Include in target build
|
-
OK I Cancel Help

Add CMSIS-RTO2 Component

Next, add the RTOS software component:

=~ Expand ::CMSIS::RTOS2 (API) and enable Keil RTXS5. In the Variant
column select Source to have the RTOS added to the project as a source
code that also supports detailed debugging using Event Recorder. For
reduced code size, use the Library variant instead. Press OK.

Getting Started with MDK: Create Applications with uVision

Software Component Sel. Variant Versi.., Description
‘ Board Support w Generic Interfaces for Evaluation and Developrment Boards 1=
= ‘ CMSIS Cortex Microcontroller Software Interface Components

¥ CORE v 540 | CMsI5-CORE for Cortex-h. SC000 5C300. ARMwE-M, ARMvE.1-IM

¢ DsP v Source ~ | 1.80 | CMSIS-DSP Library for Cortex-h, SC000, and SC300

¥ NN Lib [130 | CMSIS-NM Meural Metwork Library

€ RTOS (API) 100 |CMSIS-RTOS API for Cortex-M, SC000, and SC300
£ € RTOS2 (API) 213 | CMSIS-RTOS APl for Cortex-M, SC000, and 5C300
@ FreeRTOS l_ Cortex-h 1031 | CMSIS-RTOS2 implementation for Cortex-IM based on FreeRTOS
@ |7 Source w552 | CMSIS-RTOS2 RTAS for Cortex-h, SCO00, SC300, ARMyE-M, ARMWE.1-

‘ CMSIS Driver MNP MCUXpresso SDK Peripheral CMSIS Drivers
‘ CIMSIS Driver Validation
‘ Compiler ARM Compiler | 1.6.0 | Compiler Bxtensions for ARM Compiler 3 and ARM Compiler &
& Data Exchange Data exchange or data formatter
‘ Device Startup, System Setup
@ File Systemn MDK-Plus |~ | 613.8 |File Access on various storage devices b
@ Graphics MDK-Plus |~ 810.8 |User Interface on graphical LCD displays
‘ loT Client 10T cloud client connector
‘ loT Service 10T specific services
‘ loT Lility 10T specific software utility
‘ Metwork MDE-Plus ~ | 7140 | [Pvd Metworking using Ethernet or Serial protocols -
J° _ - _ | _>|J
Validation Output Description

Resclve Select Packs Detals OK I Cancel | Help |

Keil RTX5 code appears in the Project window under CMSIS component.

= In our case for MIMRT1052 we need to change the Assembler Option so
that Keil RTX5 file irg4_cmdf.s can be assembled correctly.

For that go to the Options for Target.. — Asm tab and in the dropdown
menu Assembler Option select armclang (Auto Select) instead of
armclang (GNU Syntax) configured by default in the original example.
Press OK.

Language / Code Generation

Assembler Option: Iarmc:lang (Auto Select) Vl

™ Read-Only PoseluleEa TGRS Ze] [~ Splt
i amclang (GNU Synta_xj

I Read-Wiite Pogamelang (Am Syrtax)

™ Thumb Mode [@masm Amn Syrita)

™ Mo Wamings [Mot

Alternatively, the assembler option can be specified for the irg4_cmdf.s file
only. For that find this file in the Project window under CMSIS component,
right-click on it, then select Options for Component Class ‘CMSIS’ and in
the Asm tab choose armclang (Arm Syntax) from the drop-down menu in
Assembler Option field. Press OK.

56

Create Applications

Add RTOS Initialization

Add template application code using pre-configured User Code Templates
containing routines that resemble the functionality of the software component.

5 In the Project window, right-click in the group with the source code (in our
case source and open the dialog Add New Item to Group.

=~ Click on User Code Template to list available code templates for the
software components included in the project. Select CMSIS-RTOS2 ‘main’
function, verify the file name, and click Add.

Add template file(s) to the project.

@ C File (c)
- Component MName
\d G+ File {cpp) 5@ CMsis |
\ﬂ Ao Fie () ' - EEEEELEE 151s-RT0S2 'main’ function J
:Ker CMSI[5-RTOS2 Events
\ﬂ Header File (h) RTOS2:Keil RTX5 CM5I5-RTOS2 Memory Pool
RTOS52:Keil RTXS CMB5I5-RTOS52 Message Queue
\j Text File (1) RTOS2:Keil RTXS | CMSIS-RTOS2 Mutex
ﬂ Image Fie (7] RTOS2:Keil RTX3 CMSIS-RTOS2 SVC User Table
— RTOS52:Keil RTXS CM5I5-RTOS2 Semaphore —
“@ User Code Template RTOS2:Keil RTXS CMSIS-RTOS2 Thread
RTOS2:Keil RTX3 CMSIS-RTOS2 Timer LI

Type:
MName:

Location:

I User Code Template

“main.c l

I C:\MyPrograms)jled_blinky_RTOS\demo_appsied_blinkymdk . |

e | - |

This adds the file main.c to the project group source. The file contains the
necessary functions for minimal CMSIS-RTOS application.

We reuse the device initialization functions from the original main() function. We
remove the implementation of app_main function as it will be placed in the other
file. As a result, the main.c file contains following code:

#include
#include
#include
#include
#include

"RTE_Components.h"
CMSIS device header
"cmsis_os2.h"
"board.h"

"pin mux.h"

extern void app main (void *argument); // application main thread

Getting Started with MDK: Create Applications with pVision 57

int main (void) {

/* Board pin init */
BOARDilnitPins ()7
BOARD InitBootClocks();

// System Initialization
SystemCoreClockUpdate () ;

/] ...

osKernellInitialize(); // Initialize CMSIS-RTOS
osThreadNew (app main, NULL, NULL); // Create application main thread
osKernelStart () ; // Start thread execution

for (;;) {}

}

Note the Board_InitPins() and Board_InitBootClocks() functions that configure
the underlying MIMXRT1052 device. Section Example: MCUXpresso Config
Tools explains device configuration in more details.

Configure Keil RTX5 RTOS

=~ In Project window - CMSIS group open RTX_Config.h file and configure
according to the project requirements as explained in
Keil RTX5 Configuration. In our example we can keep default settings.

Implement User Threads

The file led_blinky.c, containing the initial main() function, can now be rewritten
using RTOS threads. We implement two user threads: thrLED toggling the LED
and thrSGN acting as a signal thread that triggers thrLED thread with regular
delays.

#include "cmsis_os2.h"
#include "fsl gpio.h"
#include "pin mux.h"
#include "board.h"

static osThreadId t tid thrLED; // Thread id of thread: LED
static osThreadId t tid thrSGN; // Thread id of thread: SGN

__NO_RETURN static void thrLED(void *argument) {
(void) argument;
uint32 t active flag = 1U;

for (;;) |

58 Create Applications

osThreadFlagsWait (1U, osFlagsWaitAny, osWaitForever);
GPIO_PinWrite (BOARD USER LED GPIO, BOARD USER LED PIN, active flag);
active flag=l!active flag;

thrSGN: Signal LED to change

__NO_RETURN static void thrSGN(void *argument) {
(void) argument;
uint32 t last;

for (;;) |
osDelay (5000) ; // Run delay for 500 ticks
osThreadFlagsSet (tid thrLED, 1U); // Set flag to thrLED

void app _main(void *argument) {
(void) argument;

tid thrLED = osThreadNew (thrLED, NULL, NULL); // Create LED thread
if (tid thrLED == NULL) { /* add error handling */ }

tid thrSGN = osThreadNew (thrSGN, NULL, NULL) ; // Create SGN thread
if (tid thrSGN == NULL) { /* add error handling */ }

osThreadExit () ;

Device Configuration Variations

CMSIS-CORE defines methods for device startup such as Systeminit() and
SystemClock_Config() but the actual implementation details vary between
different vendors.

Some devices perform a significant part of the system setup as part of the device
hardware abstraction layer (HAL). In many cases the HAL components for the
target platform are delivered as part of the Device Family Pack (DFP) and are
available for selection in the Manage Run-Time Environment dialog, typically
under ::Device component.

Device vendors frequently provide a software framework that allows device
configuration with external utilities.

In the following section, device startup variations are exemplified.

Getting Started with MDK: Create Applications with pVision

59

Example: STM32Cube

Many STM32 devices are using the STM32Cube framework that can be
configured with a classical method using the RTE_Device.h configuration file or
by using STM32CubeMX tool.

The classic STM32Cube Framework component provides a specific user code
template that implements the system setup. Using STM32CubeMX, the main.c
file and other source files required for startup are copied into the project below
the STM32CubeMX:Common Sources group.

Setup the Project using the Classic Framework

This example creates a project for the STM32F746G-Discovery kit using the
classical method. In the Manage Run-Time Environment window, select the
following:

= Expand ::Device:STM32Cube Framework (AP1) and enable :Classic.

Expand ::Device and enable :Startup.

ﬂ Manage Run-Time Environment x
Software Component Sel. Variant Version Description
@ Board Support STM32F746G-Discovery |~ | 1.0.0 STMicroelectronics STM32F746G-Discovery Kit 1=
@ CMSIS Cortex Microcontroller Software Interface Components
@ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
& Compiler ARM Compiler Software Extensions
= @ Device Startup, System Setup
¥ Startup [+ 1.01 System Startup for STMicroelectronics STM32F7 Series
ER d 5TM32Cube Framework (API) | STM32Cube Framework
¥ Classic I 1.0.0 Configuration via RTE Device.h
¥ STM32CubeMX r 1.00 Configuration via STM32CubehX
4 STM32Cube HAL STIM32FTiec Hardware Abstraction Layer (HAL) Drivers
@ File System MDK-Pro 6.5.0 File Access on various storage devices
@ Graphics MDK-Pro 5300 | UserlInterface on graphical LCD displays
L3 Graphics Display Display Interface including configuration for emWIN
4 Network MDK-Pra 650 |P Metworking using Ethernet or Serial protacols [
@ use MDK-Pro 6.5.0 USB Communication with various device classes J
o
Validation Qutput Description
Resolve Select Packs Details Cancel Help

=~ Click Resolve to enable other required software components and then OK.

60 Create Applications

=~ In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group.

‘Add New ltem to Group 'Source Files' X
Add template fle(s) to the project.
@ CFle () e R D
- Component Name
|C5.| C++File (cpp) & cMsis
A | Asm File (5) 2% Deiice
EET Tl ‘main' module for STM32Cube
\ﬂ Header Fle (h) STM32Cube Framework Classic Exception Handlers and Peripheral IRQ
= STM32Cube Framework Classic | MCU Specific HAL Initialization / De- Initi...
\j Text Fle (be) Startup Flash One-Time programmable Bytes
9‘ mege Fie (1) Startup Flash Option Bytes
ﬁ User Code Template
Type: User Code Template:
Name [Fanhmanc
Location: ‘C:\\"/DrksDaEEsWDK\‘;rM}Z‘MDK\BDEMSWWXZFF%G,DISEDVEW\B‘IHKV B

= Click on User Code Template to list available code templates for the
software components included in the project. Select ‘main’ module for
STM32Cube and click Add.

The main.c file contains the function SystemClock _Config(). Here, you need to
make the settings for the clock setup:

Code for main.c

static void SystemClock Config (void) {
RCC_ClkInitTypeDef RCC ClkInitStruct;
RCC_OscInitTypeDef RCC OscInitStruct;

/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE HSE;
RCC_OscInitStruct.HSEState = RCC HSE ON;
RCC_OscInitStruct.HSIState = RCC_HSI OFF;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL _ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;

RCC OscInitStruct.PLL.PLLN = 432;
RCC_OscInitStruct.PLL.PLLP RCC_PLLP_DIV2;

RCC OscInitStruct.PLL.PLLQ = 9;

HAL RCC OscConfig (&RCC OscInitStruct);

/* Activate the OverDrive to reach the 216 MHz Frequency */
HAL PWREx EnableOverDrive () ;

/* Select PLL as system clock source and configure the HCLK, PCLK1l and
PCLK2 clocks dividers */

RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE SYSCLK | RCC_CLOCKTYPE HCLK
| RCC_CLOCKTYPE PCLK1l | RCC _CLOCKTYPE PCLK2);

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE PLLCLK;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK DIV1;

RCC ClkInitStruct.APBICLKDivider = RCC_ HCLK DIV4;

RCC ClkInitStruct.APB2CLKDivider = RCC HCLK DIV2;

HAL_RCC_ClockConfig (&RCC_ClkInitStruct, FLASH LATENCY 7);

Getting Started with MDK: Create Applications with pVision

61

Now, you can start to write your application code using this template.

