

Project:	Contract:		
TL6000	1505-1		
Subject:	Sheet No.		
TL6000 Design	1		
Date:	By:		
02/03/2021	A.N & R.F		

On Level Ltd., 8, Alexandria Court Ashton Commerce Park Ashton-under-Lyne Lancashire OL7 0QN United Kingdom

1505-1_TL 6000 Detail Design

Analysis By	Checked By
A.N	T.S.

0	02/03/2021	T.S	Issued
Revision	Date	Issued By	Comment

Project:	Contract:		
TL6000	1505-1		
Subject:	Sheet No.		
TL6000 Design	2		
Date:	By:		
02/03/2021	A.N & R.F		

Contents

Actions/Assumptions/Result Summary:
Actions:4
Assumptions:4
Result Summary:4
Glass Strength Calculation:
Balustrade Loading:5
Sketch Of System:
Connection To Concrete Design:
Loading at Connection:
Connection 1 For Panel 1:7
Connection 2 For Panel 2:7
Shoe Analysis for panel 1:
System Sketch – Shoe Analysis – TL 6000:8
Bending Stress of Shoe due to Balustrade load of 0.74kN/m (SLS):9
Deflection of Shoe due to Balustrade load of 0.74kN/m:10
Glass Analysis:
System Sketch – Glass Analysis:
Panel 1: Bending Stress of Glass Panel due to 0.74kN/m Balustrade Load:
Panel 1: Deflection of Glass Panel due to 0.74kN/m Balustrade Load:
Panel 1: Bending Stress of Glass Panel due to 1.0kN/m ² Infill Load:
Panel 1: Deflection of Glass Panel due to 1.0kN/m ² Infill Load:
Panel 1: Bending Stress of Glass Panel due to 0.5kN Point Load:16
Panel 1: Deflection of Glass Panel due to 0.5kN Point Load:17
System Sketch – Glass Analysis:
Panel 2: Bending Stress of Glass Panel due to 0.74kN/m Balustrade Load:
Panel 2: Deflection of Glass Panel due to 0.74kN/m Balustrade Load:
Panel 2: Bending Stress of Glass Panel due to 1.0kN/m ² Infill Load:
Panel 2: Deflection of Glass Panel due to 1.0kN/m ² Infill Load:

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	3
Date:	By:
02/03/2021	A.N & R.F

Appendix A – Fischer Reports	28
Deflection of Shoe due to Balustrade load of 0.74kN/m:	27
Bending Stress of Shoe due to Balustrade load of 0.74kN/m (SLS):	26
System Sketch – Shoe Analysis – TL 6000:	25
Shoe Analysis for panel 2:	25
Panel 2: Deflection of Glass Panel due to 0.5kN Point Load:	24
Panel 2: Bending Stress of Glass Panel due to 0.5kN Point Load:	23

Project:	Contract:		
TL6000	1505-1		
Subject:	Sheet No.		
TL6000 Design	4		
Date: 02/03/2021	By: A.N & R.F		

Actions/Assumptions/Result Summary:

Actions:	
Point load = 0.5kN	(Table 4 BS:6180:2011)
Infill loading = 1.0kN/m ²	(Table 4 BS:6180:2011)
Balustrade load = 0.74kN/m	(Table 4 BS:6180:2011)

Assumptions: Concrete Grade C30/37

Result Summary:

Shoe: On Level Aluminium Shoe Model TL6000.

ltem	Load	Glass	Dimensions (H×W)	Max. Deflection	Bending Stress
Panel 1	0.74kN/m	15mm Toughened	1100×1000	12.39mm < 25mm	31.08N/mm^2 < 84.2N/mm^2
Panel 1	0.5kN	15mm Toughened	1100×1000	3.055mm < 25mm	9.44N/mm^2 < 84.2N/mm^2
Panel 1	1kN/m2	15mm Toughened	1100×1000	5.96mm < 25mm	18.4N/mm^2 < 84.2N/mm^2
Panel 2	0.74kN/m	19mm Toughened	1200×1000	8.144mm < 25mm	21.57N/mm^2 < 84.2N/mm^2
Panel 2	0.5kN	19mm Toughened	1200×1000	2.01mm < 25mm	6.54N/mm^2 < 84.2N/mm^2
Panel 2	1kN/m2	19mm Toughened	1200×1000	4.32mm < 25mm	14.06N/mm^2 < 84.2N/mm^2
Shoe For	0.74kN/m	N.A	TL6000	7.31+12.39 =	151.05N/mm^2 < 180N/mm^2
panel 1				19.7mm < 25mm	
Shoe For	0.74kN/m	N.A	TL6000	8.65+8.144 =	174.15N/mm^2 < 180N/mm^2
panel 2				16.794mm < 25mm	

Connection To Concrete	Worst Case Load	H1 Height FFL	Anchor Distance	Anchor Type	Grade	Minimum Concrete Edge Distance
1	0.74kN/m	1132mm	294mm	FAZ 10/12	8.8	80mm
2	0.74kN/m	1232mm	294mm	FAZ 10/12	8.8	80mm

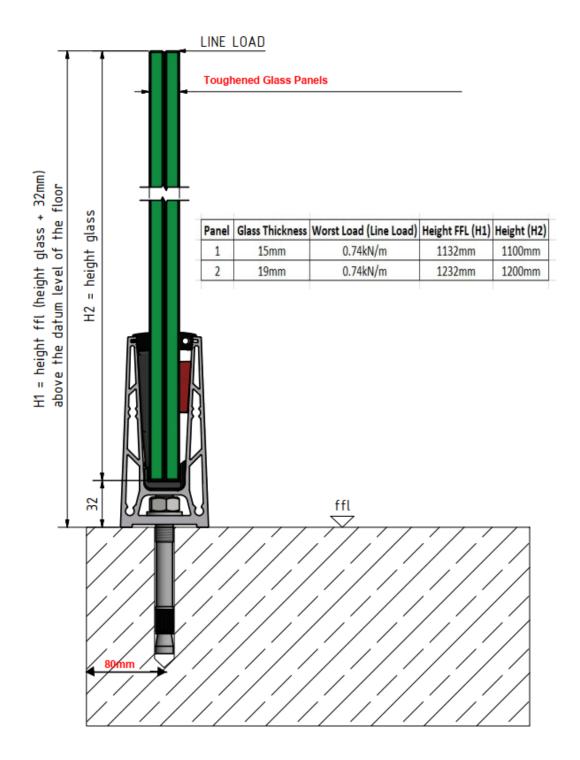
Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	5
Date: 02/03/2021	By: A.N & R.F

Glass Strength Calculation:

Balustrade Loading:

< 5mins duration => k_{mod} = 0.77

 $f_{gd} = (k_{mod})(k_{sp})(f_{gk})/\gamma_{ma} + k_v(f_{bk}\text{-}f_{gk})/\gamma_{mv}$


 $\mathsf{f}_{\mathsf{gd}} = (0.77)(1.0)(45)/1.6 + 1.0(120\text{-}45)/1.2$

 $f_{gd} = 84.2 \text{N/mm}^2$

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	6
Date: 02/03/2021	By: A.N & R.F

Sketch Of System:

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	7
Date: 02/03/2021	By: A.N & R.F

Connection To Concrete Design:

Loading at Connection:

Connection 1 For Panel 1:

