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“ “Force related tissue damage shifts 
the focus from something to be managed 

to something to be predicted and prevented.
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Overview: The intention of this white paper is to challenge and explore existing thinking around force related tissue dam-
age or pressure injury.

FORWARD

Damage to skin and tissue  is an important and expensive issue for the NHS and other organisations providing care for those 
who are confined to their bed or chair for any period of time. The costs are not just financial; a lot of individual suffering 
and loss of quality of life occur when tissue breaks down. This white paper brings together existing research into skin and 
tissue damage associated with patient’s being cared for in bed.

The latest term being used for this is pressure injury (NPUAP 2016). This term replaces previous terminology used such as; 
pressure ulcers, pressure sores, bed sores /ulcers and decubitus ulcers. However, with our extensive review of the literature 
into the internal and external influences, we believe a more accurate description is force related tissue damage.

This paper investigates the observations regarding unobvious causes of force related tissue damage and the events linking 
both biomechanical and biological processes at several organisational (pathological) levels together with external in bed 
events. Over 22 internal marginal influences are identified which, as countless Cochrane reviews demonstrate, wound 
care science struggles to diagnose and cure; mostly due to the underestimation of the complexity and processes involved 
regarding tissue homoeostasis, damage and regeneration.

The paper explains how there are two major causal factors connected with all in bed force related tissue damage. The 
patient’s resting/support surface synergy and the way the person is moving/being moved and stabilised on that surface, 
regardless of whether this is by manual or mechanical means. We will explore how in bed force related tissue damage can 
be a direct result of both manual and/or mechanical handling and the incorrect synergetic interface layers of the resting/
support surface with the patient’s skin and tissues.

We strongly suggest the major causal factors involved with all in bed force related tissue damage are external and within 
our control. This paper proposes that a preventative trajectory is both desirable and achievable by adopting a combined 
ergonomic and biomechanical approach to remove the risks to both patients’ skin/tissue and the carer’s muscular-skeletal 
system associated with in bed care and positioning. 
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force-related tissue damage and the events linking 
both biomechanical and biological processes at

several organisational (pathological) levels
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SUMMARY

Current evidence suggests there are many contributing factors that work together to cause a pressure injury. These 
contributing factors in the underlying aetiology can more accurately be described as force related tissue damage. 
This is therefore the term adopted throughout the paper.

Force related tissue damage can occur at any point in the body, where the body is unable to maintain its innate tissue 
protection and homeostasis. These forces may affect the skin, but can also radiate and have an effect in the deeper 
tissue layers of the body and trigger many marginal contributing factors within the body, which when combined, can 
surpass a threshold beyond which cells die or tissues rupture.

Under normal healthy circumstances the body’s tissues work jointly to manage both external and internal 
forces. The body protects and repairs its internal environment by using both physiological and biomechanical 
mechanisms (biotensegrity) to maintain homeostasis. Force related tissue damage occurs when the threshold of the tissue 
integrity is surpassed or reduced. This can be caused by forces, physiological events or behaviour which either 
surpass or reduce the tissue threshold for one or more parameters. This damage can occur from the micro level in 
the form of stress up to the level of a visible lesion.

This is an expansion of current thinking which relates to (internal) lesions due to a vessels collapse or tissue 
ruptures. It is necessary because it addresses the parameters needed for diagnosis, prognosis, treatment and 
prevention of force related damage.  It allows a detailed description of the  way a patient differs from a healthy 
subject who will not acquire force related lesions. Expanding from the description of the lesion towards a 
description of the biomechanical and physiological state of the tissue involved will make caregivers aware of the 
preventable causes and practical treatment options.

Attention to forces will raise awareness that instead of pressure, a force has dimensions of magnitude, direction and 
time. This can explain why a low magnitude force can be more damaging than a large magnitude force or vice versa 
depending on the time and direction it is applied to the body.

Attention to physiology will explain why it is incorrect to think of a lesion as being unavoidable and raise awareness 
to diagnostic and therapeutic approaches that have the ability to reduce the number of lesions that occur.

Attention to behaviour will reduce the generation of unnecessary external forces which surpass the body’s innate 
protection mechanisms as a result of manual or mechanical handling of patients.

The diagnosis of factors related to the tissue threshold will help in discovering and managing individuals prone 
to acquiring a force related lesion. The type of forces that results from both manual and mechanical handling of 
patients can cause damage in tissue, when they are of an intensity and dissipation that cannot be handled by the 
body’s homeostatic and biotensegrity mechanisms.