Setup the Project using STM32CubeMX

This example creates the same project as before using STM32CubeMX. In the
Manage Run-Time Environment window, select the following:

" Expand ::Device:STM32Cube Framework (API) and enable
:STM32CubeMX. Expand ::Device and enable :Startup.

K Manage Run-Time Environment

Software Component
4 Board Support
& cmsis
€ CMSIS Driver
‘ Compiler
= 4 Device
¥ Startup
-4 STM32Cube Framework (API)
¥ Classic

4 STM22Cube HAL
4 File System
@ Graphics
4 Graphics Display
@ Network
% Use

Sel. Variant

Version Description
STM32756G-E~ | 1.1.0

ARM Compiler 1.2.0

|7

-
Ll STM32CubeMix [v |

112
1.00
112
1.00

MDK-Pro ~ | 6.9.0
MDK-Pro ~ | 5.36.6

MDK-Pro v |T3.0
MDK-Pro ~ | 6.9.0

STMicroelectronics STM32756G-EVAL Board

Cortex Microcontroller Software Interface Components

Unified Device Drivers compliant to CMSIS-Driver Specifications
Compiler Extensions for ARM Compiler ARMCC and ARMClang
Startup, System Setup

System Startup for STMicroelectronics STM32F7 Series
STM32Cube Framework

Configuration via RTE Device.h

Configuration via STM32Cubehix

STM32FToe Hardware Abstraction Laver (HAL) Drivers

File Access on various storage devices

User Interface on graphical LCD displays

Display Interface including configuration for emWIN
IPv4/1PvE Networking using Ethernet or Serial protocols
USB Communication with various device classes

Validation Output

Resolve Select Packs Details

Description

Cancel Help

=" Click Resolve to enable other required software components and then OK.
A new window will ask you to start STM32CubeMX.

Generator Program:
STM32CubeMx

Generates:

Start STM32CubeMX

MDK: Selected Software Component Requires Code Generation by 'STM32CubeMX! X

Component:
Keil::Davice:STM32Cube Framework:STM32CubeMX

JRTE\Device \STM32F 746MGHx \FrameworkCubeMX. gpdsc

Cancel

62

Create Applications

STM32CubeMX is started with the correct device selected:

STM32 ﬁ

File Window Help

i STCubeGenerated.ioc - Pinout & Configuration

Clock Configuration

v Software Packs

CORTEX_M7 Made and Configuration

v Pinout

1
1]

Configuration

Reset Configuration

GubeMX
Pinout & Configuration
al @
System Core hd
CORTEX_M7
DMA
GPIO
IWDG
RCC
v SYS5
WWDG
Analog >
Timers >
Connectivity >
Multimedia >
Security >
Computing >
Middleware >

~ Cortex Intefface Settings

~ Cortex Memory Protect..

Flash Interface AX Interface
ART ACCLERA _
Instruction Prefe
CPU ICache

CPU DCache

Disabled
Disabled
Disabled

MPU Control M... MPU NOT USED

Project Manager

4 Pinout view

va

TFBGA216 (Top view)

5 Configure your device as required. When done, go to Project = Generate
Code to create a GPDSC file. pVision will notify you:

uVision

Project:

Generated:

Import Changes?

@ For the current project new generated code is available for import.
C\Workspaces\MDKNSTM32\STM32CubeMX\STM32CubeMX uvprojx

C:\Workspaces\MDK\STM32\STM32CubeMX\RTE\ Device\STM32F746M
GHy\FrameworkCubeMX.gpdsc

Yes No |

=~ Click Yes to import the project. The main.c and other generated files are
added to a folder called STM32CubeMX:Common Sources.

Read more about device setup for a puVision project using STM32CubeMX in
dedicated documentation
keil.com/pack/doc/STM32Cube/General/html/index.html.

https://www.keil.com/pack/doc/STM32Cube/General/html/index.html

Getting Started with MDK: Create Applications with uVision 63

Example: MCUXpresso Config Tools

For configuring most of its Kinetis, LPC and iMX RT devices NXP provides
MCUXpresso Config Tools.

Enable Project for Configuration

To configure an MDK project for MCUXpresso Config Tools it has to contain
special components in the Board Support and Device groups. This is already the
case for many example projects available via the Pack Installer but needs to be
ensured for older projects or when creating a project from scratch.

=~ Expand ::Board Support::SDK Project Template:: and enable
:project_template. From the drop-down menu in Variant column choose
either an option for target MCU or if available target board (evkbimxrt1050
in our case). Multiple dependencies may be highlighted in yellow as

required.
Software Component Sel Variant Versi... Description
=€ Board Support v Generic Interfaces for Evaluation and Development Boards -
= 4 sDK Project Template NXP MCUXpresso SDK Project Template
[¥ project_template v evkbimxrt1050 | v |1.0.0
® @ CMSIS Cortex Microcontroller Software Interface Components
@ € CMSIS Driver NXP MCUXpresso SDK Peripheral CMSIS Drivers
@ € CMSIS Driver Validation
ER 3 Compiler ARM Compiler 160 | Compiler Extensions for ARM Compiler 5 and ARM Compiler &
@ € Data Exchange Data exchange or data formatter
= 4 Device Startup, System Setup
@ CMmsIs
@ 4 SDK Drivers NXP MCUXpresso SDK Peripheral Drivers
=4 SDK Project Template NXP MCUXpresso SDK RTE Device Project Template
@ € SDK Utilities NXP MCUXpresso SDK Utilities
ER 2 Startup NXP MCUXpresso SDK Start up
) € File Svstem MDK-Pro ~16.13.8 |File Access on various storace devices ﬂ
< | of
Validation Output Description
=8 NXP:Device:SDK Driversixip_device Additional software components required)
(- require Device:SDK Drivers:common Select component from list j
¥ NXP:Device:SDK Drivers:common COMMON Driver
/4 NXP::Board Support:SDK Project Template:project_template | Additional software components required
(= require Device:SDK Utilities:serial_manager Select component from list
¥ NXP:Device:SDK Utilities:serial_manager NXP::Device:SDK Utilities:serial_manager
=) require Device:SDK Drivers:common Select component from list
¥ NXP:Device:SDK Drivers:common COMMON Driver LI
Select Packs Details |II Cancel | Help

64 Create Applications

= Click Resolve to enable the required software components and then OK.

Project L x |
= 1% Project: iled_blinky R
=) s iled_blinky debug
[source
3 doc
5 € Board Support
] board.c (SDK Project Template:project_template)

_] board.h (SDK Project Template:project_template)

] clock_config.c (SDK Project Template:project_template)
Q clock_config.h (SDK Project Template:project_template)
] peripherals.c (SDK Project Template:project_template)
Q peripherals.h (SDK Project Template:project_template)
] pin_mux.c (SDK Project Template:project_template)

Q pin_mux.h (SDK Project Template:project_template)
= 6 CMBIS

Configure the Device

When the project contains the components explained in the subsection above
MCUXpresso Config Tools can be used to create the device initialization code.

" Start the MCUXpresso Config Tools. Create a new configuration dialog
opens. The dialog can be also open from File — New... menu.

=" Select option Create a new configuration based on an existing
IDE/toolchain project and specify the path to the pVision project. In our
case we take an example explained in section Project with CMSIS-
RTOS2.

Getting Started with MDK: Create Applications with uVision

=" Press Finish.

Create a new configuration

(J Create a new configuration based on an SDK example or hello world project
Use this option to clone an SDK example or create a hello world project for a supported IDE/toclchain

@) Create a new configuration based on an existing IDE/toclchain project

Select toalchain praject: | C:\MyProgramsiled_blinky_RTOS\demo_apps\led_blinky\mdk | | Browse...|

Use this option to create the Pins, Clocks, and/or Peripherals configuration of an existing Keil uVision, 1AR Embedded Workbench, or ARM GCC
project.
Once created, this option will support directly updating the Pins, Clocks, and Peripheral files associated with the IDE/toolchain project.

(O Create a new standalone configuration for processor, board or kit
Use this option to creste a new Pins, Clacks, and/or Peripherals configuration for a selected processor or board without association to a toolchain
project, Generated source code can be exported to a specified folder, It is possible to associate the configuration to any toolchain project later by
saving the standalone configuration file (.mex) that will be generated by Config Tools into the toolchain project directory and then open it using
the "Open an existing configuration”.

< Back Next » Finsh | | Cancel

Wait until Config Tool Overview window opens.

5~ Use available graphical tools to configure device clocks, pins, peripherals,
and DCD as required.

i Project opened for the first ime, Click en & toal ican to select the toel,

A Configuration - General Info A Configuration - HW Info A Project
Hame: iled blinky_cp.mex Pracessor. MIMARTI02umof Project name: iled_blinky
Toolchain: MDK uision

Precesser: MIMXRT 10520008

Part number; MIMXRT10520VL68
Core: Cortex-MTF

Path: C:\MyProgramsiled| dema_apps\led_blinky\mek Part number: MIMXAT1052DVL68

Configurstion imported from C:\Users\mcu-sdk- Core: Cortex-hMTF
Deseription: 2.0\boards!evkbimurt1050\dema_apps\led_blinky\iar h

SDK Version: ksdk2.0

A Pins A Clacks A Peripherals . Device Configuration
Configures pin routing, Including Canfigures the initislization af the Canfigures the iniislization of the Configures Device Configuration
functional electrical pin properties, eore, system, bus, and peripheral SDK peripheral difvers, D: eontained in the
voage/pawer rais, and run-time clocks. program image that the Boot ACM
Bin configuration. cadé Intarprets to 18t up arious

on.chip peripherals prior the
o) o) » program launch,
A Generated code A Generated code ~ Functional groups.

A Generated code
Update code bled al uf

E‘_ R [Update code enabled
B RTE\Board SupportiML. DVLSB\clock config.e

A Functionsl groups B bosrdidede

M BOARD.IntPins U RTEWBoard SupportiMl. DVLSB clock_configh

¥ boardided.h
~ Functionsl groups
¥ BOARD_BootClockRUN

Tecls net supperted for the selected processer: TEE Clese snd Update Code Clase

66 Create Applications

In our example we add a GPIOS5 initialization for the user button available
on the board:

Fle Edit Took Pins Views Help

A [UpdateCode ~ Functional Group |BOARD InitPins By
BB Pins 52 EA) Peripheral Signals {4 Power Gro = O | i Package [Pins Bottom] L1 QAOEEESE -0 #owe
81810 ww||elele| ¥ 1 [ypetiterten . .
Pin Pinmame Label Identier ~ . . ~ Configuration - General Infa
virs [WBDISOCINONIN vo_s0c . . A Configuration - HW Info
|65 WDDSOCIMI | vDD_S0C_IN — =
Flhe mﬂ‘jm oms0e 1t Processor: MIMKKT10520s0®
Fe WL T = - Part number. MIMXKT 10520VL56
[]re | TEST_MODE GHD "= == Core: Cortex-MTF
B RSN v PwREn SD_PWRENUSE.. P —_— Board: IMXRTI050-EVKS
[IMs ONOFE ONOFF ONOFF . . SDK Version: kedt2.0
(/NG [USBLOTGIVBUS | sV_use 016 - -
USE_OTG2 VBUS 5V_USE HS - —_ v Project
0 ENETMDC ENET_MDC
SEMC_DOS SEMC_DQS f— S -~ P
ENET_MDIC ENET_MDIO P = Contigures pin rauting, inc
LCDIF CLK LCDIF CLK fundions sectica pimpr
LCOIF ENABLE LCDIF EMABLE e =" | configustion.
o B < Il T
Lo
£ Routed Pins =0 v
[ometerioe < ’
= - Broblems £l Bl¥Y - o
Reuted Bins for BOARD, InitPins G IR a hid
= Periphesal | Signal Route to Label Identifier Powergroup | Direction | GPIO initial state | I | | LDYPe filtertedt
GPIO1 gpioic 03 GPIO AD BD 09 JTAG TDII21[SV/ENET RST/I22[S|/USER LED _USER LED NVCC 6RO (V) Output Logical0 o Level Issue
GPIOS gpio_io, 00 WAKEUP SD_PWREN USER_BUTTON VDD_SNVS_IV,.. Input /o o)
< >

=" Press Update Code button. Review the changes to be applied and press OK.