Shear Force = 0.74kN/m × 1.5 × 0.294m = 0.33kN(ULS)

Moment = 0.74kN/m × 1.5 × 1.132m × 0.294m = 0.37kNm (ULS)

1 Nr FAZ 12/10 Zinc Plated Steel Fischer bolts @294mm C/C.

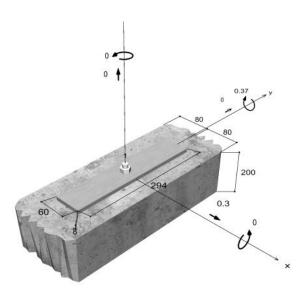
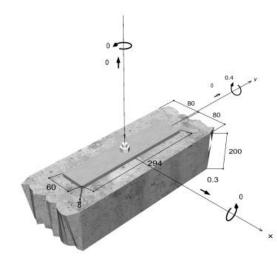


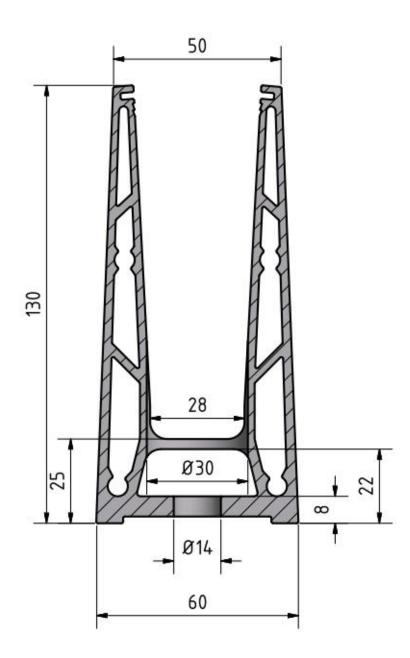
FIGURE 1-PANEL 1

Connection 2 For Panel 2: Shear Force = 0.74kN/m × 1.5×0.294 m = 0.33kN(ULS)

 $\begin{aligned} \text{Moment} &= 0.74 \text{kN/m} \times 1.5 \times 1.232 \text{m} \times 0.294 \text{m} = \\ 0.4 \text{kNm} \text{ (ULS)} \end{aligned}$

1 Nr FAZ 12/10 Zinc Plated Steel Fischer bolts @294mm C/C.




FIGURE 2-PANEL 2

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	8
Date: 02/03/2021	By: A.N & R.F

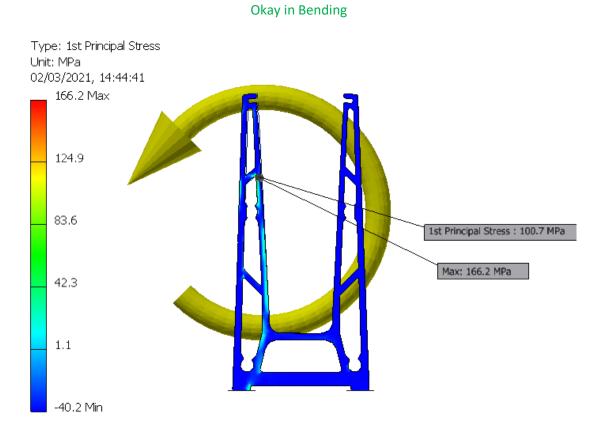
Shoe Analysis for panel 1:

System Sketch – Shoe Analysis – TL 6000:

\sim	
27	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS

Contract:
1505-1
Sheet No.
9
By:
A.N & R.F

Bending Stress of Shoe due to Balustrade load of 0.74kN/m (SLS):


- Analysis Software was used to determine maximum bending stress of the shoe due to Balustrade load of $0.74 k/{\rm Nm}$ (SLS)
- On Level Aluminium Shoe Model TL6000 restrained at base.
- Moment = 0.74kN/m × 1.1m × 1.0m = 0.814kN m(SLS)

Result:

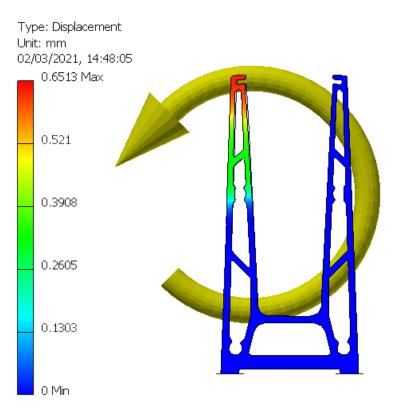
Max. Bending Stress = 100.7N/mm² x1.5 = 151.055N/mm² < 180N/mm²

NOTE:

In this case the 166.2 MPa is a localised stress. The most appropriate stress to be considered is 100.7 MPa.

~ 1	TOA
\leq	ISA
2	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	10
Date: 02/03/2021	By: A.N & R.F
02/03/2021	

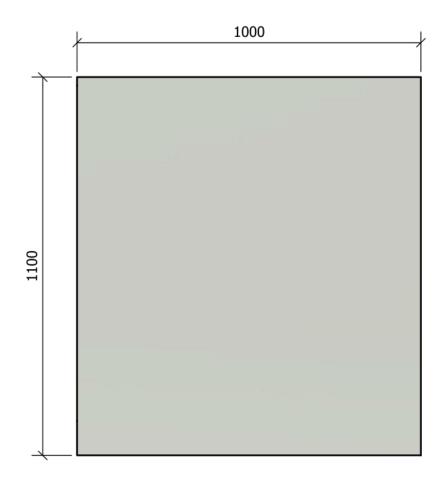

Deflection of Shoe due to Balustrade load of 0.74kN/m:

- Analysis Software was used to determine maximum Deflection of the shoe due to Balustrade load of $0.74 k \mbox{N/m}$ (SLS)
- On Level Aluminium Shoe Model TL6000 restrained at base.

Result:

Deflection 0.6513mm at the top of shoe

Max. Deflection at 900mm above pitch line = (0.6513 x 1100)/98 = 7.31mm


Okay in Deflection (Shoe Deflection only)

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	11
Date: 02/03/2021	By: A.N & R.F

Glass Analysis:

System Sketch – Glass Analysis:

\sim	
$\geq \rightarrow$	IJJA
SA	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS
\leq	CONSULTING ENGINEERS

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	12
Date: 02/03/2021	By: A.N & R.F

Panel 1: Bending Stress of Glass Panel due to 0.74kN/m Balustrade Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.74kN/m Balustrade Load.
- 15mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1100mm X 1000mm (H×W).

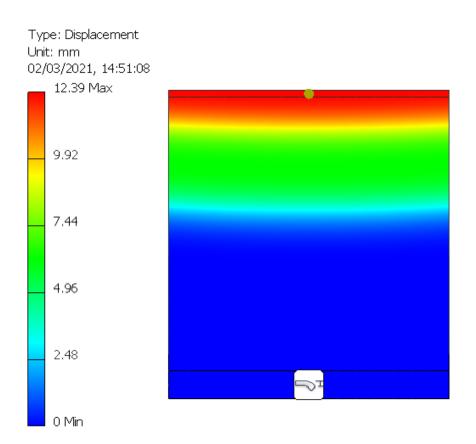
Result:

Max. Bending Stress = 20.72N/mm² X 1.5 = 31.08N/mm² < 84.2N/mm²

Type: 1st Principal Stress Unit: MPa 20.72 Max 20.72 Max 16.38 12.03 7.68 3.34

OK in Bending

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	13
Date: 02/03/2021	By: A.N & R.F


Panel 1: Deflection of Glass Panel due to 0.74kN/m Balustrade Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.74kN/m Balustrade load.
- 15mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1100mm X 1000mm (H×W).