Therefore, this paper identifies that the major causes of force related tissue damage are twofold and results from 
a combination of the methods used to move patients and/or the way in which the patient is stabilised on resting/
support-interfaces.

Both the major causative and the marginal contributing factors must be assessed at all organisational levels to 
predict and prevent the occurrence of force related tissue damage and resultant pathological lesions. This will allow 
for a desired safer trajectory for patients and their carers, by the adoption of preventative strategies that design out 
the major causes of force related tissue damage and induced lesions.
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Figure 1: Classic representation of events related to force related tissue damage.
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This applied force and the tissue
involved are complex, dynamic and
an interrelated phenomena.
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INTRODUCTION
Following NPUAP 2016 guidelines1, pressure injuries are areas of localised damage to the skin and underlying 
tissue, caused by pressure, shear or friction. Pressure injuries are historically called pressure ulcers, pressure sores, 
bed sores/ulcers, decubitus ulcers and other names. With growing understanding of the aetiology underlying the 
damage to the tissue a more accurate description may be force related tissue damage.

Healthy individuals do not develop force related tissue damage; this results instead from a number of events caused 
by damaged or impaired tissues and/or systems. Force alone is not sufficient to explain the occurrence of the force 
related injury seen in current clinical practice. It therefore makes sense to have a deeper look into the aetiology of 
lesions commonly described as ‘pressure injury”, to allow for more tailored diagnostic, curative and preventive 
interventions. This allows for defining marginal factors, factors allowing for a lesion to occur and causing factors, 
which are the cause of the lesion. Usually marginal factors are a prerequisite for a causal factor to lead to a lesion.

Normally, tissues are continuously submitted to forces as a result of maintaining body posture, gravity and movement. 
Due to these forces, tissues and cells are frequently and recurrently damaged. So even in a healthy subject, 

homeostatic and regeneration processes are always active 2,3. Living organisms maintain their 
homeostasis by handling forces and damage 4 by the continuous replacement 

or repair of cells and tissues5,6.
 

The amount of damage incurred depends 
on the way forces are applied and also on 

 the cells, tissue and processes involved Damage 
occurs when the tissue involved is not able to withstand 

the applied force. Therefore, the amount of force any given tissue 
can handle, is defined by its specific characteristics; the tissue 

threshold. If the tissue threshold is surpassed, damage will occur. Initially there 
are only two parameters: the applied forces and included tissues. This applied force and the tissue 

involved are complex, dynamic and interrelated phenomena.

The common concept of pressure damage (pressure ulcers) states it results from vessel collapse and cell death due 
to compressing tissue between bone and a hard surface (figure 1). This is an oversimplification of the processes 
involved. It focuses on passing the tissue threshold whilst ignoring the reasons the threshold has been passed. 
Research on the subject is of high quantity and usually of low quality as highlighted in a recent review on support 
surfaces for pressure ulcer prevention, which revealed that few studies were of sufficient quality to be evaluated 
7,8. Most studies relate to pressure exerted on tissue; some address shear; few address tension and none address the 
interrelation and dynamics of force exerted on tissue. Also, most studies focus on lesions or necrosis, but prior 
to necrosis; cells will be stressed, injured and damaged. Forces exerted on tissue have several direct and indirect 
effects on all levels of organisation. Events may occur at molecular, cellular, tissue and/or body level 9 and may be 
of a chemical, physical, biological or mathematical nature or combination thereof. Since the main lesions occur 
due to biomechanical events, the effect of forces on tissue is relevant. It is important therefore  to consider the 
direct and indirect way forces influence tissue and in what way the tissue threshold can be altered or lowered.
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The tissue threshold is defined by 
the amount of force, chemical events 

(including redox) and/or radiation 
(including temperature) any 

given tissue can handle.
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FORCE 

External force (a major causal factor) acting on tissues has primary, secondary and tertiary effects. The primary effects 
of forces are compression, shear and tension leading to deformation, damage and possible rupture of cells and tissues.

The primary effects of external force on tissue cause problems in perfusion leading to secondary events such as 
hypoxia, lack of nutrients and waste accumulation. Usually, these effects then cascade into further events such as 
reperfusion injury, chronic immune response, nerve damage etc. which result from the effects of applying forces to 
tissues for a longer period of time.