Generated file Status &
w [] Pins
+ [RTE,
~ [Board_Support!
MIMXRT1052DVLEEY

pin_mux.c . change

pin_mux.h [change
v [] Clocks
v [RTE

~ [Board_Support!
MIMXRT1052DVLER
clock_config.c @ no change
clock_config.h E ne change
v Device Configuration & warnings
v [board\

@ no change, not in project

dech @ no change, not in project
[] Peripherals £ warnings v
Options
A Always show details before Update Code | oK I | Cancel |

This updates the necessary files in the Board Support group present in the
project.

Getting Started with MDK: Create Applications with pVision 67

Update Application Code the Device

= Update application code according to the new device configuration.

This may require including some header files, calling additional
initialization functions in main() and of course implementing application
logic itself.

In our example we just update the thrSGN thread in led_blinky.c file so that the
signal for togging the LED is postponed as long as the user button is pressed:

thrSGN: Signal LED to change

__NO_RETURN static void thrSGN(void *argument) {
(void) argument;
uint32 t last;

for (;;) |
osDelay (5000) ; // Run delay for 500 ticks
while (!GPIO PinRead (BOARD USER BUTTON GPIO,
BOARD USER_BUTTON_GPIO_PIN)) {
osDelay (10) ; // Delay further while SW8 button is pressed

}
osThreadFlagsSet (tid thrLED, 1U); // Set flag to thrLED

}
}

Secure/non-secure programming

Embedded system programmers face demanding product requirements that
include cost sensitive hardware, deterministic real time behavior, low-power
operation, and secure asset protection.

Modern applications have a strong need for security. Assets that may require
protection are:

= device communication (using cryptography and authentication methods)
= secret data (such as keys and personal information)

= firmware (against IP theft and reverse engineering)

= operation (to maintain service and revenue)

The TrustZone® for Armv8-M security extension is a System on Chip (SoC) and
CPU system-wide approach to security and is optimized for ultra-low power
embedded applications. It enables multiple software security domains that restrict
access to secure memory and I/O to trusted software only.

TrustZone for Armv8-M architecture (Cortex-M23/M33/M35P/M55 cores):

68 Create Applications

= preserves low interrupt latencies for both secure and non-secure domains.
= does not impose code or cycle overhead.

= introduces efficient instructions for calls to the secure domain.

Create Armv8-M software projects

The steps to create a new software project for an Armv8-M core (Cortex-
M23/M33/M35P/M55) in MDK are:

= Define the overall system and memory configuration. This has impact on:
o Setup secure and non-secure projects
o Add startup code and 'main' module to secure and non-secure projects.
o Reflect this configuration in the CMSIS-Core file partition_<device>.h

= Define the API of the secure software part in a header file to allow usage
from the non-secure part

= Create the application software for the secure and the non-secure part

Application note 291 describes the necessary steps in detail and contains example
projects and best practices for secure and non-secure programming using
Armv8-M targets. It is available at keil.com/appnotes/docs/apnt 291.asp

http://www.keil.com/appnotes/docs/apnt_291.asp

Getting Started with MDK: Create Applications with pVision 69

Debug Applications

The Arm CoreSight™ technology integrated into the Arm Cortex-M processor-
based devices provides powerful debug and trace capabilities. It enables run-
control to start and stop programs, breakpoints, memory access, and Flash
programming. Features like sampling, data trace, exceptions including program
counter (PC) interrupts, and instrumentation trace are available in most devices.
Devices offer instruction trace using Embedded Trace Macrocell (ETM),
Embedded Trace Buffer (ETB), or Micro Trace Buffer (MTB) to enable analysis
of the program execution. Refer to keil.com/coresight for a complete overview
of the debug and trace capabilities.

Debugger Connection

MDK contains the puVision Debugger that connects to various debug/trace
adapters and allows you to program the Flash memory. It supports traditional
features like simple and complex breakpoints, watch windows, and execution
control. Using trace, additional features like event/exception viewers, logic
analyzer, execution profiler, and code coverage are supported.

= The ULINKplus and ULINK2 debug
adapters interface to JTAG/SWD debug
connectors and support trace with the
Serial Wire Output (SWO). The e ,
ULINKpro debug/trace adapter also interfaces to ETM trace connectors and
uses streaming trace technology to capture the complete instruction trace for
code coverage and execution profiling. Refer to keil.com/ulink for more
information.

= CMSIS-DAP based USB JTAG/SWD
debug interfaces are typically part of an
evaluation board or starter kit and offer
integrated debug features. MDK also
supports several proprietary interfaces that offer a similar technology.

= Third-party debug solutions, such as Segger J-Link or J-Trace are supported
in MDK. Some starter kit boards provide the J-Link Lite technology as an on-
board solution.

http://www.keil.com/coresight
http://www.keil.com/ulink

70 Debug Applications

Using the Debugger

As an example, we will debug the Blinky application created in the previous
chapter on hardware. You need to configure the debug connection.

Select the debug adapter and configure debug options.

ﬁﬁﬂ From the toolbar, choose Options for Target, click the Debug tab, enable
Use, and select the applicable debug driver.

KA Options for Target ‘Target 1' X
Device] Target] Output] Usting] User] C,-*C-H-] Asm] Linker | Debug ILHiI'rtiesl

" Use Simulator with restrictions Settings * Use: UULINK Pro Cortex Debugger j] Settings |
[Limit Speed to Real-Time

The device selection already configures the Flash programming algorithm for on-
chip memory. Verify the configuration using the Settings button.

In our example we run the program out of RAM. But in cases when flash memory
is used, the program needs to be loaded into the Flash.

%3 From the toolbar, choose Download. The Build Output window shows

messages about the download progress.

Build Output |
Load "C:\\Workspaces\\MDE\\NXP\\Blinkyv\\Cbjects\\Blinky.axf"
Erase Done.

Programming Done.

Verify OH.

Flash Load finished at 14:28:38

Getting Started with MDK: Create Applications with pVision

71

@ Start debugging on hardware. From the toolbar, select Start/Stop Debug

Session.

B C:\Workspaces\MDK\NXP\Blinky'Blinky.uvprojx - LiVision - o x
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
=2"N- Iy [|E=EmEn @ MaRela e oo a@-] A
FERO| BTG DR BEaRE - O-2-8- 0 @)%
Registers o E Disassembly L=
Register |Va\ue b 0x1A001280 FOOOBCE6A B.W rt_psh_req (0x1A001BS8) -
TG 14: osRernellnitialize (): Initialize CMSIS-RTOS
RO 00000000 15: initialize peripherals here
R1 00000000 EDUX:LAUUIZEH FOO 14 BL.W osKernellnitialize (Ox1A0012B0)
R2 00000000 le: LED Initialize (}: // Initialize LEDs
R3 00000000 7
Re 00000000 // create 'thread' functions That SCart executing,
A5 (00000000 19: // example: tid name = osThreadCreate (osThread(mame), NULL); v
RE 00000000 < >
R7 <00000000] tDh] EDe |] RDCConfCM.c] osObjects.h |] mainc |] startup_LPC18i00s v x
RE 00000000 — — =
RY 000000000 a3 i Q
RID 00000000 11 | * mzin: dinitialize and scarc the syscem
R11 000000000 2 . .
Ri2 00000000 13 Fint main (void) f
R13(5P) 10000828 l>l> 14 osKernellnitialize (): Initialize CMSIS-RTOS
R14{LR) x1AD01389 15 /! '_:'_F'_é_'_;& peripheral here
R15{PC) Ix1ADDT284 16 LED Initialize ():
PSR 01000000 a7
¥ Barked 18 hread' functions that start
- System 1g exanple: tid name = osThreadCreats
5 ntemal 20 Init_BlinkyThread ();: Start
Mods Thread 1 21 osKernelStart (); // Start thread execution
Friviege Privileged = .
Stack PSP 23 while (1)
- 9RCORG = 24 |} v
E project | = Registers < >
Command 2 [Call Stack - Locals Lo =)
Load "C:\\Workspaces\\MDX\\NXP\\Blinky\\Objects\\Blinky.axf" Name LocationfValue Type
@ osTimerThread: 1 | O<ADD13AC Task -
-9 Ox1A001284 Task
@ main 0<D0000000 int £
S 2 @ os_idle_demon: 255 | Ox1ACDI3FA Task
> =l
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet | l,-:lcﬂ”sla(K*LU(ah ggg'ﬂa-:e Exceptions @E ent Counters jl\cmal,i
ULINK Pro Cortex Debugger t1: 0.03560590 sec L14C

During the start of a debugging session, pVision loads the application, executes

the startup code, and stops at

the main C function.

Click Run on the toolbar. The LED flashes with a frequency of one second.

Debug Toolbar

The debug toolbar provides quick access to many debugging commands such as:

¥} Step steps through the program and into function calls.

{}* Step Over steps through the program and over function calls.

{}* Step Out steps out of the current function.

€ Stop halts program execution.

a1 Reset performs a CPU reset.

=* Show to the next statement to be executed (current PC location).

72

Debug Applications

Command Window

You may also enter debug commands in the Command window.

Command

B5S \\Blinkv\main.c\32

] Il

"printf (\"Write Access Breakpoint:

B5 \\Blinky\main.c\23

B5 Write msTicks==100, 1,

W5 1, "msTicks,O0x0R

W5 1, ‘CORE_CLE/1000000,0x0A

WS 1, ((SysTick Type *) ((OxE000E00OUL) + 0x0010UL)), OxOR
WS 1, *SystemCoreClock, Ox0RA

Write Access Breakpoint: 100 ticks reached

Write Access Breakpoint: 100 ticks reached

Write Access Breakpoint: 100 ticks reached

»

100 ticks reached\\n\"):"

Comamnd Line Dynamic Command List

b

>

ASS5IGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAcce

JS COVERAGE DEFINE |

On the Command Line enter debug commands or press F1 to access detailed

help information.

Disassembly Window

The Disassembly
window shows the

Disassembly

CEGEEE- 0- 3-8 2- @-| x-

H H 21: woid Delay (woid)
program execution in CI0x0B000284 4770 BX 1r
assembly code 22: wnile (msTicks < 499);
. . . 0x08000286 BFOO NOP
intermixed with the @ 0x08000288 480K LDR z0, [pc, #56] ; @0x080002C4
source code (when ox0800028C FR07EES CHP o onir

P e 0x08000290 DDFA BLE 0x08000288
avallab_le). When thisis ime=e=0o S
the active window, then 0x08000282 2000 MOVS 10, #0x00
all debug steppin -
g stepping —

commands work at the

main.c LED.h

1
assembly level. 2
The window margin ;

* CMSIS-RICS 'main' function template
"LED.h"
£ "stm3IZ2f4xx.h"

shows markers for

breakpoints, bookmarks, and for the next execution statement.

Getting Started with MDK: Create Applications with pVision

73

Component Viewer

The Component Viewer shows information about:

= Software components that are provided in static memory variables or

structures.

= Objects that are addressed by an object handle.

Component Viewer windows containing objects are listed in the menu View —

Watch Windows.

The picture below is an example showing static component information for a

USB HID example project:

USB Device and Host

Property
“ Library Version
= Device 0
* Vendor ID
* Product ID

" Speed

” Endpoint 0 Maximum Packet Size

* Number of Interfaces

 Assigned Address

’ Configuration Status

i Endpoint Activity
Human Interface Device 0
B-Device 1
” Vendor ID
* Product ID
* Speed

* Endpoint 0 Maximum Packet Size

* Number of Interfaces

* Assigned Address

Configuration Status

#-Endpoint Activity

* Human Interface Device 1

=]
Value
6.9.6

0xC251

0x2501
Low/Full/High Speed
64

1

10

Configured

In reports 1, Out reports 1, EP INT IN: 1, EP INT OUT: 1

0xC251
0x2511
Low/Full Speed
8

1

0

Unconfigured

In reports 1, Qut reports 1, EP INT IN: 1, EP INT OUT: 1

For more information refer to

keil.com/pack/doc/compiler/EventRecorder/html/cv_use.html.

https://www.keil.com/pack/doc/compiler/EventRecorder/html/cv_use.html

74

Debug Applications

Event Recorder

The Event Recorder shows execution status and event information and helps to
analyze the operation of software components. MDK-Middleware and the Keil
RTX5 already offer the required description files.

The Event Recorder:

increases the visibility to the dynamic execution of an application program.
provides filter capabilities for the different event types.

allows unrestricted calls to event recorder functions from threads, RTOS
kernel, and ISRs.

implements recording functions that do not disable ISR on Armv7-M.

supplies fast time-deterministic execution of event recorder functions with
minimal code and timing overhead. Thus, event annotations can remain in
production code without the need to create a debug or release build.