Result:

Max. Deflection = 12.39mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

\sim	IIOA
SA	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS
\leq	CONSULTING ENGINEERS


Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	14
Date:	By:
02/03/2021	A.N & R.F

Panel 1: Bending Stress of Glass Panel due to 1.0kN/m² Infill Load:

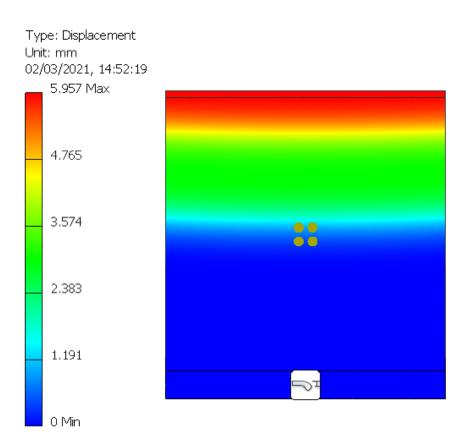
- Analysis Software was used to determine maximum bending stress of the glass due to 1.0kN/m² Infill Load.
- 15mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1100mm X 1000mm (H×W).

Result:

Max. Bending Stress = 12.27N/mm² X 1.5 = 18.405N/mm² < 84.2N/mm²

OK in Bending

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	15
Date: 02/03/2021	By: A.N & R.F


Panel 1: Deflection of Glass Panel due to 1.0kN/m^2 Infill Load:

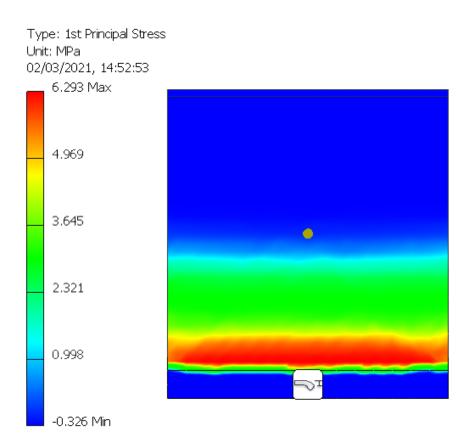
- Analysis Software was used to determine maximum deflection of the glass due to 1.0kN/m² Infill load.
- 15mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1100mm X 1000mm (H×W).

Result:

Max. Deflection = 5.957mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	16
Date: 02/03/2021	By: A.N & R.F


Panel 1: Bending Stress of Glass Panel due to 0.5kN Point Load:

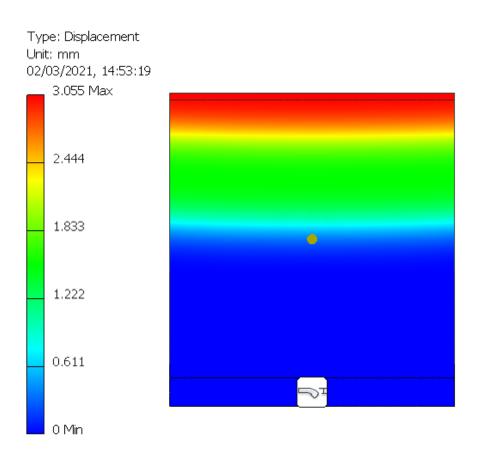
- Analysis Software was used to determine maximum bending stress of the glass due to 0.5kN Point Load.
- 15mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1100mm X 1000mm (H×W).

Result:

Max. Bending Stress = 6.293N/mm² X 1.5 = 9.4395N/mm² < 84.2N/mm²

OK in Bending

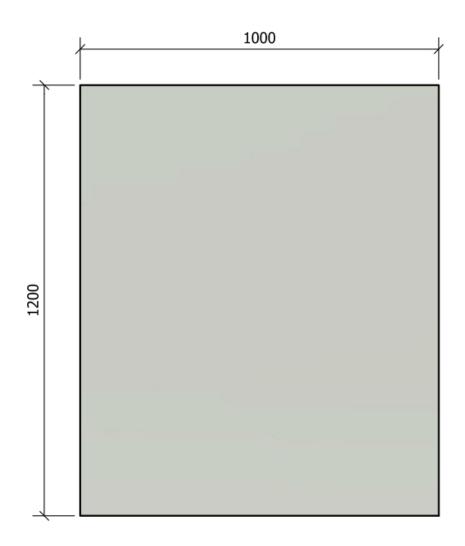
Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	17
Date: 02/03/2021	By: A.N & R.F


Panel 1: Deflection of Glass Panel due to 0.5kN Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.5kN Point load.
- 15mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1100mm X 1000mm (H×W).

Result:

Max. Deflection = 3.055mm < 25mm {BS6180:2011 cl. 6.4.1}

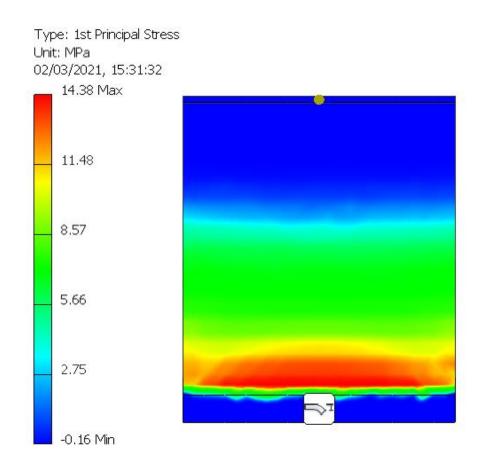

OK in Deflection (Glass Only)

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	18
Date: 02/03/2021	By: A.N & R.F

System Sketch – Glass Analysis:

\sim	
S	IISA
A	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS
\leq	CONSULTING ENGINEERS

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	19
Date: 02/03/2021	By: A.N & R.F


Panel 2: Bending Stress of Glass Panel due to 0.74kN/m Balustrade Load:

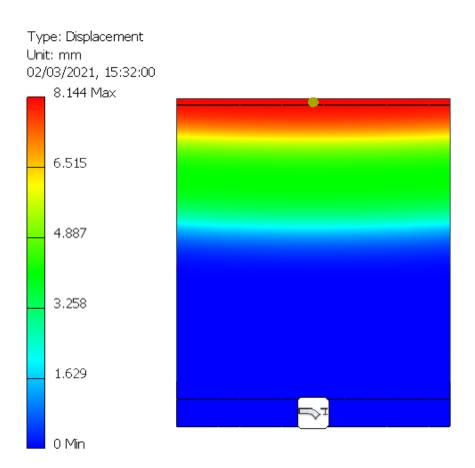
- Analysis Software was used to determine maximum bending stress of the glass due to 0.74kN/m Balustrade Load.
- 19mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1200mm X 1000mm (H×W).