Finally, significant loss of tissue and tissue integrity due to the combination of primary and secondary effects, usually 
triggers the formation of forces on other places in the tissue; a house-of-cards like tertiary effects which result 
in further spreading of damage. A telling example is the removal of skin, which decreases the shear 
threshold of skeletal muscle by 50% 10.

Pulling or pushing forces are usually expressed in pascal (1Pa= 1N/
m2), describing how much force (newton) is applied per 
surface (m2). The amount of energy a cell or 
tissue can handle depends on the force 
applied and the tissue(s) involved. The way 
tissue responds to force depends on its resilience - part 
of this is described by its response to mechanical strain and stress 
by its elasticity or  Young’s modulus 11. However, the resilience of tissue to 
withstand force depends on the combination of the tissues and structures involved. 
For several tissue types this has been established 12–14. This means, for example, adipose tissue 
has a different response to forces applied than epidermal or muscle tissue. The structure and cooperation 
of cells and tissues form a complex system, allowing for the management of larger forces than a single cell could 
handle alone. Reversely, damage to one type of tissue will influence other tissues’ threshold.

If and when applied forces lead to a lesion depends upon the circumstances. Every type of cell or tissue has a certain 
amount of energy it can absorb; beyond this, it will be damaged to the extent that it fails. Fibrin networks are able to 
handle damage, but this ability can be compromised due to mechanical or metabolic events 15,16.

It is commonly known the skin has an inhomogeneous response to force applied17. Most cells and tissues are anisotropic; 
the ability to withstand compression, shear and tension is not the same in all directions and depends upon the angle at 
which it is applied18. Therefore, the amount of damage also depends on the angle of forces applied. This is usually not 
taken into account and this is illustrated by the way ulcers are classified: they are now called pressure injury a classification 
which tends to ignore other causative factors.

Damage also depends on the tissues involved and how much force they can withstand, i.e. the tissue threshold. The 
pathological damage may originally start in muscle, adipose tissue, the dermis or other tissue types and spread from 
there. Deep tissue damage is the common denominator for this group of pathological phenomena. The tissue threshold 
is defined by the amount of force, chemical events (including redox) and/or radiation (including temperature) any 
given tissue can handle. Generally, it makes sense to discern “normal force” – in other words, events surpassing the 
tissue threshold of healthy tissue causing trauma, but within the limits of normal homeostasis. The only way force related 
damage occurs in a healthy subject is when force is applied at abnormal magnitude, angle and/or time: i.e. trauma. Apart 
from trauma, pathological lesions develop when tissues and/or systems are compromised. Therefore, the characteristics of 
a force applied to tissue have three elements: the magnitude, the time and the angle to which it is applied.   

DIRECT AND INDIRECT CELLULAR RESPONSE TO FORCES 

Under normal circumstances, cells and tissues are constantly challenged and damaged, leading to not only mechanical 
stress but also to other kinds of stress such as  regulatory and metabolic stress19. Tissues, and cells within tissues, 
co-operate to handle these stresses, strains and their secondary effects20,21.

At cellular level, compressing, tension and/or shear will lead to deformation. Tissue damage therefore starts at the 
cytoskeletal level of a single cell22,23. Further deformation of cells leads to increased membrane permeability, which will 
cause intracellular metabolic stress24. Dermal and muscle cells, as well as neural cells, respond in this way to damage25. 
Damaging the cell membrane leads to an influx of extracellular Ca2+. This influx is regarded as an immediate danger 
signal for the cell, which will quickly repair the membrane26 . But even limited pressure can lead to a breakdown of cell 
organelles27, triggering programmed cell death or apoptosis. Even though large magnitude forces can lead to necrosis, 
apoptosis appears to be the main cause for tissue damage28. Cells also respond to other events resulting from applying 
force. For example, stiffness of the tissue, which increases under an applied force, has effect on the cells involved29.

©  Phil-e-Slide March 2017



Tissues have an individual and an 
interdependent role in homoeostasis 
and regeneration.

““

Oxygen depletion leads to changes in energy and redox potentials and causes cells to switch to different metabolic 
routes to maintain redox homeostasis30. A first step is that the mitochondria produce reactive-oxygen and -nitrogen 
species. This causes oxidation in the cell 31, leading to further damage and eventually apoptosis 32. Prolonged hypoxia 
causes cells to produce stress signals leading to vasodilatation 33,34. The same factors leading to vasodilatation also 
switch on angiogenesis 35, senescence, apoptosis and autophagy 36. Depending on the type of cell involved, hypoxia also 
leads to different responses of, for example, stem cells 37,38.