To add the Event Recorder to the example from section Project with CMSIS-
RTOS2 on page 52, do the following:

In the Manage Run-Time Environment window, select the component
Compiler:Event Recorder and also verify that the component
CMSIS:RTOS2 (API):Keil RTXS5 is selected in Source variant. Press OK.

In the Project window under CMSIS component open RTX_Config.h file,
switch to the Configuration Wizard view, expand Event Recorder
Configuration group and enable Global Initialization.

_] RTX _Config.h

Epand Al | Collpsc Al | B | T

Option Value
7 Systemn Configuration

+-Thread Configuration

#-Timer Configuration

+-Event Flags Configuration

Mutex Configuration

Semaphore Configuration

Memory Pool Configuration

Message Queue Configuration

[[2 Oy O R

Event Recorder Configuration
o Global Initialization

#-RTOS Event Generation

Global Initialization
Initialize Event Recorder during 'osKernellnitialize’,

Text Editor _ Configuration Wizard

Getting Started with MDK: Create Applications with pVision

75

In the Project window under Compiler component open
EventRecorderConf.h file, switch to the Configuration Wizard view,
expand Event Recorder group and specify 6000000000 as the Time Stamp
Clock Frequency [Hz]. This ensures correct timestamping for this project.

_1 EventRecorderConfh

Expand Al | Collspse Al | Hep | T Show
Option Value
[=§ Event Recorder
Number of Records o4
Time Stamp Source DWT Cycle Counter

Time Stamp Clock Frequency [Hz]

Event Recorder

Text Editor }\Configuration Wizard I.-"

Rebuild the project, download the code to the target and start a debug session.

Open the event recorder window from the toolbar or the menu using

View — Analysis Windows — Event Recorder.

While debugging, events issued by Keil RTX5 are displayed in this window.
Event Recorder Configuration group in the RTX_Config.h file allows further
to configure the events to be generated by RTX and captured by Event Recorder.

Event Recorder LA
Enable Recorder: [+ ‘ B = | V' ‘ Mark: |T| All Operations m| Stopped
Event Time (sec) Component Event Property Value
0 Init Event Restart Count=0x00000001 I
1 0.03997310 RTX Kernel Kernellnitialize
2 |0.04001890 RTX Kernel KemellnitializeCompleted
3 0.04006410 RTX Thread ThreadNew func=app_main, argument=0x00000000, attr=0x000...
4 0.04014510 RTX Memory MemoryAlloc mem=0x10000000, size=80, type=1, block=0x10000...
5 0.04021760 RTX Memory MemoryAlloc mem=0x10000000, size=208, type=0, block=0x1000...
6 |0.04029790 RTX Thread ThreadCreated thread_id=0x10000010
7 0.04035480 RTX Kernel KernelStart 1
8 |0.04043350 RTX Thread ThreadCreated thread_id=0x10001284
9 |0.04049430 RTX Thread ThreadSwitch thread_id=0x10000010
10 |0.04054020 RTX Kernel KernelStarted
11 |0.04058720 RTX Thread ThreadNew func=blink_LED, argument=0x00000000, attr=0x0000...
12 |0.04067020 RTX Memory MemoryAlloc mem=0x10000000, size=80, type=1, block=0x10000...
13 |0.04074650 RTX Memory MemoryAlloc mem=0x10000000, size=208, type=0, block=0x1000...
14 0.04082680 RTX Thread ThreadCreated thread_id=0x10000130
15 |0.14857680 RTX Thread ThreadSwitch thread_id=0x10000130
16 |0.14862670 RTX Thread ThreadDelay ticks=500
17 |0.14867520 RTX Thread ThreadBlocked thread_id=0x10000130, timeout=500
10 N1AQ7ICCN DTV Thean-l T ACsaritrh thranAd id_N1000N001TN ﬂ

RTX RTOS Event Recorder

The documentation explains how to use Event Recorder in a user application:
keil.com/pack/doc/compiler/EventRecorder/html/index.html

http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

76 Debug Applications

System Analyzer

The System Analyzer window provides a graphical analysis tool that can be used
with any Arm Cortex-M based device. It shows:

= Incoming events from Compiler:Event Recorder.
RTX5 RTOS thread events and status.
= Power measurement data (requires ULINKplus debug adapter).

= Exceptions (requires SWO trace and ULINKpro or ULINKplus).

= Value changes of VTREGsS or variables (requires SWO trace).

> Open the System Analyzer from the toolbar or via the menu View -
Analysis Windows - System Analyzer.

System Analyzer a
Hoaa| et (et alane

4 System
Core Clock

| -

168.03 MHz

|
15.856 MHz | 168.01 MHz
4 Consumption |

57.379mA |

|

|

Curment

AN MA e I TSI A~ {25 162 mA, Delta: 35919 uA Avg 25543 mA, G 1515 uhs |~

33078V
Voltage |
33021V sy
- ions Thread Mode i{ Thread Mode He [Retum
Thread Mode 1
SVCall (11) | 7] |
SysTick (15) | |
Event ThreadSwitched - BTX Thread Threa Theadswiched - RTX Thiead
4 Data Watch |
252 | |
value
’ 1 [

unning hning
unning _

cady |

4 RTX5 RTOS
4 Thread Events app_main (2000007 Running hg app_main ({20
app_main (:20000010) % Rnning

osRtxldle Thread (2000 cady |
osRtx TimerThread (020,
thrADC ((x20000310)

thrBUT ((x20000060) .] .
thrLED ((x200001b8)

Grid: 50 us 29903 s
Kl

For more details refer to documentation:
keil.com/support/man/docs/uv4/uv4 db dbg systemanalyzer.htm

re) |5 | 5]

2.9906 s

https://www.keil.com/mdk5/ulink/ulinkplus
https://www.keil.com/mdk5/ulink/ulinkpro
https://www.keil.com/mdk5/ulink/ulinkplus
https://www.keil.com/support/man/docs/uv4/uv4_db_dbg_systemanalyzer.htm

Getting Started with MDK: Create Applications with pVision

77

Breakpoints

You can set breakpoints

= While creating or editing your program source code. Click in the grey margin

of the editor or Disassembly window to set a breakpoint.

= Using the breakpoint buttons in the toolbar.

= Using the menu Debug — Breakpoints.

= Entering commands in the Command window.

= Using the context menu of the Disassembly window or editor.

Breakpoints Window

You can define complex
breakpoints using the
Breakpoints window.

Open the Breakpoints
window from the menu
Debug.

Enable or disable
breakpoints using the
checkbox in the field
Current Breakpoints.
Double-click on an
existing breakpoint to
modify the definition.

Breakpoints X

Current Breakpoints:

< >
Access
Expression: | ™ Read [~ Write
Count: |1 J;I Size: E
Command: | 1 = r
| Kl Selectad| Kl Al | Cose | Help

Enter an Expression to add a new breakpoint. Depending on the expression, one
of the following breakpoint types is defined:

= Execution Breakpoint (E): is created when the expression specifies a code
address and triggers when the code address is reached.

= Access Breakpoint (A): is created when the expression specifies a memory
access (read, write, or both) and triggers on the access to this memory
address. Use a compare (==) operator to compare for a specified value.

If a Command is specified for a breakpoint, pVision executes the command and
resumes executing the target program.

The Count value specifies the number of times the breakpoint expression is true
before the breakpoint halts program execution.

78 Debug Applications

Watch Window

The Watch window allows you to observe Watch 1 B
1 Name Value Type
program symbols, registers, memory areas, . e —
and expressions. ¢ CORE_CLK/1000000 168 ulong
= SysTick (OxEQ00OEQLO pointer
é__ﬁ Open a Watch WIndOW from the “ CTRL 000010007 unsigned int
R ¥ LOAD 0x0002903F unsigned int
toolbar or the menu using @ vaL [T g
VleW _ Watch WlndOWS ¥ CALIR 0x4000493E unsigned int
W SystemCoreClock | 168000000 unsigned int
Add variables to the Watch window with:

= Click on the field <Enter expression> and double-click or press F2.

= In the Editor when the cursor is located on a variable, use the context menu
select Add <item name> to...

= Drag and drop a variable into a Watch window.

= In the Command window, use the WATCHSET command.

The window content is updated when program execution is halted, or during
program execution when View — Periodic Window Update is enabled.

Call Stack and Locals Window

The Call Stack + Locals window |castece+ Locais B
shows the function nesting and s ocafion/Nalus s lvPe
. =% osTimerThread:1 0:08000A2C Task
variables of the current program - o —
location. © main 0x080003CE intf0
=% blink_LED: 3 Task
i = osDela 0:080008E4 enum (int) funsigned int)
'.;5.'_" Open the Ca” StaCk + Locals VW mil)lfwsac <not in scope> param-:nsignedgint :
window from the toolbar or 5% blink LED 0x08000410 void f(void *)
H - =% argument <not in scope> param - void *
the menUUSIng VIeW - Ca“ =% os_idle_demon: 255 |0x08000438 Task
Stack Window.

When program execution stops, the Call Stack + Locals window automatically
shows the current function nesting along with local variables. Threads are shown
for applications that use the CMSIS-RTOS RTX.

Getting Started with MDK: Create Applications with pVision

Register Window

Registers =
The Register window shows the content of the Register Valus |
microcontroller registers. i (00000000

| Rz oooooose |
== Open the Registers window (20000678

from the toolbar or the menu
View — Registers Window. =

(61000000

MSP 20000678
You can modify the content of a register by double- L oo o00eme0e
clicking on the value of a register, or pressing F2 to BrsePR b0
edit the selected value. Currently modified registers are FAUTIASK 0
highlighted in blue. The window updates the values - intemal
when program execution halts. b e
Stack MSP
States 523550045952
. Sec 311.87502548
Memory Window -
Monitor memory areas using — B
Memory Windows. Addres: [imeTics RE
] 0x20000000: [JHE| 02037200 00000000 00000000
Open a Memory window puzzmageso: cieoians osoceTes pooonone coonioos
from the toolbar or the 0%20000030: 00000000 00000000 00000000 00000000
- . 0x20000040: 00000000 00000000 Q0000000 00000000
menu using View — 0x20000050: 00000000 00000000 00000000 00000000
Memory Windows. 0200000701 20000015 08000200 20099000 00005000
0x20000080: 00000000 00000000 QOOOQOOOO 0QOO0QOOO
[] Enter an expresslon |n the 0x20000090: 00000000 00000000 OQO0QOOO0 00000000 i

(AR TaTaTaTaTu b a O o TaTaTalatalataMRatalatalalalala M alalatalatatataMuaTalatalatalalel

Address field to monitor the
memory area.

= To modify memory content, use the Modify Memory at ... command from
context menu of the Memory window double-click on the value.

= The Context Menu allows you to select the output format.

= To update the Memory Window periodically, enable View — Periodic
Window Update. Use Update Windows in the Toolbox to refresh the
windows manually.

;| Stop refreshing the Memory window by clicking the Lock button. You can
use the Lock feature to compare values of the same address space by
viewing the same section in a second Memory window.

80 Debug Applications

Peripheral Registers

Peripheral registers are memory mapped registers to which a processor can write
to and read from to control a peripheral. The menu Peripherals provides access
to Core Peripherals, such as the Nested Vector Interrupt Controller or the
System Tick Timer. You can access device peripheral registers using the System
Viewer.

NOTE
The content of the menu Peripherals changes with the selected microcontroller.

System Viewer

System Viewer windows display information GPI0D B
about device peripheral registers. as) [
Property Value
B8 Open a peripheral register from the toolbar | =¥~ EXEIENN -
or the menu Peripherals — System OTVPER o
Viewer. GPIOB_OSPEEDR [(NSEE
il C
i i - &-10R
With the System Viewer, you can: i -
= View peripheral register properties and — C— |
values. Values are updated periodically LokR R
when View — Periodic Window Update AFRH o________ N
IS enabled ' [[B)ItRS 31..0]1 RO (@ 0:40020C10) GPIO port input data
R R register
= Change property values while debugging.

= Search for specific properties using TR1 Regular Expressions in the search
field. The appendix of the uVision User’s Guide describes the syntax of
regular expressions.

For details about accessing and using peripheral registers, refer to the online
documentation.

http://www.keil.com/support/man/docs/uv4/uv4_f_search_expr.htm

Getting Started with MDK: Create Applications with pVision 81

Trace

Run/stop debugging, as described previously, has some limitations that become
apparent when testing time-critical programs, such as motor control or complex
communication applications. As an example, breakpoints and single stepping
commands change the dynamic behavior of the system. As an alternative, use the
trace features explained in this section to analyze running systems.