Result:

Max. Bending Stress = 14.38N/mm² X 1.5 = 21.57N/mm² < 84.2N/mm²

OK in Bending

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	20
Date: 02/03/2021	By: A.N & R.F


Panel 2: Deflection of Glass Panel due to 0.74kN/m Balustrade Load:

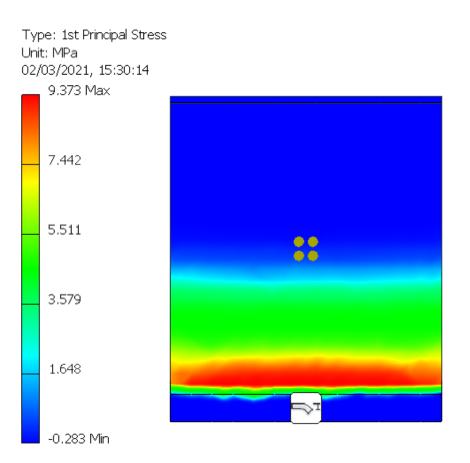
- Analysis Software was used to determine maximum deflection of the glass due to 0.74kN/m Balustrade load.
- 19mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1200mm X 1000mm (H×W).

Result:

Max. Deflection = 8.144mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

\sim	IIOA
SA	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS
\leq	CONSULTING ENGINEERS


Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	21
Date:	By:
02/03/2021	A.N & R.F

Panel 2: Bending Stress of Glass Panel due to 1.0kN/m² Infill Load:

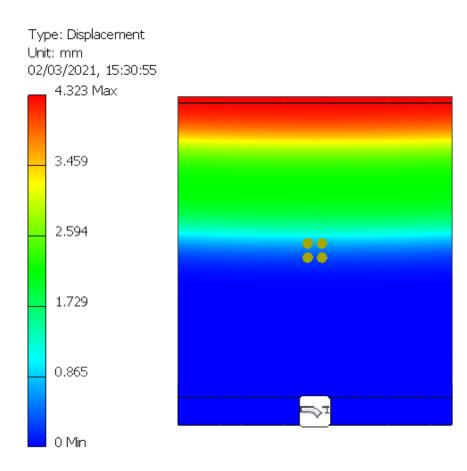
- Analysis Software was used to determine maximum bending stress of the glass due to 1.0kN/m² Infill Load.
- 19mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1200mm X 1000mm (H×W).

Result:

Max. Bending Stress = 9.373N/mm² X 1.5 = 14.0595N/mm² < 84.2N/mm²

OK in Bending

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	22
Date: 02/03/2021	By: A.N & R.F
	-


Panel 2: Deflection of Glass Panel due to 1.0kN/m^2 Infill Load:

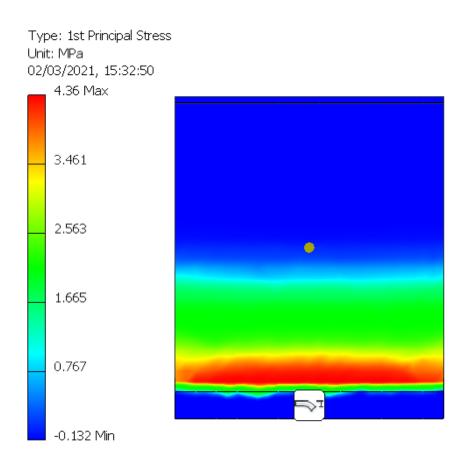
- Analysis Software was used to determine maximum deflection of the glass due to 1.0kN/m² Infill load.
- 19mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1200mm X 1000mm (H×W).

Result:

Max. Deflection = 4.323mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

Project:	Contract:
TL6000	1505-1
Subject:	Sheet No.
TL6000 Design	23
Date: 02/03/2021	By: A.N & R.F


Panel 2: Bending Stress of Glass Panel due to 0.5kN Point Load:

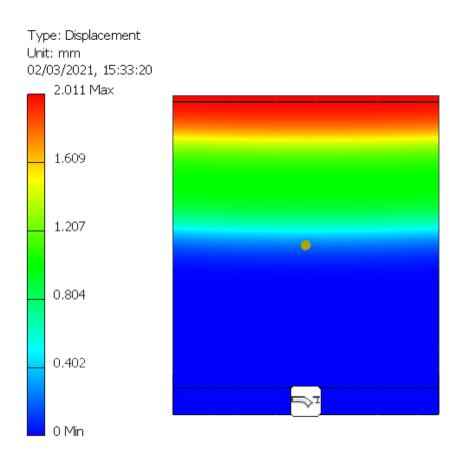
- Analysis Software was used to determine maximum bending stress of the glass due to 0.5kN Point Load.
- 19mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1200mm X 1000mm (H×W).

Result:

Max. Bending Stress = 4.36N/mm² X 1.5 = 6.54N/mm² < 84.2N/mm²

OK in Bending

Project:	Contract:		
TL6000	1505-1		
Subject:	Sheet No.		
TL6000 Design	24		
Date: 02/03/2021	By: A.N & R.F		

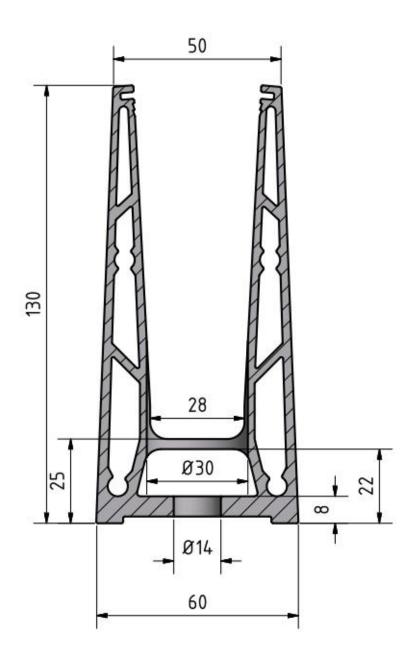

Panel 2: Deflection of Glass Panel due to 0.5kN Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.5kN Point load.
- 19mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1200mm X 1000mm (H×W).

Result:

Max. Deflection = 2.011mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)



Project:	Contract:		
TL6000	1505-1		
Subject:	Sheet No.		
TL6000 Design	25		
Date: 02/03/2021	By: A.N & R.F		

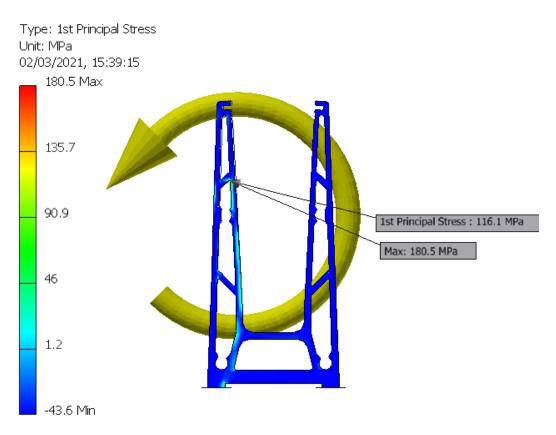
Shoe Analysis for panel 2:

System Sketch – Shoe Analysis – TL 6000:

	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS
\checkmark	CONSULTING ENGINEERS

Project:	Contract:		
TL6000	1505-1		
Subject:	Sheet No.		
TL6000 Design	26		
Date: 02/03/2021	By: A.N & R.F		

Bending Stress of Shoe due to Balustrade load of 0.74kN/m (SLS):