Apart from hypoxia, the lack of nutrients can lead to reduced vitality and reduced mitogenic capacity. Eventually, it 
will lead to cell death, for instance by endoplasmic reticulum stress where the production of proteins is disturbed. This 
leads to the unfolded protein response (UPR), which entails several actions to restore homeostasis, and, if they fail, to 
apoptosis 39. Accumulation of waste products also causes problems for individual cells 40,41.

Not only do hypoxia and lack of nutrients cause metabolic stress, the accumulation of waste and the accumulation of 
‘cell remains’ in the tissue causes further problems in the mitochondrion and the endoplasmic reticulum 42,43. Stress also 
makes cells more susceptible to other events such as reperfusion damage 44 and inflammation 45.

Regulatory signals can force a cell to proliferate or (partially) kill itself 46,47. For example, increased or prolonged stress 
causes cells to reduce the need for oxygen and nutrients by apoptosis or autophagy.

At some point, the number of dying cells triggers an active immune response as a result of circulating stress signals and 
cell remains; damage associated molecular patterns (DAMPs)48–50. Damaged cells and molecular debris is considered 
a main trigger of the post-traumatic danger response 51. Accumulating neutrophils may further increase local pressure 
leading to damage induced damage.

Generally, the preferred way of cells to die is by apoptosis because necrosis generates massive danger signals and the 
remains of the cell cannot be “recycled” efficiently 52–54. Repair at the cellular level involves local cells, stem cells, 
macrophages55 and fibroblasts 56. Therefore at  the level of the cell, even if there is no cell death, many complex events 
occur as a result of forces applied to tissue57. The resulting molecular and cellular events impact the threshold level of 
the tissue involved.

DIRECT AND INDIRECT TISSUE RESPONSE TO FORCES 

Lesions usually develop in tissue between the body and a surface. Deformation of tissue can block vessels but also has an 
effect of other structures like fascia and nerves58. Typically, the tissue involved is organised in layers; dermis, subcutis, fat 
tissue, muscle tissue and bone. In and around these are fascia, blood vessels, lymph vessels and nerves. Tissues have an 
individual and an interdependent role in homoeostasis and regeneration59.

Homeostasis handles primary and secondary effects in tissues 60,61 by monitoring tissue and systems quality and by 
replacing compromised cells and structures. Repair of damage as a result of “living”62 is a straightforward well controlled 
process, involving vascular, lymphatic, immunologic, neural and endocrinological systems at local and systemic level63. 
In areas where more damage is to be expected, like the plantar regions, the metabolic speed is somewhat upregulated to 
allow the homeostatic process to resolve excess damage.

To prevent damage, the body has several ways to detect local deformation64 and its symptoms65,66. The neural, fascial 
and vascular systems play a central role in detecting and responding to force, hypoxia, acidification, cell and/or tissue 
damage67,68. The usual response to force induced damage signals, is to reposition the body.

Mechanical force causes perfusion problems when compressing arterial, venous or lymphatic vessels 69. Perfusion 
problems are wider than just preventing transport by compressing capillaries70. Collapsing of capillaries causes hypoxia71 

and leads to upregulation of hypoxia signals66,72 and organelle dysfunction73. But the application of force on tissue 
also compromises the lymphatic system74 were for instance, the lymph flow is reduced75 due to and leading 

to oedema76. Compressed vessels have a recovery time in which they restore the original lumen. 
This means that after compression the perfusion is not fully restored immediately77. The 

time needed for recovery is a second parameter influencing damage78. Finally, 
the endothelial quality of the dilated vessel will dictate improvement of 

further damage as a result of pressure induced vasodilatation. 
In studies with spinal cord injury (SCI) patients it was 

observed that recovery time was necessary to prevent injury79. It 
seems that there is a sweet spot in recovery time to allow for pressure induced 

vasodilatation but prevent reperfusion injury. This could also explain tissue damage 
during repeated stress-compression cycles80,81.