Arm Cortex-M processors integrate CoreSight logic that is able to generate the
following trace information using:

Cortex-M Debug & Trace IP

= Data Watchpoints record

memory accesses with data Breakpoint Unit Debug
value and program address and, Access Port
optionally, stop program Memory Access (DAP)
execution.

= Exception Trace outputs Data Watchpoints
details_about interrupts and Exception & 1;:;2?»{ :::t
exceptions. Instrumented Trace

Unit (TPIV)

» Instrumented Trace
communicates program events
and enables printf-style debug
messages and the RTOS Event Viewer.

Instruction Trace

= Instruction Trace streams the complete program execution for recording and
analysis.

The Trace Port Interface Unit (TPIU) is available on most Cortex-M3, Cortex-
M4, and Cortex-M7 processor-based microcontrollers and outputs above trace
information via:

= Serial Wire Trace Output (SWO) works only in combination with the
Serial Wire Debug mode (not with JTAG) and does not support Instruction
Trace.

» 4-Pin Trace Output is available on high-end microcontrollers and has the
high bandwidth required for Instruction Trace.

= On some microcontrollers, the trace information can be stored in an on-chip
Trace Buffer that can be read using the standard debug interface.

= Cortex-M3, Cortex-M4, and Cortex-M7 has an optional Embedded Trace
Buffer (ETB) that stores all trace data described above.

= Cortex-MO+ has an optional Micro Trace Buffer (MTB) that supports
instruction trace only.

82 Debug Applications

The required trace interface needs to be supported by both the microcontroller
and the debug adapter. The following table shows supported trace methods of
various debug adapters.

Feature ULINKpro ULINKplus ULINK2
Serial Wire Output (SWO) v v v
Maximum SWO Clock Frequency 200 MHz 60 MHz 3.75 MHz
4-Pin Trace Output for Streaming Trace v

Embedded Trace Buffer (ETB) Support v v v
Micro Trace Buffer (MTB) Support v v v

Trace with Serial Wire Output

To use the serial wire trace output (SWO), use the following steps:

;:z. Click Options for Target on the toolbar and select the Debug tab. Verify
that you have selected and enabled the correct debug adapter.

Options for Target 'Target 1' b4
Device | Target I Qutput I Listing I User I [:."C-I—i—l Asm I Linker I Debug 'Util'rties |

" Use Simulator with restrictions Settings | o se: |UL|NKPm Cortex Debugger LII Settings |
[~ Limit Speed to Real-Time

5 Click the Settings button. In the Debug dialog, select the debug Port: SW
and set the Max Clock frequency for communicating with the debug unit of
the device.

Cortex-M Target Driver Setup b4

Trace I Fash Download |

 ULINK USBE - JTAG/SW Adapter — ~SW Device

Serial No: - IDCODE | Device Name [Move
SWDIO | (D 2BAD1477 ARM CoreSight SW-DP 1

ULINK Version: [ULINKpro ==L _':'l

Device Family: [Cortex-M DDW”l

== I‘u"1.57" = &utomatic Detection |0 CODE: I

v SW F‘orl:ISW j Manual Configuration Device Name: I

MaxClock: [1MHz | add | | Detete | | Update | AP: [0<00

Getting Started with MDK: Create Applications with uVision 83

=~ Click the Trace tab. Ensure the Core Clock matches the System Core Clock
the MCU is running at. Set Trace Enable and select the Trace Events you
want to monitor.

Enable ITM Stimulus Port 0 for print £-style debugging when using ITM
as the output channel.

Debug Flash Download I Pack I

[t:ore Clock: [180.000000 MHz W Trace Enable] 7 UnlimitedTrace I~ ETM Trace Enable
Trace Clock: I 180.000000 MHz V¥ Use Core Clock
—Trace Pot————— ~Timestamps ——————— - Trace Events
ISeriaI Wire Output - Manchester LI ¥ Enable Plescaler:l‘l vl ™ ICPI: Cycles per Instruction
EXC: Ex i rthead
SWO Clock Presc:aler:l 1 ~PC Sampling————————————— r e
¥ Adodetect [~ |SLEEP: Sleep Cycles
odete: I - l
46 [JL5U: Load Store Unit Cycles
Ak Clock:l T ILy) il [™ Periodic Period:l <Disabled> [|FOLD: Folded Instructions
™ on Data RAW Sample ¥ |EXCTRC: Exception Tracing
—ITM Stimulus Ports
3 Port 24 23 Port 16 15 Port 8 7 Port 0
Enable: [0B0000001T | T T T T (T T T T FTTTTTTT v
Privilege: Iﬂxﬂﬂﬂﬂﬂﬂﬂa Port 31.24 Port 23.16 [Port 15.8 [~ Port 7.0
0K I Cancel Help |

NOTE
When many trace features are enabled, the Serial Wire Output communication
can overflow. The pVision Status Bar displays such connection errors.

The ULINKpro debug/trace adapter has high trace bandwidth and such
communication overflows are rare. Enable only the trace features that are
currently required to avoid overflows in the trace communication.

84 Debug Applications

Trace Exceptions

The Exception Trace window displays statistical data about exceptions and
interrupts.

=3] Click on Trace Windows and select Trace Exceptions from the toolbar or
use the menu View — Trace — Trace Exceptions to open the window.

Trace Exceptions IE'
= ‘ ‘ @ ‘ [¥ EXCTRC Exception Tracing | [V Timestamps Enable

Num Name Count Total Time Min Timeln Max Time.. Min Time Out Max Time Qut First Time [s] Last Time [s]

7] UsageFault 4] Os j

11 SVCall 0 0s 1

12 DebugMeonitor 1] Os

14 Pend5V 0 0s

5 St iss s 05ne so5m 365ms 100ms 00002 100

16 |WWDG 0 0s

17 PVD 0 Os

18 TAMP_STAMP 0 Os

19 RTC_WKUP 0 0s

=

To retrieve data in the Trace Exceptions window:

= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Enable EXCTRC: Exception Tracing.

= Set Timestamps Enable.

NOTE

The variable accesses configured in the Logic Analyzer are also shown in the
Trace Data Window.

Getting Started with MDK: Create Applications with pVision 85

Logic Analyzer

The Logic Analyzer window displays changes of up to four variable values over
time. To add a variable to the Logic Analyzer, right click it in while in debug
mode and select Add <variable> to... - Logic Analyzer. Open the Logic
Analyzer window by choosing View - Analysis Windows - Logic Analyzer.

Logic Analyzer 3]
[Setip_|[load | MnTime MaxTime Gad Zoom Mn/Max |Update Screen| Transtion | Jumpto [V Signalifo | Ampltude
Save..||[0s (04765545 [05ms |[in [Ou] Al [Auto][Undo] [Sop |[Gear | [Prev [Next] [Code|[Trace]| I~ Show Cycles W' Cursor
16263 e] |
. i [SO0
we , t P
\ | e =
16384 |[7z88 | @315 g T ——
32767 |
distisbed | : | | - - 1
\ |
32768 ‘Ueju |172,3ch 4-18732)
2767 \ |
fteed | | -
| filtered
Mouse Pos Reference Point Delta
2% | Time: 0458738 0.457832 5 0.90541 ms = 1104.47
5 (15258 > 15512] | value 14629 15512 883
. e ; : | PC S 0x3b0 0350
f | [| [|| | f] |7 T 17 17 T
\ \/ 1] I (\ J | |
| ! Y y { y y ¥ { i {
nnfag |[567 568 | 569 |57 [s71 ‘ [572 B |57 |57 |57 ;\1 577 |
! f fl i | I ‘ | | i fl |
I 1 Ji I | J 1] 1 |
| J 1 I I Il 11 | \“ J1 1 l | |
= (4] — (873, .21+ - = ===t =]
0453878 [0457832s 18 [0458738 5, d. 090541 ma] V4c2878 e

To retrieve data in the Logic Analyzer window:

= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Set Timestamps Enable.

NOTE
The variable accesses monitored in the Logic Analyzer are also shown in the

Trace Data Window. Refer to the uVision User’s Guide — Debugqging for more
information.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

86 Debug Applications

Debug (printf) Viewer

The Debug (printf) Viewer window displays data streams that are transmitted
sequentially through the ITM Stimulus Port 0. To enable printf() debugging, use
the

Compiler:1/O software component as described on page 40.

This fputc() function redirects any printf() messages (as shown below) to the
Debug (printf) Viewer.

int seconds; // Second counter
while (1) {
LED On (); // Switch on
delay (); // Delay
LED Off (); // Switch off
delay (); // Delay
printf ("Seconds=%d\n", seconds++) ; // Debug output

=# Click on Serial Windows and select Debug (printf) R
Viewer from the toolbar or use the menu View — Serial fooonsocs y
Windows — Debug (printf) Viewer to open the econaa?

window.

Seconds=3
Seconds=4 -

To retrieve data in the Debug (printf) Viewer window:

= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Set Timestamps Enable.

= Enable ITM Stimulus Port 0.

= Alternatively, on targets that do not support ITM (such as Arm Cortex-
MO0/MO0+), you can use the event recorder to display printf messages. The
Compiler component documentation explains how to enable this feature:
keil.com/pack/doc/compiler/RetargetlO/html/ retarget examples er.html

ms-its:C:/MDK5/ARM/HLP/ulinkpro.chm::/ulinkpro_tr_stimulusports.htm
http://www.keil.com/pack/doc/compiler/RetargetIO/html/_retarget__examples_er.html

Getting Started with MDK: Create Applications with pVision

87

Event Counters

Event Counters displays cumulative

X) Event Counters @
numbers, which show how often an event is 4| R| e

'[I’Iggel’ed MName Value Enable
. . CPICNT 698857 I
=] From toolbar use Trace Windows — EXCCNT 540 7
SLEEPCNT 256 I
Event Counters LSUCNT 698580 ¥
FOLDCNT 0 el

From menu View — Trace — Event

Counters

To retrieve data in this window:

Set Trace Enable in the Debug Settings Trace dialog as described above.
Enable Event Counters as needed in the dialog.

Event counters are performance indicators:

CPICNT: Exception overhead cycle: indicates Flash wait states.
EXCCNT: Extra Cycle per Instruction: indicates exception frequency.
SLEEPCNT: Sleep Cycle: indicates the time spend in sleep mode.

LSUCNT: Load Store Unit Cycle: indicates additional cycles required to
execute a multi-cycle load-store instruction.

FOLDCNT: Folded Instructions: indicates instructions that execute in zero
cycles.

88 Debug Applications

Trace with 4-Pin Output

Using the 4-pin trace output provides all the features described in the section
Trace with Serial Wire Output, but has a higher trace communication
bandwidth. Instruction trace is also possible.

The ULINKpro debug/trace adapter supports this parallel 4-pin trace output
(also called ETM Trace) which gives detailed insight into program execution.

NOTE
Refer to the uVision User’s Guide — Debugging for more information about the
features described below.

When used with ULINKpro, MDK can stream the instruction trace data for the
following advanced analysis features:

= Code Coverage marks code that has been executed and gives statistics on
code execution. This helps to identify sporadic execution errors and is
frequently a requirement for software certification.

= The Performance Analyzer records and displays execution times for
functions and program blocks. It shows the processor cycle usage and enables
you to find hotspots in algorithms for optimization.

= The Trace Data Window shows the history of executed instructions for
Cortex-M devices.

Trace with On-Chip Trace Buffer

= In some cases, trace output pins are not available on the microcontroller or
target hardware. As an alternative, an on-chip Trace Buffer can be used that
supports the Trace Data Window.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

Getting Started with MDK: Create Applications with pVision

89

MDK-Middleware

Today’s microcontroller devices offer a wide range of communication peripherals
to meet many embedded design requirements. Middleware is essential to make
efficient use of these complex on-chip peripherals.

NOTE

This chapter describes the middleware that is part of MDK-Professional and
MDK-Plus. MDK also works with some third-party middleware stacks. Refer to
keil.com/pack for a list of public software packs.

The MDK-Middleware software pack includes royalty-free middleware with
components for TCP/IP networking, USB Host and USB Device
communication, File System for data storage, and a graphical user interface.

Refer to keil.com/middleware for more information.