- Analysis Software was used to determine maximum bending stress of the shoe due to Balustrade load of $0.74 k/{\rm Nm}$ (SLS)
- On Level Aluminium Shoe Model TL6000 restrained at base.
- Moment = 0.74kN/m × 1.2m × 1.0m = 0.888kN m(SLS)

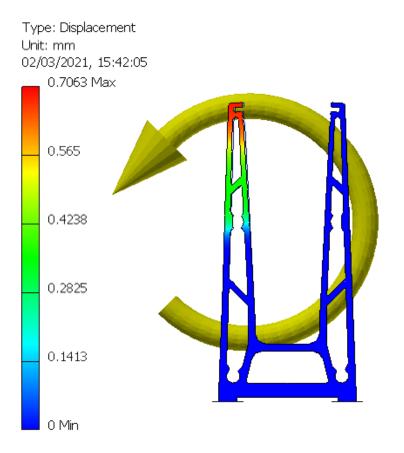
Result:

Max. Bending Stress = 116.1N/mm² x1.5 = 174.15N/mm² < 180N/mm²

NOTE:

In this case the 180.5 MPa is a localised stress. The most appropriate stress to be considered is 116.1 MPa.

Project:	Contract:		
TL6000	1505-1		
Subject:	Sheet No.		
TL6000 Design	27		
Date: 02/03/2021	By: A.N & R.F		


Deflection of Shoe due to Balustrade load of 0.74kN/m:

- Analysis Software was used to determine maximum Deflection of the shoe due to Balustrade load of $0.74 k \mbox{N/m}$ (SLS)
- On Level Aluminium Shoe Model TL6000 restrained at base.

Result:

Deflection 0.7063mm at the top of shoe

Max. Deflection at 900mm above pitch line = (0.7063 x 1200)/98 = 8.65mm Okay in Deflection (Shoe Deflection only)

Project:	Contract:		
TL6000	1505-1		
Subject:	Sheet No.		
TL6000 Design	28		
Date:	By:		
02/03/2021	A.N & R.F		

Appendix A – Fischer Reports

MASONRY FIXINGS

Unit 83, Cherry Orchard Industrial Estate Dublin 10 Phone: +353 1 642 6700 Fax: +353 1 626 2197 technical@masonryfixings.ie www.masonryfixings.ie

Comment

Connection to Concrete Panel 1

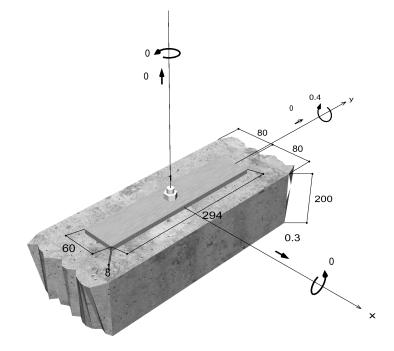
Design Specifications

Anchor

Anchor system Anchor

Calculated anchorage depth Design Data fischer Bolt anchor FAZ II Bolt anchor FAZ II 12/10, zinc plated steel 50 mm

Anchor design in Concrete according European Technical Assessment ETA-05/0069, Option 1, Issued 24/04/2020


Geometry / Loads / Scale units

mm, kN, kNm

Value of design actions (including

partial safety factor for the load)

Not drawn to scale

C-FIX 1.94.0.0 Database version 2021.1.22.18.31 Date 01/03/2021

Input data

Design method Base material Concrete condition Reinforcement	Design Method EN1992-4:2018 mechanical fastener C30/37, EN 206 Cracked, dry hole No or standard reinforcement. No edge reinforcement. With reinforcement against splitting
Drilling method	Hammer drilling
Installation type	Push-through installation
Annular gap	Annular gap not filled
Type of loading	Static or quasi-static
Base plate location	Base plate flush installed on base material
Base plate geometry	60 mm x 294 mm x 8 mm
Profile type	None

Design actions *)

#	N _{Ed} kN	V _{Ed,x} kN	V _{Ed,y} kN	M_{Ed,x} kNm	M _{Ed,y} kNm	М_{т,Ed} kNm	Type of loading
1	0.00	0.30	0.00	0.00	0.40	0.00	Static or quasi-static

*) The required partial safety factors for actions are included

Resulting anchor forces

Anchor no.	Tensile action	Shear Action	Shear Action x	Shear Action y
	kN	kN	kN	kN
1	14.78	0.30	0.30	0.00

max. concrete compressive strain : max. concrete compressive stress : Resulting tensile actions : Resulting compression actions : 0.35 ‰ 11.4 N/mm² 14.78 kN , X/Y position (0/0) 14.78 kN , X/Y position (27/0)

Resistance to tension loads

Proof	Action kN	Capacity kN	Utilisation β _N %
Steel failure *	14.78	28.80	51.3
Pullout failure *	14.78	16.27	90.9
Concrete cone failure	14.78	16.29	90.7

* Most unfavourable anchor

Ø.

C-FIX 1.94.0.0 Database version 2021.1.22.18.31 Date 01/03/2021

Steel failure

$$N_{Ed}~\leq~rac{N_{Rk,s}}{\gamma_{Ms}}$$
 (N_{Rd,s})

N _{Rk,s}	Yмs	N _{Rd,s}	N _{Ed}	β _{N,s}
kN		kN	kN	%
43.20	1.50	28.80	14.78	51.3

Anchor no.	β _{N,s} %	Group N°	Decisive Beta
1	51.3	1	β _{N,s;1}

Pullout failure

$$N_{Ed}~\leq~rac{N_{Rk,p}}{\gamma_{Mp}}$$
 (N_{Rd,p})

N _{Rk,p} kN	Ψ _c	ү мр	N _{Rd,p} kN	N _{Ed} kN	β _{Ν,p} %
24.40	1.220	1.50	16.27	14.78	90.9

The given Psi,c-factor may has been determined by interpolation.

	β _{N,p}		
Anchor no.	%	Group N°	Decisive Beta
1	90.9	1	β _{N,p;1}

Concrete cone failure

$$N_{Ed}~\leq~rac{N_{Rk,c}}{\gamma_{Mc}}$$
 (Nrd,c)

 $\Psi_{re,N} = 1.000$

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
Eq. (7.1)

$$N_{Rk,c} = 14.91kN \cdot \frac{22,500mm^2}{22,500mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.639 = 24.44kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(50mm\right)^{1.5} = 14.91kN \qquad \text{Eq. (7.2)}$$

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{80mm}{75mm}\right) = 1.000 \le 1$$

Eq. (7.5)

$$\begin{split} \Psi_{ec,N} &= \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \Longrightarrow \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \leq 1 \\ \Psi_{ec,Nx} &= \frac{1}{1 + \frac{2 \cdot 0mm}{150mm}} = 1.000 \leq 1 \quad \Psi_{ec,Ny} = \frac{1}{1 + \frac{2 \cdot 0mm}{150mm}} = 1.000 \leq 1 \\ \Psi_{M,N} &= 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{27mm}{1.5 \cdot 50mm} = 1.64 \geq 1 \end{split}$$
 Eq. (7.6)