The combination of perfusion collapse and following reperfusion is, in itself, a cause of cell death as a result 
of reperfusion injury44. Refilling blocked blood vessels is not without consequences. Due to the lack of perfusion, 
the endothelium becomes very permeable 82. The renewed influx of blood will cause significant leakage, which 
results in local oedema as well as an increased influx of neutrophils also due to the influence of the neural system83. 
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It is clear that the fascia 
integrates the mechanical functionality 

of all tissues involved.
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The lymphatic system has a very complex role in handling forces in tissue. In general it depends on oscillating pressures 
in the tissue for its transport84. In adipose tissue it plays a role in initial force handling by allowing for interstitial fluid 
transport away from an area of high internal pressure13. It does so by opening up its lumen under a medium applied 
force, however, if the forces are larger, the vessel will collapse leading to oedema due to accumulating fluid consisting of 
metabolic waste products and other compounds 85.

Nerves have several important roles in tissue homeostasis and regeneration 86; as understood from regeneration studies 
with SCI patients where wounds above the lesion heal better compared to wounds below the lesion. Nerves sense 
hypoxia87, ischaemic pain and play a role in pressure induced vasodilatation 88. Longer term effect of nerves comes from 
their role in maintaining the redox balance in tissue89. Aging also influences the sensory neurons leading to a decline in 
vasodilatory response upon hypoxia90.

Despite its strength 91, the epidermis is usually the first place where the effects of the vessel collapse becomes visible 92; 
in the form of skin reddening and blister formation 93. Visible reddening of the skin is the result of vasodilatation due to 
the NOX (nitric oxide) generated94. This response is meant to increase the blood flow to ischemic areas and it starts at 
pressures above 32mmHg95,96. The integrity of the skin is also influenced by moisture, which causes increased friction and 
a reduced tissue quality. Being on the outer perimeter of the body the skin is susceptible to climatic events 97,98.

The dermis has a higher viscoelasticity compared to the epidermis 99 in that it can extend up to 25% and compress in 
a similar manner. This effect is caused by the adipose tissue in the subcutis. The role of adipose tissue, in relation to 
exerted force, is to absorb energy and redistribute lower forces to the surrounding tissue. Adipose tissue can suffer from 
damage due to direct strain and from damage due to hypoxia. However, the biomechanical properties of adipose tissue 
are different. It can deform much more than other tissue layers and has, like muscle 100, a anti-thixotropic effect. Under 
pressure it deforms but under prolonged pressure it stiffens 101. In adipose tissue the fascia handles most of the force and 
as such it protects the vessels and cells in the tissue102. The connective tissue in the adipose tissue ensures that increased 
pressure is handled by a combination of fibres and adipose cells while the vessels and nerves are not compressed 103. 
Apparently, if the pressure in one part is too high, more adipose cells are involved in the process. This is how the amount 
of force applied relates to the volume of adipose tissue with an increased pressure. This allows the adipose tissue to 
withstand higher pressures without damage. It is not clear what causes this effect. The mechanical function of adipose 
tissue can be impaired by prolonged exposure to NOX which leads to fibrosis 104.

The role of muscle in force related damage is well investigated 105. It absorbs pressure by deforming whilst remaining 
able to function. Deformation has a negative impact on interstitial transport. This is one of the main reasons muscle 
tissue is more prone to compression-induced injury 106. The impaired diffusion of large molecules in muscle tissue 107 not 
only hampers the oxygenation of individual cells but also disables the transport of metabolites in and out of the tissue 
and the surrounding blood and lymph vessels. So, there are two ways in which muscle tissue is damaged. Firstly, direct 
force causing tissue strain, which is greatest near a bony prominence and leads to fast occurring damage. Secondly, due 
to hypoxia, leading to anaerobic metabolism - which for a short period of time is well tolerated but during 
prolonged periods leads to tissue acidification and cell death.

All layers, from the epidermis to the muscles, are well able to handle forces. The 
bone functions as a hard structure to counterbalance powers from outside 
and as an anchor point for tissues.

Where bone delivers rigidity to the body mass, the dermis 
envelops and the fascia handles all the mechanical issues in between. 
Fascia has several, sometimes conflicting functions: to separate, to allow 
movement 108, to connect, to hold together and/or to transfer forces 109. It consists of tissue 
sheets (fascia profunda), septa, capsules, the epimysium, skin fascia, endomysium, perimysium, 
periosteum, ligaments and tendons etc.