B al 3] MDK Middleware X |+ v L

& = O 0 & waw2keil.com/mdks/middleware m st = L e

ArmekeEiL

1.3 Products Download Events Support

Home / MDK / MDK Middleware Learning
MDK Middleware ‘ Platform

Microcontrollers offer a wide range of peripherals to meet

& Quick Links
MDK Overview

today's embedded design requirements. However,

implementing applications that efficiently utilize these interfaces
presents software developers with real challenges. Flexible and

Online manuals for MDK
easy-to-use middleware components are essential to unleash

Middleware Application Templates

the power of communication and interface peripherals in

Knowledgebase
Compare MDK Editions

madern microcontrollers.

Middleware Companents

MDK Middleware provides royalty-free, tightly-coupled software components that are specifically designed for communication peripherals in

mirrnrantrallers It is nrovided as nart of the MDK - Prafeesinnal ar MDK-Plis editinns in hinarv format The Middlswars Snfware Pack incliides the

This web page provides an overview of the middleware and links to:

= MDK-Middleware User’s Guide
= Device List along with information about device-specific drivers
= Information about Example Projects with usage instructions

The Middleware interfaces to the device peripherals using device-specific
CMSIS-Drivers. Refer to CMSIS-Driver on page 32 for more information.

http://www.keil.com/pack
http://www.keil.com/middleware

90 MDK-Middleware

Combining several components is common for a microcontroller application. The
Manage Run-Time Environment dialog makes it easy to select and combine
different MDK-Middleware components. It is even possible to expand the
middleware component list with third-party components that are supplied as a
software pack.

Typical examples for the usage of MDK-Middleware are:
= Web server with storage capabilities: Network and File System Component
= USB memory stick: USB Device and File System Component

= Industrial control unit with display and logging functionality: Graphics, USB
Host, and File System Component

= Refer to the FTP Server Example on page 96 that exemplifies a combination
of several middleware components.

The following sections give an overview for each software component of the
MDK-Middleware.

NOTE
A thirty days evaluation license for MDK-Professional is delivered with each
installation. Refer to the Installation chapter on page 9 for more information.

Getting Started with MDK: Create Applications with uVision

91

Network Component

The Network Component uses TCP/IP communication protocols and contains
support for services, protocol sockets, and physical communication interfaces. It
supports IPv4 and IPv6 connections.

Network Component
Compact Full Web Server FTP TFTP Telnet
g Web Server Using File System Server Server Server
z
@ SNMP DNS SNTP FTP TFTP SMTP
Agent Client Client Client Client Client
| B
H
with
IPv4/IPv6
g Dual-
3 ——n i
s

CMSIS-Driver

The various services provide program templates for common networking tasks.

= Compact Web Server stores web pages in ROM whereas the Full Web
Server uses the File System component for page data storage. Both servers
support dynamic page content using CGI scripting, AJAX, and SOAP
technologies.

= FTP or TFTP support file transfer. FTP provides full file manipulation
commands, whereas TFTP can boot load remote devices. Both are available
for the client and server.

= Telnet Server provides a command line interface over an IP network.

= SNMP Agent reports device information to a network manager using the
Simple Network Management Protocol.

= DNS Client resolves domain names to the respective IP address. It makes use
of a freely configurable name server.

= SNTP Client synchronizes clocks and enables a device to get an accurate
time signal over the data network.

= SMTP Client sends status emails using the Simple Mail Transfer Protocol.

92 MDK-Middleware

All Services rely on a communication socket that can be either TCP (a
connection-oriented, reliable full-duplex protocol), UDP (transaction-oriented
protocol for data streaming), or BSD (Berkeley Sockets interface).

The physical interface can be either Ethernet (for LAN connections) or a serial
connection such as PPP (for a direct connection between two devices) or SLIP
(Internet Protocol over a serial connection).

Depending on the interface, the Network Component relies on a CMSIS-Driver
to be present for providing the device-specific hardware interface. Ethernet
requires an Ethernet MAC and PHY driver, whereas serial connections
(PPP/SLIP) require a UART or a Modem driver.

The Network Core is available in a Debug variant with extensive diagnostic
messages and a Release variant that omits these diagnostics. It supports IP
communication using IPv4 and IPv6. To see events coming from the network
component in the event recorder, you need to enable a debug variant.

Getting Started with MDK: Create Applications with pVision

93

File System Component

The File System Component allows your embedded applications to create, save,

read, and modify files in storage devices such as RAM, NAND or NOR Flash,
memory cards, or USB memory sticks.

File System Component
USB MSC SD/MMC
Mass Storage Class Memory Card

CMSIS-Driver

=N | = | = =

Each storage device is accessed and referenced as a Drive. The File System
Component supports multiple drives of the same type. For example, you might
have more than one memory card in your system.

File System

Core

The File System Core is thread-safe, supports simultaneous access to multiple
drives, and uses a FAT system available in two file name variants: Short File
Name (SFN) and Long File Name (LFN) with up to 255 characters. It also
provides a Debug variant with extensive diagnostic messages and a Release
variant that omits these diagnostics. To see events coming from the file system
component in the event recorder, you need to enable a debug variant.

To access the physical media, for example NAND and NOR Flash chips, or
memory cards using MCI or SPI, CMSIS-Driver have to be present.

94 MDK-Middleware

USB Component

The USB Device component implements USB Host and Device functionality
and uses standard device driver classes that are available on most computer
systems, avoiding host driver development.

USB Component
@ HID CcDC
17
£] Human Interface Device USB Host Core
- MsC Custom
o Mass Storage Class Custom Device Class
(]
v HID CcDC :
3 Human Inerface Device USB Device Core
(a]
-] MsC Custom ADC
g Mass Storage Class Custom Device Class Audio Device Class

CMSIS-Driver

= Human Interface Device Class (HID) implements a keyboard, joystick or
mouse. However, HID can also be used for simple data exchange.

= Use the Mass Storage Class (MSC) for file exchange (for example a USB
memory stick).

= Communication Device Class (CDC) implements a virtual serial port (using
the sub-class ACM) or a network connection (using the sub-class NCM).

= Audio Device Class (ADC) performs audio streaming.
= Use the Custom Class for new or unsupported USB classes.

The USB Component supports Composite USB devices that implement multiple
device classes.

This component requires a USB CMSIS-Driver to be present. Depending on the
application, it has to comply with the USB 1.1 (Full-Speed USB) and/or the USB
2.0 (High-Speed USB) specification.

The USB Core is available in a Debug variant with extensive diagnostic

messages and a Release variant that omits these diagnostics. To see events
coming from the USB component in the event recorder, you need to enable the

debug variant.

Getting Started with MDK: Create Applications with uVision

95

Graphics Component

The Graphics Component is a comprehensive library that includes everything
you need to build graphical user interfaces.

Graphics Component

“
4 . . i
6 Bitmap Support Window Manager Antialiasing
LCD Configuration GUI Configuration

T T

Interface Template Preconfigured Interfaces

Core functions include:

Input

Display

* A Window Manager to manipulate any number of windows or dialogs.
» Ready-to-use Fonts and window elements, called Widgets, and Dialogs.
= Bitmap Support including JPEG and other common formats.

= Anti-Aliasing for smooth display.

= Flexible, configurable Display and User Interface parameters.

= The user interface can be controlled using input devices like a Touch Screen
or a Joystick.

The Graphics Component interfaces to a wide range of display controllers using
preconfigured interfaces for popular displays. Adapt the interface template to
add support for new displays.

The VNC Server allows remote control of your graphical user interface via
TCP/IP using the Network Component.

Demo shows all main features and is a rich source of code snippets for the GUI.

96 MDK-Middleware

Mbed IoT Componentes

Keil MDK provides interfaces to Mbed software components that enable secure
communication and Internet of Things (IoT) connectivity.

= Mbed TLS adds cryptographic and SSL/TLS capabilities with a library
collection optimized for embedded systems.

= Mbed Crypto supports a wide range of cryptographic operations and
provides a reference implementation of the cryptography interface of the Arm
Platform Security Architecture (PSA).

FTP Server Example

The FTP server example is a reference application that shows a combination of
several middleware components. Refer to Verify Installation using Example

Projects on page 14 for more information on the various example projects that
are available.

When using an FTP Server, you can exchange and manipulate files over a TCP/IP
network. The middleware documentation has more details about the FTP Server
and the reference application:

«E‘ [¥] FTP Server X ‘+ v - o X
&« O @ psi/f l.com/pack/doc/mw;t / f t_p_server_example.htm| m st = I o’ -

armkell Network Component version7.14.0
MDK Middleware for IPv4 and IPv6 Networking
General | File System | Graphm usB Board Support
Main Page Reference | Q Search

Network Component
Revision History FTP Server

Creating a Network Application

Troubleshooting a Network Application | This tutorial creates a FTP server that allows you to manage files from any machine using a FTP client. The following
Secure Communication picture shows an exemplary connection of the development board and a Computer.
Eytir Serily Local Area Network
Network Examples
HTTP Server
HTTPS Server Ethernet
HTTP Upload
Telnet Server
SMTP Client
SNMP Agent
BSD Client/Server

Ethernet

Migration
Resource Requirements

Function Overview

Reference

Data Structures

Data Structure Index
Data Fields

Build the "FTP Server" Project

Open the example project in MDK (the Pack Installer web page explains how to do this). The pVision Project window
<shnuld disnlav A similar nroiect strictire:
Network Examples Generated on Wed Jul 1 2020 16:03:51 for Network Component by ARM Ltd. All rights reserved.

Getting Started with MDK: Create Applications with pVision 97

Several middleware components are the building blocks of this FTP server. A
File System is required to handle the file manipulation. Various parts of the
Network component build up the networking interface.

The following software components from the MDK-Middleware are required to
create the FTP Server example:

Network File System

o
TCP CORE £ ShiMMC
q o Memory Card
with

Socket

IPv4/IPvé

g Dual-
K] Server

File System Core

Interface

CMSIS-Driver

As explained before, CMSIS-Driver provides the interface between the
microcontroller peripherals and the MDK-Middleware.

The Manage Run-Time Environment dialog shows the software components
selected for the FTP Server example:

Software Component Sel. Variant Version Description | Software Component Sel. Variant Version Description
£ € CMSIS Driver Unified Device Drivers compliant to CM 1€ File System MDK-Pro 6.24 | File Access on various storage devices
4 Ethemet (AP]) 201 |Ethemet MAC and PHY Driver API for C¢ I @ CORE ” LN 624 | File System with Long Filename support for
£ Ethemet MAC (2P) 201 | Ethemet MAC Driver AP for Cortex-M I @ Drive Storage Devices and Media Types
@ EthemetMAC |I¥ 202 |Ethemet MAC Driver for LPC1800 Series 4 Graphics MDK-Pro 5261 |UserInterface on graphical LCD displays
©4 Ethemet PHY (AP]) 200 | Ethemet PHY Driver APl for Cortex:h | & & Network MDK-Pro 620 |IP Networking using Ethemet or Serial prote
% DPe3ssaC ~ 600 | Ethemet PHY DPE3843C Driver @ CORE 7 Releass [=]620 | Networking Core for Cortex-M (Release)
@ KSZROBIRNA | 600 |Ethemet PHY KSZ8081RNA Driver | £ € Interface Connection Mechanism
@ LANST20 r 600 | Ethemet PHY LANST20 Driver % ETH 1 620 | Network Ethernet Interface
STB02RTL r 600 | Ethemet PHY STBOZRTI Driver I @ ppP I~ standardMd~]6.20 | DNetwerk PP over Serial Interface - Standar
4 Flash (2P1) 200 | Flash Driver 491 for CortecM I @ sup I~ StandardMdx|6.20 | Network SUP Interface - Standard Modem
€ nc (e 202 |C Driver APIfor Cortex-M B8 Senvice Network Services
£ M ey 202 |MCI Driver API for CortexM I @ DNs Client r 620 DN Client
@ ma " 200 |MCI Driver for LPC1800 Series @ FIP Client r 620 |FTP Client
€ NAND (aPD) 201 | MNAND Flash Driver APl for Cortex-M | @ FTP Server ~ 620 |FIP Server
£ SPLAPD 201 | SPIDriver APIfor Cortex-M @ SMTPClient |I” 620 |SMTP Client
@ s ~ 203 |SPI(5F) Driver for LPC1800 Series | @ SNMP Agent | 620 | SHMP Agent
4 USART (4PD) 201 |USART Driver API for Cortex-M @ SNTP Client r 620 |SNTP Client
4 USB Device (4PD) 201 | USB Device Driver 4P for CortecM I @ TFTP Client r 620 | TETP Client
@ USB Host (4PT) 201 | USE Host Driver APl for Cortech I @ TFTP Server r 620 | TFTP Server
€ Compiler @ Tenetsener |- 620 | Telnet Server
& & Device Startup. System Setup I 9 Web Server Co... |[I” 620 | Web Server (HTTP) with Read-cnly Web Re
@ GPDMA i 101 | GPDMA driver used by RTE Drivers for Lf @ Web Server r 620 | Web Server (HTTP) with Web Resources on
@ GPIO ~ 100 | GPI driver used by RTE Drivers for LPCI I £€ Socket Network protocol
@ scu " 100 |SCU driver used by RTE Drivers for LPCLI I “ BSD r 620 |BSD Socket
@ Startup v 100 | System Startup for NXP LPC1800 Series v TCP r~ 620 |TCP Socket
£ _File Svstem MDK-Pro 6.24__|File Access on verious storaae devices. | “_uop ~ 620 _ |UDP Socket

Using Middleware

Create your own applications using MDK-Middleware components. For more
information, refer to the MDK-Middleware User’s Guide that has sections for
every component describing:

98

= Example projects outline key product features of software components. The
examples are tested, implemented, and proven on several evaluation boards.