Ν _{Rk,c} kN	ΎМс	N _{Rd,c} kN	N _{Ed} kN	βn,c %
24.44	1.50	16.29	14.78	90.7

A	β _{N,c}	One	Desisius Data
Anchor no.	%	Group N°	Decisive Beta
1	90.7	1	βN,c;1

Resistance to shear loads

Proof	Action kN	Capacity kN	Utilisation β _v %
Steel failure without lever arm *	0.30	24.48	1.2
Concrete pry-out failure	0.30	50.51	0.6
Concrete edge failure	0.30	7.07	4.2

* Most unfavourable anchor

Steel failure without lever arm

$$V_{Ed}~\leq~rac{V_{Rk,s}}{\gamma_{Ms}}$$
 (V_Rd,s)

$$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0 = 1.00 \cdot 30.60 kN = 30.60 kN$$

V _{Rk,s}	Yмs	V _{Rd,s}	V _{Ed}	βvs
kN		kN	kN	%
30.60	1.25	24.48	0.30	1.2

Anchor no.	βvs %	Group N°	Decisive Beta
1	1.2	1	βvs;1

Concrete pry-out failure

 $V_{Ed}~\leq~rac{V_{Rk,cp}}{\gamma_{Mc}}$ (V_{Rd,cp})

Eq. (7.35)/ (7.36)

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

$$V_{Rk,cp} = k_8 \cdot N_{Rk,c} = 3.1 \cdot 24.44 kN = 75.77 kN$$
 Eq. (7.39a)

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
Eq. (7.1)

$$N_{Rk,c} = 14.91kN \cdot \frac{22,500mm^2}{22,500mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.639 = 24.44kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(50mm\right)^{1.5} = 14.91kN$$
 Eq. (7.2)

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{80mm}{75mm}\right) = 1.000 \le 1$$

$$\Psi_{re,N} = 1.000$$
 Eq. (7.5)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$
Eq. (7.6)

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{27mm}{1.5 \cdot 50mm} = 1.64 \ge 1$$

V _{Rk,cp}	Ү мс	V _{Rd,cp}	V _{Ed}	β _{V,cp}
kN		kN	kN	%
75.77	1.50	50.51	0.30	0.6

Anchor no.	β _{ν,cp} %	Group N°	Decisive Beta
1	0.6	1	βv,cp;1

Concrete edge failure

$$V_{Ed}~\leq~rac{V_{Rk,c}}{\gamma_{Mc}}$$
 (V_{Rd,c})

$$V_{Rk,c} = V_{Rk,c}^{0} \cdot \frac{A_{c,V}}{A_{c,V}^{0}} \cdot \Psi_{s,V} \cdot \Psi_{h,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{ec,V} \cdot \Psi_{re,V}$$
 Eq. (7.40)

 $V_{Rk,c} = 10.60kN \cdot \frac{28,800mm^2}{28,800mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.000 = 10.60kN$

$$V^0_{Rk,c} = k_9 \cdot d^{lpha}_{nom} \cdot l^{eta}_f \cdot \sqrt{f_{ck}} \cdot c^{1.5}_1$$
 Eq. (7.41)

$$V_{Rk,c}^{0} = 1.7 \cdot \left(12mm\right)^{0.079} \cdot \left(50mm\right)^{0.068} \cdot \sqrt{30.0N/mm^{2}} \cdot \left(80mm\right)^{1.5} = 10.60kN$$

$$\alpha = 0.1 \cdot \sqrt{\frac{l_{f}}{c_{1}}} = 0.1 \cdot \sqrt{\frac{50mm}{80mm}} = 0.079 \qquad \beta = 0.1 \cdot \left(\frac{d_{nom}}{c_{1}}\right)^{0.2} = 0.1 \cdot \left(\frac{12mm}{80mm}\right)^{0.2} = 0.068 \qquad (7.42/7.43)$$

$$\Psi_{s,V} = 0.7 + 0.3 \cdot \frac{c_2}{1.5c_1} = 0.7 + 0.3 \cdot \frac{120mm}{1.5 \cdot 80mm} = 1.000 \le 1$$

$$\Psi_{h,V} = max \left(1; \sqrt{\frac{1.5c_1}{h}}\right) = max \left(1; \sqrt{\frac{1.5 \cdot 80mm}{200mm}}\right) = 1.000 \ge 1$$

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.7)

$$\Psi_{\alpha,V} = \sqrt{\frac{1}{\left(\cos \alpha_V\right)^2 + \left(0.5 \cdot \sin \alpha_V\right)^2}} = \sqrt{\frac{1}{\left(\cos 0.0\right)^2 + \left(0.5 \cdot \sin 0.0\right)^2}} = 1.000 \ge 1$$

$$\Psi_{ec,V} = \frac{1}{1 + \frac{2 \cdot e_x}{3 \cdot c_1}} = \frac{1}{1 + \frac{2 \cdot 0mm}{3 \cdot 80mm}} = 1.000 \le 1$$
Eq. (7.48)

 $\Psi_{re,V} = 1.000$

V _{Rk,c}	Yмс	V _{Rd,c}	V _{Ed}	βv,c
kN		kN	kN	%
10.60	1.50	7.07	0.30	4.2

Anchor no.	β _{ν,c} %	Group N°	Decisive Beta
1	4.2	1	βv,c;1

Utilization of tension and shear loads

Tension loads	Utilisation βN %	Shear Loads	Utilisation βv %
Steel failure *	51.3	Steel failure without lever arm *	1.2
Pullout failure *	90.9	Concrete pry-out failure	0.6
Concrete cone failure	90.7	Concrete edge failure	4.2

* Most unfavourable anchor

Resistance to combined tensile and shear loads

Information concerning the anchor plate

Base plate details

Plate thickness specified by user without proof	t = 8 mm
Profile type	None

Technical remarks

The transmission of the anchor loads to the supports of the concrete member shall be shown for the ultimate limit state and the serviceability limit state; for this purpose, the normal verifications shall be carried out under due consideration of the

C-FIX 1.94.0.0 Database version 2021.1.22.18.31 Date 01/03/2021

actions introduced by the anchors. For these verifications the additional provisions given in the current design method shall be taken into account.

As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate (if present) must be sufficiently stiff. The C-Fix anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by C-Fix.

During the design process, the following hints and warnings were issued:

 The factor ψM,N is taking into account the effect of a compression force between the fixture and concrete in case of bending moments with or without axial force. If the bending moment does not act continuously, please also check this load case. See EN 1992-4, 7.2.1.4 (7)

C-FIX 1.94.0.0 Database version 2021.1.22.18.31 Date 01/03/2021

Installation data

Anchor

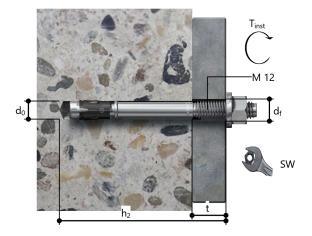
Anchor system Anchor

Accessories

fischer Bolt anchor FAZ II Bolt anchor FAZ II 12/10, zinc plated steel

Blow-out pump ABG big SDS Plus II 12/100/160 or alternatively FHD 12/200/330 Hammer drilling with or without suction Art.-No. 95419 🗄

Art.-No. 89300 Art.-No. 531803


Art.-No. 546597

Installation details

- Thread diameter Drill hole diameter Drill hole depth Calculated anchorage depth Installation depth Drilling method Drill hole cleaning
- Installation type Annular gap Installation torque Socket size Base plate thickness Total fixing thickness Tfix,max

