

AMETEK Dynamic Fluid Solutions

P 6.6 Model:

Product Bulletin

122687-07

SPECIAL FEATURES

- 1500+ Hours life (Eternity Brush)
- High Efficiency Motor/Fan
- Improved Cooling System
- Enhanced II Bearing Protection
- CAN & US UL recognition marked cRUus
- Categories PRGY2/PRGY8
- File #s E47185 & E56617 (Class B)

- Noise & Carbon Dust Filter Housing Included

-07 version with terminals on leads

592

509

398

272

137

0

29.8

22.5

15.8

9.8

4.5

0.0

TYPICA	L MOT	OR P	ERFC	RM	ANC	E.*			(At 2	40 vo	olts	, 60Hz, te	est data is	corrected	to stand	ard conditi	ons of 29.9	92 Hg, 68	8° F.)
													400	Orifice	Amps	Watts	RPM	Vac	Flow	Air
14	40					— Vac							160	(Inches)		(In)		(In.H2O)	(CFM)	Wat
1:	20			_		- Flov						-	140	2.000	8.3	1843	19479	8.4	149.9	148
		r											120	1.750	8.3	1837	19479	13.8	145.7	235
	00												120	1.500	8.3	1825	19479	22.3	134.8	352
H2O	30						*					-	100	1.250	8.2	1805	19597	36.6	120.1	516
-Inches H2O	50											-	80 [₩]	1.125	8.1	1778	19733	45.9	108.5	584
	50					\frown							Air Flow	1.000	7.9	1737	20045	56.7	95.1	632
Vacuum-												-	60 I¥	0.875	7.6	1676	20494	68.5	80.2	644
	40			/								-	40	0.750	7.2	1592	21178	79.8	63.4	594
	20		×	·									20	0.625	6.6	1472	22173	91.5	47.0	505
		x /	•										20	0.500	5.9	1322	23442	103.2	31.9	386
	0		~ ~	10	-	10		10	-		~	0	0	0.375	5.3	1188	24828	114.1	18.8	252
	000.0	0.250	0.3/0 0.500	0.625	0.750	0.875	1.000	.125	.250	.500	1.750	2.000		0.250	4.7	1063	26057	123.8	9.0	131
	0	0 0	0	0			er (Inche	s)	-	-	-	2		0.000	4.3	982	27267	131.8	0.0	0
4	000				Г		– Vac	1					80	Orifice	Amps	Watts	RPM	Vac	Flow	Air
3	500	_				_	– Vac – Flow			_		•	70	(mm)		(In)		(mm H2O)	(L/Sec)	Wat
	• • • •	┶												48.0	8.3	1841	19479	274	69.9	186
3	000								~	/			60	40.0	8.3	1829	19479	501	65.2	317
₀₂ 2	500				<u> </u>	_							50	30.0	8.1	1790	19672	1059	53.7	553
2	000				_		_	/	1				40	23.0	7.6	1691	20382	1664	39.6	641
Ē 4	000						\sim	~					40 3	10.0	71	1580	21107	2032	20.8	592

DESCRIPTION

- 240 volts AC
- Two-stage tapered fan
- 6.6" / 162 mm diameter
- Improved sound quality - "True" tangential discharge
- bracket
- Cast Al Motor Brackets
- High-Efficiency "Galaxy" lamination

DESIGN APPLICATION

- Commercial and Residential Central Cleaning Systems
- Equipment requires separation of working air from motor ventilating air
- Designed to handle clean, dry,
- filtered air only

С

D

Α

т

Α

l 1500

1000

500

0

0.0

6.5 10.0

13.0 16.0 19.0 23.0

Orifice Diameter (mm)

Preliminary Bulletin

* Data represents performance of a typical motor sampled from a large production quantity. Individual motor data may vary due to normal manufacturing variations.

30 [⊥]₹

20

10

0

30.0

40.0 48.0

 Test Specs:
 240 Volts
 Minimum Sealed Vacuum: 125"
 ORIFICE:
 7/8"
 Min. Vacuum: 64"
 Maximum Watts:
 1700

19.0

16.0

13.0

10.0

6.5

0.0

7.1

6.6

6.0

5.4

4.7

4.3

1589

1477

1337

1208

1069

982

21197

22133

23315

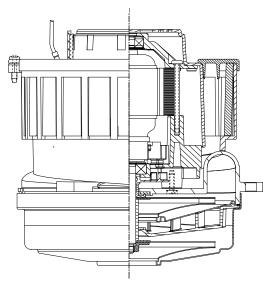
24620

25996

27267

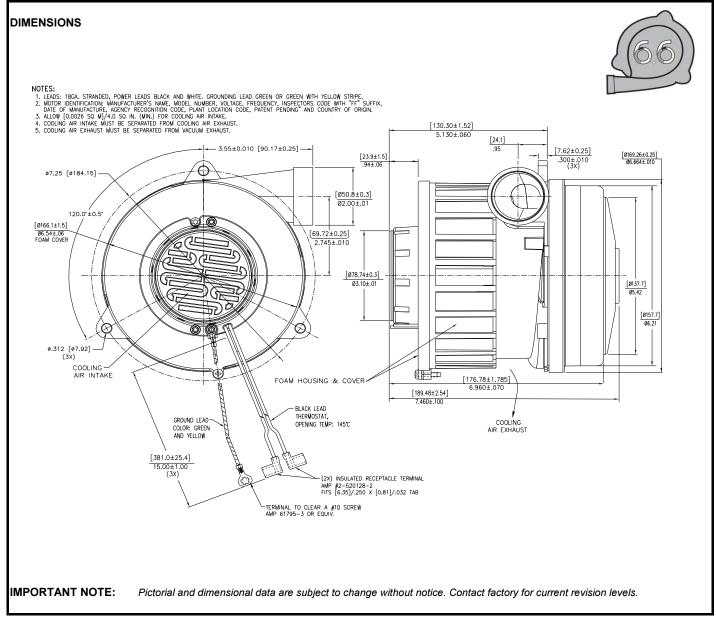
Note: Metric Performance data is calculated from the ASTM data above.

2032


2313

2592

2856


3133

3347

PRODUCT BULLETIN

122687-07

WARNING - When using AMETEK Floorcare & Specialty Motors (F&SM) bypass motors in machines that come in contact with foam, liquid (including water), or other foreign substances, the machine must be designed and constructed to prevent those substances from reaching the fan system, motor housing, and electrical components. F&SM vacuum motors other than hazardous duty models should not be applied in machines that come in contact with dry chemicals or other volatile materials. Failure to observe these precautions could cause flashing (depending on volatility) or electrical shockwhich could result in property damage and severe bodily injury, including death in extreme cases. All applications incorporating F&SM motors should be submitted to appropriate organizations or agencies for testing specifically related to the safety of your equipment.

AMETEK Dynamic Fluid Solutions www.ametekdfs.com

Created Feb 2018