Resource Requirements describe the thread and stack resources for CMSIS-
RTOS and the memory footprint.

Create an Application contains the required steps for using the components
in an embedded application.

= Reference contains the APl and file documentation.

4—5] [2] File System Examples % l+ N L] X
< = O @ @ Arm Ltd [GB] | https:/www.keil. cam/pack/doc/mw;FileSystem/html/fs_examples.html m = 1 .

armekell File System Component versions.13.8

MDK Middleware for Devices with Flash File System

MDK-Middleware

General File System Graphic | Network | use | Board Support
Main Page Usage and Description Reference Q- Search

File System Component .
’ File System Examples

Revision History

Create an Application Using the File Sys

» File System Examples The File System Component is used in many different applications and examples. One stand-alone example is available

Theory of Operati to demonstrate the usage of the File System. Other examples use the File System Component in conjunction with other
eory of Gperafion Components (such as USB or Network for example).
Function Overview

Differences to RL-FlashFS » The File System Example shows the basic functicnality of the File System.

N . * The USB Device Mass Storage Example shows how to create an USB MSC Device that is recognized by an
Resource Requirements USE Host controller.
Reference » The USB Host Mass Storage Example explains how to access file system data from an attached USB memory
Data Structures device

» The FTP Server Example accesses the device's file system via a network connection.
Data Structure Index

Data Fields These examples are available through the Pack Installer; select the related board and copy the example

File System Example

This example shows how to manipulate files on a given drive using the File System Component. You can create, read,
conv_and delete files on anv enahled drive (memorv Card NOR/NAND Flash) and format each drive To keen it simnle

Generated on Wed Jul 1 2020 16:03:38 for File System Component by ARM Ltd. All rights reserved.

The learning platform keil.com/learn offers several tutorials and videos that
exemplify typical use cases of the middleware. Refer also to these application
notes:

= USB Host Application with File System and Graphical User Interface:
keil.com/appnotes/docs/apnt 268.asp

= \Web-Enabled MEMS Sensor Platform:
keil.com/appnotes/docs/apnt 271.asp

= \Web-Enabled Voice Recorder:
keil.com/appnotes/docs/apnt 272.asp

= Analog/Digital Data Logger with USB Device Interface:
keil.com/appnotes/docs/apnt 273.asp

The generic steps to use the various middleware components are:

= Add Software Components: in the Manage Run-Time Environment
dialog select the software components that are required for your application.

http://www.keil.com/learn
http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.keil.com/appnotes/docs/apnt_271.asp
http://www.keil.com/appnotes/docs/apnt_272.asp
http://www.keil.com/appnotes/docs/apnt_273.asp

Getting Started with MDK: Create Applications with pVision 929

= Configure Middleware: adjust the parameters of the software components in
the related configuration files.

= Configure Drivers: identify and configure the peripheral interfaces that
connect the middleware components to physical 1/0 pins of the
microcontroller.

= [Implement Application Features: use the API functions of the selected
components to implement the application specific behaviour. Code templates
help you to create the related source code.

= Build and Download: after compiling and linking of the application use the
steps described in the chapter Using the Debugger to download the image to
your target hardware.

= Verify and Debug: test utilities along with debug and trace features are
described in the chapter Create Applications.

USB Device HID Example

While above steps are generic and apply to all components of the MDK-
Middleware, the following USB Device HID example shows these steps in
practice. This example creates a USB HID Device application that connects a
microcontroller to a host computer via USB. On the PC the utility program
HIDClient.exe is used to control LEDs on the development board.

This USB Device HID example uses the MIMXRT1050-EVK development board
populated with a MIMXRT1052DVL6B microcontroller. It is based on the
project created in section Project with CMSIS-RTOS2 along with the source
files main.c, led_blinky.c and the configuration files.

NOTE

You must adapt the code and configurations when using this example on other
starter kits or evaluation boards.

The HID USB example is also available as a pre-built project in Pack Installer
for many microcontroller device families supporting USB CMSIS_Driver.

Add Software Components
To create the USB Device HID example, start with the project described in
section Project with CMSIS-RTOS2.

& Use the Manage Run-Time Environment dialog to add specific software
components.

100 MDK-Middleware

From CMSIS-Driver component:

= Select from ::CMSIS Driver:USB Device (API) an appropriate driver
suitable for your application. Some devices may have specific drivers for
USB full-speed and high-speed whereas other microcontrollers may have a
combined driver. Here, select USBL.

Software Component Sel, Variant Versin, Description
4 Board Support w Generic Interfaces for Evaluation and Development Boards
’ CMSIS Cortex Microcontroller Software Interface Components
=4 CMSIS Driver MXP MCUXpresso SDK Peripheral CMSIS Drivers
& CAN (AP1) 130 | CAN Driver AP| for Cortex-M
‘ Ethernet (AP} 220 Ethernet MAC and PHY Driver AP| for Cortex-IM
’ Ethernet MAC (AP} 2.20 | Ethernet MAC Driver APl for Cortex-M
. Ethernet PHY [(API} 2.20 Ethernet PHY Driver 4P| for Cortex-M
‘ Flash (AP} 230 Flash Driver AP| for Cortex-M
€ 12C (AP)) 240 12C Driver APl for Cortex-IM
@ MCIAPD 240 MO Driver AP for Cortex-M
€ MAND (4P]) 2.40 MAND Flzsh Driver AP for Cortex-I
€ SAI(APY) 120 5Al Driver APl for Cortex-IM
. SPI{APD 230 SPI Driver AP for Cortex-MM
€ USART (4P)) 2.40 USART Driver AP| for Cortex-IM
=2 ’ USE Device (APl 2,30 |USE Device Driver APl for Cortex-M
¥ Custom [1.00 Access to Finclude Driver_USED.h file and code template for c
¥ USB1 [v 1.1.0 USBO Device Driver for NXP i.0X RT 103x Series
W UsSBZ [1.1.0 USE1 Device Driver for NXP i.MX T 103x Series
’ LISE Host (API) 230 USE Host Driver APl for Cortex-Id

From Device component:

= Implementation of the USB CMSIS-Driver often relies on the vendor-specific
HAL functions that also need to be added to the project.

In our case in ::Device:SDK Drivers add osa_bm component to expose
operating system abstraction used by the CMSIS-Driver. Other required
HAL components are already selected in the initial CMSIS-RTOS2 example.

¥ osa

W osa_bm
¥ panic

W nhuks72021

A<
ry pary e

From USB Component:

= Select ::USB:CORE to include the basic functionality required for USB
communication.

= Set ::USB:Device to '1' to create one USB Device instance.

= Set ::USB:Device:HID to '1' to create a HID Device Class instance. If you
select multiple instances of the same class or include other device classes,
you will create a Composite USB Device.

Getting Started with MDK: Create Applications with pVision 101

= ‘ USE MDK-Plus w8141 | USE Communication with various device classes
W CORE [v Releaze w8141 |USBE Core for Cortex-M (Release)
@ Device 1 [S 6141 |USE Device
= ’ USE Device Classes
e ADC 0 = 5141 |USE Device: Audio Device Class (ADC)
@ CDC 0 = 5141 |USE Device: Communication Device Class (CDC)
@ Custom Class 1] = 8.14.1 |USE Device: Custom Class
@ HID 1 = 8141 |USE Device: Human Interface Device (HID) Class
o MSC = 6,141 |USE Device: Mass Storage Class (MSC)
‘ Wireless Clarinox 2.0.0 Clarinox Wireless Libraries

T1P: Click on the hyperlinks in the Description column to view detailed
documentation for each software component.

NOTE

For MDK-Middleware version older than v7.4.0, you also need to add the Keil
RTX5 compatibility layer. Please select ::CMSIS:RTOS (API):Keil RTX5 if not
present in the project yet.

Configure Middleware

Every MDK-Middleware component has a set of configuration files that adjusts
application specific parameters and determines the driver interfaces. Access these
configuration files from the Project window in the component class group. They
usually have names like <Component>_Config_0.c or
<Component>_Config_0.h.

Some of the settings in these files require corresponding settings in the driver and
device configuration file (RTE_Device.h) that is subject of the next section.

For the USB HID Device example, there are two configuration files available:
USBD_Config_0.c and USBD_Config_HID_0.h.

102 MDK-Middleware

] USBD_Config_0.c

Epand Al | Collapse Al | Hep | I~ ShowGid
Opticn Value
-
Connect to hardware via Driver USBD= 1
High-speed v
= Device Settings
Max Endpoint 0 Packet Size 54 Bytes

VendorID xC251
Product ID x3601
Device Release Number 0x0100

=) Configuration Settings
Power Bus-powered
Remote Wakeup [~
Maximum Power Consumption (in mA} 500

=)-String Settings

Language ID 0408
Manufacturer String Keil Software
Product String Keil USE Device 0
i Serial Nurmber String v
= Microsoft O Descriptars Settings
=05 String [v
Vendor Code 00
Control Transfer Buffer Size 128
=105 Resources Settings
Core Thread Stack Size 512
USB Device 0

Text Editor)\Conhguration Wizard

The file USBD_Config_0.c contains a number of important settings for the

specific USB Device:

= The setting Connect to Hardware via Driver_USBD# specifies the control
struct that reflects the peripheral interface, in this case, the USB controller
used as device interface. For microcontrollers with only one USB controller
the number is ‘1’. Refer to CMSIS-Driver section for more information.

= Select High-Speed if supported by the USB controller. Using this setting
requires a driver that supports USB high-speed communication.

= Set the Max Endpoint 0 Packet Size to 64.

= Set the Vendor ID (VID) to a private VID. The USB Implementer’s Forum
www.usb.org/developers/vendor provides more information on how to
apply for a valid vendor ID.

= Every device needs a unique Product ID. The host computer's operating
system uses it together with the VID to find a suitable driver for your device.

= Set the Manufacturer and the Product String to identify the USB device in
PC operating systems.

The file USBD_Config_HID_0.h contains device class specific Endpoint settings.
In our example, no changes are required.

http://www.usb.org/developers/vendor

Getting Started with MDK: Create Applications with pVision

103

Configure Drivers
Drivers have certain properties that define attributes such as 1/0 pin assignments,

clock configuration, or usage of DMA channels. For many devices, the

RTE_Device.h configuration file contains these driver properties. It typically
requires configuration of the actual peripheral interfaces used by the application.
Depending on the microcontroller device, you can enable different hardware

peripherals, specify pin settings, or change the clock settings for your

implementation.

In our example no changes from default driver configuration are required.

Implement Application Features

Now, create the code that implements the application specific features.

The middleware provides User Code Templates as starting point for the

application software.

= In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group. Select the user code template from
::USB:Device:HID - USB Device HID (Human Interface Device) and

click Add.

\ﬂ CFile (<)

Asm File (s)

6) i= =,

\a C++File (cpp)

Header File (h)
=/ Text File (x)
Image File (*)

g | User Code Template

Add template file(s) to the project.

Component Name
a9 cmsis
o€ use
Device USE Device
Device USB Device Serial Number

DevicesHID USB Device HID (Human Interface Device)

Device:HID USB Device HID Mouse

To connect the PC USB application to the microcontroller device, modify the
function USBD_HIDOQ_SetReport(), which handles data coming from the USB
Host. For this example, the data will be created with the utility HIDClient.exe.