M 12 d₀ = 12 mm h₂ = 99 mm h_{ef} = 50 mm

 $\begin{array}{l} h_{nom} = 64 \text{ mm} \\ \text{Hammer drilling} \\ \text{Only blow out by hand} \\ \text{No borehole cleaning required in} \\ \text{case of using a hollow drill bit, e.g.} \\ \text{fischer FHD.} \\ \text{Push-through installation} \\ \text{Annular gap not filled} \\ \text{T}_{inst} = 60.0 \text{ Nm} \\ 19 \text{ mm} \\ t = 8 \text{ mm} \\ t_{\text{fix}} = 8 \text{ mm} \\ t_{\text{fix}, \text{max}} = 30 \text{ mm} \end{array}$

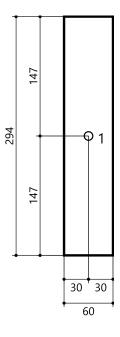
Base plate details

Base plate material Base plate thickness Clearance hole in base plate

Attachment

Profile type

None


Not available

t = 8 mm

d_f=14 mm

Anchor coordinates

Anchor no.	x mm	y mm
1	0	0

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

MASONRY FIXINGS

Unit 83, Cherry Orchard Industrial Estate Dublin 10 Phone: +353 1 642 6700 Fax: +353 1 626 2197 technical@masonryfixings.ie www.masonryfixings.ie

<u>Comment</u>

Connection to Concrete Panel 2

Design Specifications

<u>Anchor</u>

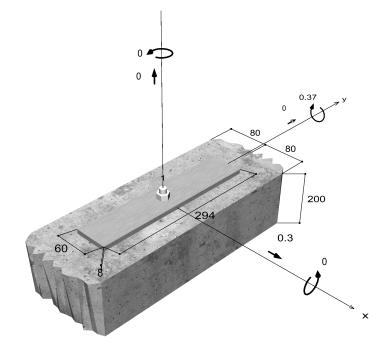
depth Design Data

Anchor system Anchor

Calculated anchorage

fischer Bolt anchor FAZ II Bolt anchor FAZ II 12/10, zinc plated steel 50mm

> Anchor design in Concrete according European Technical Assessment ETA-05/0069, Option 1, Issued 24/04/2020


Geometry / Loads / Scale units

mm, kN, kNm

Value of design actions (including

partial safety factor for the load)

Not drawn to scale

C-FIX 1.94.0.0 Database version 2021.1.22.18.31 Date 01/03/2021

Input data

Design method Base material Concrete condition Reinforcement	Design Method EN1992-4:2018 mechanical fastener C30/37, EN 206 Cracked, dry hole No or standard reinforcement. No edge reinforcement. With reinforcement against splitting
Drilling method	Hammer drilling
Installation type	Push-through installation
Annular gap	Annular gap not filled
Type of loading	Static or quasi-static
Base plate location	Base plate flush installed on base material
Base plate geometry	60 mm x 294 mm x 8 mm
Profile type	None

Design actions *)

#	N _{Ed} kN	V _{Ed,x} kN	V _{Ed,y} kN	M_{Ed,x} kNm	M _{Ed,y} kNm	М_{т,Ed} kNm	Type of loading
1	0.00	0.30	0.00	0.00	0.37	0.00	Static or quasi-static

*) The required partial safety factors for actions are included

Resulting anchor forces

Anchor no.	Tensile action	Shear Action	Shear Action x	Shear Action y	
	kN	kN	kN	kN	
1	13.67	0.30	0.30	0.00	

max. concrete compressive strain : max. concrete compressive stress : Resulting tensile actions : Resulting compression actions : 0.32 ‰ 10.6 N/mm² 13.67 kN , X/Y position (0/0) 13.67 kN , X/Y position (27/0)

Resistance to tension loads

Proof	Action kN	Capacity kN	Utilisation β _N %
Steel failure *	13.67	28.80	47.5
Pullout failure *	13.67	16.27	84.1
Concrete cone failure	13.67	16.29	83.9

* Most unfavourable anchor

Ø.

C-FIX 1.94.0.0 Database version 2021.1.22.18.31 Date 01/03/2021

Steel failure

$$N_{Ed}~\leq~rac{N_{Rk,s}}{\gamma_{Ms}}$$
 (N_{Rd,s})

N _{Rk,s}	Yмs	N _{Rd,s}	N _{Ed}	β _{N,s}
kN		kN	kN	%
43.20	1.50	28.80	13.67	47.5

Anchor no.	β _{N,s} %	Group N°	Decisive Beta
1	47.5	1	β _{N,s;1}

Pullout failure

Г

$$N_{Ed}~\leq~rac{N_{Rk,p}}{\gamma_{Mp}}$$
 (N_{Rd,p})

N _{Rk,p} kN	Ψϲ	үм р	N _{Rd,p} kN	N _{Ed} kN	β _{Ν,Ρ} %
24.40	1.220	1.50	16.27	13.67	84.1

The given Psi,c-factor may has been determined by interpolation.

Anchor no.	β _{Ν,p} %	Group N°	Decisive Beta
1	84.1	1	β _{N,p;1}

Concrete cone failure

$$N_{Ed}~\leq~rac{N_{Rk,c}}{\gamma_{Mc}}$$
 (N_{Rd,c})

 $\Psi_{re,N} = 1.000$

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
Eq. (7.1)

$$N_{Rk,c} = 14.91kN \cdot \frac{22,500mm^2}{22,500mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.639 = 24.44kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(50mm\right)^{1.5} = 14.91kN \qquad \text{Eq. (7.2)}$$

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{80mm}{75mm}\right) = 1.000 \le 1$$

$$\begin{split} \Psi_{ec,N} &= \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \leq 1 \\ \Psi_{ec,Nx} &= \frac{1}{1 + \frac{2 \cdot 0mm}{150mm}} = 1.000 \leq 1 \quad \Psi_{ec,Ny} = \frac{1}{1 + \frac{2 \cdot 0mm}{150mm}} = 1.000 \leq 1 \\ \Psi_{M,N} &= 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{27mm}{1.5 \cdot 50mm} = 1.64 \geq 1 \end{split}$$
 Eq. (7.6)

N _{Rk,c} kN	ΎМс	N _{Rd,c} kN	N _{Ed} kN	βn,c %
24.44	1.50	16.29	13.67	83.9

Anchor no.	β _{N,c} %	Group N°	Decisive Beta
1	83.9	1	βN,c;1

Resistance to shear loads

Proof	Action kN	Capacity kN	Utilisation β _v %
Steel failure without lever arm *	0.30	24.48	1.2
Concrete pry-out failure	0.30	50.51	0.6
Concrete edge failure	0.30	7.07	4.2

* Most unfavourable anchor

Steel failure without lever arm

$$V_{Ed}~\leq~rac{V_{Rk,s}}{\gamma_{Ms}}$$
 (V_Rd,s)

$$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0 = 1.00 \cdot 30.60 kN = 30.60 kN$$

V _{Rk,s}	¥мs	V _{Rd,s}	V _{Ed}	βvs
kN		kN	kN	%
30.60	1.25	24.48	0.30	1.2

Anchor no.	βvs %	Group N°	Decisive Beta
1	1.2	1	βvs;1

Concrete pry-out failure

 $V_{Ed} \leq \frac{V_{Rk,cp}}{2}$ (V_{Rd,cp}) γ_{Mc}

Eq. (7.35)/ (7.36)