Type: | User Code Template
(== | USBD_User_HID_0.c
Location: | C:\MyPrograms)jled_blinky_RTOS\demo_apps\ed_blinky\mdk

Add Close

]
Help

104 MDK-Middleware

= Open the file USBD_User_HID_0.c in the editor and modify the code as
shown below. This will control the LED on the evaluation board.

#include "fsl gpio.h" // Access to GPIO functions
#include "board.h" // Access to board LED defines

bool USBD HIDO SetReport (uint8 t rtype, uint8 t req, uint8 t rid,
const uint8 t *buf, int32 t len) {
(void) reqg;
(void) rid;
(void) buf;
(void) len;

switch (rtype) {
case HID_REPORT_OUTPUT:
GPIO_PinWrite (BOARD USER LED GPIO, BOARD USER LED GPIO PIN, *buf);
break;
case HID REPORT FEATURE:
break;
default:
break;
}
return true;

}

In the file led_blinky.c we need to turn off the periodic LED blinking since the
LED will be now controlled from the PC via USB. Also an additional RTOS
thread is created to initialize the USB, read the button state and report it via the
USB.

25 Open the file led_blinky.c in the editor and modify the code as shown below.

#include "cmsis os2.h"
#include "fsl gpio.h"
#include "pin mux.h"
#include "board.h"
#include "rl usb.h"

static osThreadId t tid thrLED; // Thread id of thread: LED
static osThreadId t tid thrSGN; // Thread id of thread: SGN
static osThreadId t tid_ thrUSB; // Thread id of thread: USB

__NO_RETURN static void thrLED(void *argument) {
(void) argument;
uint32 t active flag = 1U;

for (;;) {
osThreadFlagsWait (1U, osFlagsWaitAny, osWaitForever);

// GPIO PinWrite (BOARD USER LED GPIO, BOARD USER LED PIN, active flag);
active flag=l!active flag;

thrSGN: Signal LED to change

Getting Started with MDK: Create Applications with pVision 105

Build and Download

Build the project and download it to the target as explained in chapters Create
Applications and Using the Debugger.

106 MDK-Middleware

Verify and Debug

Connect the development board to your PC using another USB cable. This
provides the connection to the USB device peripheral of the microcontroller.

Once the board is connected, a notification appears | Hp Ciient x
that indicates the installation of the device driver Human Interface Device

for the USB HID Device. Device:{|Keil LISB Device D ~|
The utility program HIDClient.exe that is part of e e s 21 4
MDK enables testing of the connection between EE0 N u] ui/ i m) m mm
the PC and the development board. This utility is Outputs (LEDs)

located the MDK installation folder 001 ; |E ﬁm
AKeilARM\Utilities\HID_Client\Release.

To test the functionality of the USB HID device run the HIDClient.exe utility
and follow these steps:

= Select the Device to establish the communication channel. In our example, it
is “Keil USB Device 0.

= Test the application by changing the Outputs (LEDs) checkboxes. The
respective LEDs shall switch accordingly on the development board.

If you are having problems connecting to the development board, you can use the
debugger to find the root cause.

@ From the toolbar, select Start/Stop Debug Session.

Use debug windows to narrow down the problem. Breakpoints help you to stop at
certain lines of code so that you can examine the variable contents.

NOTE

Debugging of communication protocols can be difficult. When starting the
debugger or using breakpoints, communication protocol timeouts may exceed
making it hard to debug the application. Therefore, use breakpoints carefully.

In case that the USB communication fails, disconnect USB, reset your target
hardware, run the application, and reconnect it to the PC.

Getting Started with MDK: Create Applications with pVision

Index

Watch Windowccccoeevvivieieiiieinns
Debug (printf) Viewer
Debug tab......cccooveneenn
Device Database.........cccoceevveveiieveieennee.
Device Startup Variations

Setup the Projectcocoveviiiiennns 59, 61

STM32Cube
Documentation..........ccveereereseineenenen

E

Example Code

Clock setup for STM32Cube................ 60
Example Code

CMSIS-CORE layer.........ccccovcvneinnnn. 21

CMSIS-DSP library functions.............. 30
Example Projectscccevereieniienne 14, 89

F

File
CMSIS_0S.N.evviiiiiiiicc s 25
device.N.....oiiii 20
RTE_Device.h......... 32, 33,59, 101, 103
RTX_<core>.lib ..o 25
RTX_Conf_CM.c.......
startup_<device>.S.......cocevvvvvrierennnnns 20
system_<device>.C......c.ccovvirnenne 20, 49

File System

A
Add New Item to Group.......cccceeeeveennnne. 103
Applications
BUII.....cooiiiiicic 52
Configure Device Clock Frequency47
Createoovvirveivceeee e 44
DebUg ..o 69
Manage Run-Time Environment.......... 46
User Code Templatesccccoveveevnnene. 56
B
Board Supportccccoceeveeeirieenenn 39, 42,43
Breakpoints
ACCESS ..o
Command
Execution
Build Output
C
CMSIS....oiiiiceee e
CORE
DSP ..ottt
Software Components
RTOS
User code template.........cccooverieeeinnnn. 27
CMSIS-DAP ...t 69
Code COVEIAQe.....cveveeveirieesieii e 88
Compare Memory areas...........cccovevvereeenes 79
CoreSightcc.ooveieiiirere e 81
D
Debug
Breakpointsccooeveneneieinienieenns 77
Breakpoints Window............ccccccveenene 77
Command Windowccccccevvennnene. 72
Component VIEWer..........ccoeieneeninnenn 73
COoNNECLION ...ccvvveicese e 69
Disassembly Window............ccccceevnee. 72
Event ReCOrder..........covveveiinienincnicns 74
Memory Windowcccceeeeeviinennens 79
Peripheral Registers.........ccocceeviinenicns 80
Register Window..........cccccoceeeiiinenns 79
Stack and Locals Window..................... 78
Start SESSIONovveveieririiieeisnes 71
System Viewer Window..............c........ 80
TOOIDAN ..ot 71

Using Debugger.........ccooevevevieiviiiennnns 70

Graphics Component
Anti-AlASING.....ooerii e
Bitmap Support

Dialogsocvvvveeiriiiieree e
DiSplaycoovvveiriiieercee e

JOYSHICK ..ot
TOUCh SCrEeN.....ccveicreeeieeciee e
User Interface.............
VNC Server................
Widgets....c.coovvvennenne
Window Manager

H

HIDCHENL.EXE ...ecvveveieveireeeecve et 106

107

108 Index
L O
Learning Platformcccocooenininnn 18 Options for Target.........ccooveevvvrerennne 16, 70
M P
MDK Pack Installer...........coovivniiniiincne 10
Core Installccoooeiiiiiiiee 9 Performance Analyzer...........cccccccoonvnene. 88
EdItioNS ..c.oovvvvviviccciisecccee
Installation Requirements R
INTrOUCHON ..o s Retargeting 1/0 OUtPUL «..........ovveevreerennn. 40
License Types.. RTOS
TOOIS.....o System and Thread Viewer 29
Trial license......ccooevvveeiiiiicce RTX
Middlewareoooeiiiiiniiiie API functions
Add Software COMPONENts................. 99 CONCEPLS. c.viniiiieieie e
Addi_ng Software Components........ 21,25 Configuration
Configure........c.oovvinnivvviiiiin 99,101 RTOS Kernel advantages................... 24
Configure Drivers........ccccoceceeennns 99, 103 USING RTX coverroe e 24
Create an Application............ccccceervenene. 98
DEDUG ..o 99 S
Example projects........ccovevveienieninnenn, 98 -
File System COMPONENt 93 Selecting Software Packs.............c.ccconne. 38
FTP Server EXampleccoooerrvreenrns 9% Software Component
Graphics COMPONENt.............coovvvvvveeer.s 95 Compiler ..o, 40
Implement Application Features ..99, 103 Software Components
10T CONNECLIVILY ..o, 96 OVEIVIEW ..ovvvvvvvsssssnnnnss
Network Componentccc.ceeeeea. 91 Software Packs................
Resource Requirements........................ 98 InStall.........covvvrrsne
USB Device COMPONent 94 Install manually
UL P 97 Manage Versions...........cc.coouuevisninnes 38
USING COMPONENESvvovvveerreeserrrveeenns 08 Product Lifecycle ..o, 37
N
Verify Installationcccoovinnene
Network Component Start/Stop Debug Session...
BSD...ooooiii e SUPPOI.cceieiiciieiecie e
DNS Client...
Ethernet ... T
FTP e
Modem TIACE ottt
PP oo 4-Pin Trace Output
SLIP oo Data Watc_hpomt_s
SMTP Client.... Debug (printf) Viewer..........c.cccoovennee. 86
SNMP Agent ETB
SNTP Client Event Counters...........
Exception Trace
Instruction Trace
Instrumented Trace
ITM Stimulus..............
Logic Analyzer...........
MTB..oooceirien
SWO ..ot

Getting Started with MDK: Create Applications with pVision 109

Trace Buffer ..., 81 CDC

Trace Buffer ..., 88 Composite Device

Trace Data Window...........ccocceevrueenen 88 HID

Trace EXCepions........cccovvvvevvevieecnnnne, 84 MSC

User Code Templates

U
ULINK oot 69 v
ULINKPIO...oviiieciicseeieee e 83, 88 Version Control...........cccceeevveveivieiiiennns
USB Device Versioning Software Packs

	Preface
	Chapter overview

	MDK Introduction
	MDK Tools
	Software Packs
	MDK Editions
	License Types
	Installation
	Software and hardware requirements
	Install MDK
	Install Software Packs
	Manage local repositories

	MDK-Professional Trial License
	Verify Installation using Example Projects
	Copy an Example Project
	Use an Example Application with µVision
	Build the Application
	Download the Application
	Run the Application

	Access Documentation
	Request Assistance
	On-line Learning

	CMSIS
	CMSIS-CORE
	Using CMSIS-CORE
	Adding CMSIS-CORE Components to the Project
	Source Code Example

	CMSIS-RTOS2
	Software Concepts
	Infinite Loop Design
	Advantages of an RTOS Kernel

	Using Keil RTX5
	Adding Keil RTX5 Components to the Project
	CMSIS-RTOS2 API Functions
	Keil RTX5 Configuration
	CMSIS-RTOS User Code Templates
	Source Code Example

	Component Viewer for RTX RTOS

	CMSIS-DSP
	CMSIS-Driver
	Configuration
	Using RTE_Device.h
	Using STM32CubeMX

	Validation Suites for Drivers and RTOS

	Software Components
	Use Software Packs
	Software Component Overview
	Product Lifecycle Management with Software Packs
	Software Version Control Systems (SVCS)

	Compiler:Event Recorder
	Compiler:I/O
	Board Support
	IoT Clients

	Create Applications
	µVision Project from Scratch
	Setup New µVision Project
	Add main.c Source Code File
	Device Initialization

	Configure Project Options
	C/C++ (AC6) dialog
	Linker dialog
	Debug dialog
	Utilities dialog

	Build the Application Project

	Project with CMSIS-RTOS2
	Copy an Example
	Add CMSIS-RTO2 Component
	Add RTOS Initialization
	Configure Keil RTX5 RTOS
	Implement User Threads

	Device Configuration Variations
	Example: STM32Cube
	Setup the Project using the Classic Framework
	Setup the Project using STM32CubeMX

	Example: MCUXpresso Config Tools
	Enable Project for Configuration
	Configure the Device
	Update Application Code the Device

	Secure/non-secure programming
	Create Armv8-M software projects

	Debug Applications
	Debugger Connection
	Using the Debugger
	Debug Toolbar
	Command Window
	Disassembly Window
	Component Viewer
	Event Recorder
	System Analyzer
	Breakpoints
	Breakpoints Window

	Watch Window
	Call Stack and Locals Window
	Register Window
	Memory Window
	Peripheral Registers
	System Viewer

	Trace
	Trace with Serial Wire Output
	Trace Exceptions
	Logic Analyzer
	Debug (printf) Viewer
	Event Counters
	Trace with 4-Pin Output
	Trace with On-Chip Trace Buffer

	MDK-Middleware
	Network Component
	File System Component
	USB Component
	Graphics Component
	Mbed IoT Componentes
	FTP Server Example
	Using Middleware
	USB Device HID Example
	Add Software Components
	Configure Middleware
	Configure Drivers
	Implement Application Features
	Build and Download
	Verify and Debug

	Index