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

$$V_{Rk,cp} = k_8 \cdot N_{Rk,c} = 3.1 \cdot 24.44 kN = 75.77 kN$$
 Eq. (7.39a)

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
Eq. (7.1)

$$N_{Rk,c} = 14.91kN \cdot \frac{22,500mm^2}{22,500mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.639 = 24.44kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(50mm\right)^{1.5} = 14.91kN$$
 Eq. (7.2)

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{80mm}{75mm}\right) = 1.000 \le 1$$

$$\Psi_{re,N} = 1.000$$
 Eq. (7.5)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$
Eq. (7.6)

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{27mm}{1.5 \cdot 50mm} = 1.64 \ge 1$$

V _{Rk,cp}	Ү мс	V _{Rd,cp}	V _{Ed}	β _{V,cp}
kN		kN	kN	%
75.77	1.50	50.51	0.30	0.6

Anchor no.	β _{ν,cp} %	Group N°	Decisive Beta
1	0.6	1	βv,cp;1

Concrete edge failure

$$V_{Ed}~\leq~rac{V_{Rk,c}}{\gamma_{Mc}}$$
 (V_{Rd,c})

$$V_{Rk,c} = V_{Rk,c}^{0} \cdot \frac{A_{c,V}}{A_{c,V}^{0}} \cdot \Psi_{s,V} \cdot \Psi_{h,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{ec,V} \cdot \Psi_{re,V}$$
 Eq. (7.40)

 $V_{Rk,c} = 10.60kN \cdot \frac{28,800mm^2}{28,800mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.000 = 10.60kN$

$$V_{Rk,c}^{0} = 1.7 \cdot \left(12mm\right)^{0.079} \cdot \left(50mm\right)^{0.068} \cdot \sqrt{30.0N/mm^{2}} \cdot \left(80mm\right)^{1.5} = 10.60kN$$

$$\alpha = 0.1 \cdot \sqrt{\frac{l_{f}}{c_{1}}} = 0.1 \cdot \sqrt{\frac{50mm}{80mm}} = 0.079 \qquad \beta = 0.1 \cdot \left(\frac{d_{nom}}{c_{1}}\right)^{0.2} = 0.1 \cdot \left(\frac{12mm}{80mm}\right)^{0.2} = 0.068 \qquad (7.42/7.43)$$

$$\Psi_{s,V} = 0.7 + 0.3 \cdot \frac{c_2}{1.5c_1} = 0.7 + 0.3 \cdot \frac{120mm}{1.5 \cdot 80mm} = 1.000 \le 1$$

$$\Psi_{h,V} = max \left(1; \sqrt{\frac{1.5c_1}{h}}\right) = max \left(1; \sqrt{\frac{1.5 \cdot 80mm}{200mm}}\right) = 1.000 \ge 1$$

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.7)

$$\Psi_{\alpha,V} = \sqrt{\frac{1}{\left(\cos \alpha_V\right)^2 + \left(0.5 \cdot \sin \alpha_V\right)^2}} = \sqrt{\frac{1}{\left(\cos 0.0\right)^2 + \left(0.5 \cdot \sin 0.0\right)^2}} = 1.000 \ge 1$$

$$\Psi_{ec,V} = \frac{1}{1 + \frac{2 \cdot e_x}{3 \cdot c_1}} = \frac{1}{1 + \frac{2 \cdot 0mm}{3 \cdot 80mm}} = 1.000 \le 1$$
Eq. (7.48)

 $\Psi_{re,V} = 1.000$

V _{Rk,c}	Yмс	V _{Rd,c}	V _{Ed}	βv,c
kN		kN	kN	%
10.60	1.50	7.07	0.30	4.2

Anchor no.	βν,c %	Group N°	Decisive Beta
1	4.2	1	βv,c;1

Utilization of tension and shear loads

Tension loads	Utilisation βN %	Shear Loads	Utilisation βv %
Steel failure *	47.5	Steel failure without lever arm *	1.2
Pullout failure *	84.1	Concrete pry-out failure	0.6
Concrete cone failure	83.9	Concrete edge failure	4.2

* Most unfavourable anchor

Resistance to combined tensile and shear loads

Information concerning the anchor plate

Base plate details

Plate thickness specified by user without proof	t = 8 mm
Profile type	None

Technical remarks

The transmission of the anchor loads to the supports of the concrete member shall be shown for the ultimate limit state and the serviceability limit state; for this purpose, the normal verifications shall be carried out under due consideration of the

C-FIX 1.94.0.0 Database version 2021.1.22.18.31 Date 01/03/2021

actions introduced by the anchors. For these verifications the additional provisions given in the current design method shall be taken into account.

As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate (if present) must be sufficiently stiff. The C-Fix anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by C-Fix.

During the design process, the following hints and warnings were issued:

 The factor ψM,N is taking into account the effect of a compression force between the fixture and concrete in case of bending moments with or without axial force. If the bending moment does not act continuously, please also check this load case. See EN 1992-4, 7.2.1.4 (7)

C-FIX 1.94.0.0 Database version 2021.1.22.18.31 Date 01/03/2021

Installation data

Anchor

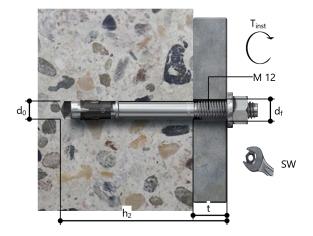
Anchor system Anchor

Accessories

fischer Bolt anchor FAZ II Bolt anchor FAZ II 12/10, zinc plated steel

Blow-out pump ABG big SDS Plus II 12/100/160 or alternatively FHD 12/200/330 Hammer drilling with or without suction Art.-No. 95419 🗄

Art.-No. 89300 Art.-No. 531803


Art.-No. 546597

Installation details

- Thread diameter Drill hole diameter Drill hole depth Calculated anchorage depth Installation depth Drilling method Drill hole cleaning
- Installation type Annular gap Installation torque Socket size Base plate thickness Total fixing thickness Tfix,max

M 12 d₀ = 12 mm h₂ = 99 mm h_{ef} = 50 mm

 $\begin{array}{l} h_{nom} = 64 \text{ mm} \\ \text{Hammer drilling} \\ \text{Only blow out by hand} \\ \text{No borehole cleaning required in} \\ \text{case of using a hollow drill bit, e.g.} \\ \text{fischer FHD.} \\ \text{Push-through installation} \\ \text{Annular gap not filled} \\ \text{T}_{inst} = 60.0 \text{ Nm} \\ 19 \text{ mm} \\ t = 8 \text{ mm} \\ t_{\text{fix}} = 8 \text{ mm} \\ t_{\text{fix}, \text{max}} = 30 \text{ mm} \end{array}$

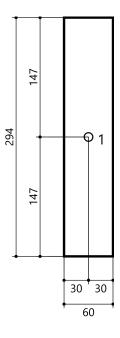
Base plate details

Base plate material Base plate thickness Clearance hole in base plate

Attachment

Profile type

None


Not available

t = 8 mm

d_f=14 mm

Anchor coordinates

Anchor no.	x mm	y mm
1	0	0

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.