Fascia and connective tissue play a vital central role in force handling 110. It forms a continuous network, connecting 
each individual cell to the entire body in a reciprocal way 111,112. Every tissue type has its own specific type of fascia 113. 
Its role extends beyond the level of the cell, as it forms a mechanical link between a cell nucleus and the entire body 

114–116. It is clear that the fascia integrates the mechanical functionality of all tissues involved 117. In its specific role in 
the force distribution in and between tissues 105, it has a large impact on the Young’s modulus where it allows for the 
combination of tissues to handle far more force than each tissue type could in isolation. . It is not clear in what way 
fascia dysfunction 118 influences force transmission in tissue nor is its role clear in damage, regeneration 119 and wound 
healing120. General issues with fibrin and collagen however, directly impact the quality and function of the fascia.

Healthy tissue can normally withstand 2-4 hrs of static mechanical forces causing local reduced perfusion (occlusion). 
Sitting, for instance, causes non-pathological ischaemia in the subcutaneous tissue 121. The reaction of tissue to pressure 
is not static but relies on the characteristics of the force applied. Brief periods of load relief during a 2 hour loading 
period did not have any significant effect on the damage progress 122. It also appears that, over time, the relative softness 
of, for example, a sitting cushion becomes less important123.

The integrated biomechanical and physiological properties of tissue allow the body to handle forces far beyond normal 
biological values.
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Figure 2: Schematic representation of force distribution in tissue under the influence of gravitational forces.

BIOMECHANICS AND BIOTENSEGRITY 

Each tissue type responds differently to force applied. Forces applied on a complex structure like a body, will not only 
compress tissue, but also cause shearing and even pulling forces. Shearing and pulling forces cause tension. Logically, 
shear and tension usually act at a different location than compression forces124.

Tissue is not homogeneous125. The parts cooperate to absorb and/or handle energy from forces applied from outside 
of the body, by stretching, absorbing force and/or deformation. Complex processes are involved in transferring forces 
between tissues whilst maintaining homeostasis. The body needs to allow stretching of the skin, handle pressure increase 
in the adipose tissue and also allow free movement of the muscle whilst not obstructing perfusion of blood and lymph or 
hindering neural function126.  

To be able to maintain tissue integrity and mechanical stability, fascia plays a pivotal role. It has a complex structure from 
macro to micro127 and is very well adapted to sensing and transferring static and dynamic forces in the body112. This system 
functions in a continuum at the molecular128, cellular, tissue129 and body level130. Therefore, it can sense, transfer and 
withstand forces in a continuous way from the skin up to the atomic level of an individual cell nucleus and vice versa 131.

Tissue, bones and fascia cooperatively functions like a flexible pole and guy rope structure. This means that the combination 
of tension in the fascia and rigidity of the bones, combined provide a strong but flexible structure. This system, based 
upon tension to maintain tissue integrity, is called biotensegrity132. In this system, the muscles function as an actor, the 
bones as an anchor and the fascia as connecting rope. This system also exists at the level of tissue and cells. It enables 
the formation of compartments in, around and between tissues. The connective tissue then functions as a force handling 
structure (figure 2). Its function may be more than to act as a rope because it functions in a moist environment where 
hydraulic or hydrodynamic mechanisms come into play 133. 

The biotensegrity system also implies that the ability to withstand external forces depends on the direction the forces are 
applied. The “design” of the human body is made for a “normal” and “self-supporting” life. This means that the tissue 
is anisotropic 134. The ability to handle forces is not the same for all angles and starting points. There are indications that 
shear stress is more causative for tissue damage when compared to  pressure stress 124,135. Therefore, if force applied is too 
large or from an odd angle, it may cause ruptures in tissue136. Mostly due to changes in the collagen structure137,138. The 
Morel-Lavallée lesion, a posttraumatic haemolymphatic collection related to shearing injury and disruption of interfascial 
planes between subcutaneous soft tissue and muscle139,  is not a part of usual pressure damage theory, whilst it should be 
since 40%  percent of these lesions are on the hip, gluteal or lumbosacral region 140. Reversibly it is unclear how many 
deep tissue injuries are in reality a traumatic lesion with a very different aetiology (patient transfer)141.  This also has 
implications for diagnosis and treatment 142.

Damage in tissue as a result of mechanical stresses can occur at several levels, from blistering of the skin if the 
dermo-epidermal junction 143 is damaged; to necrosis of the subcutis due to the adipose tissue; to necrosis of muscles 
because they have a small low threshold for mechanical stress; to local necrosis due to extreme high forces (Laplace 
law) near bony structures 144. If and which type of tissue will fail will depend on the characteristics of the mechanical 
forces exerted and on the quality of the tissues or body systems involved 145. This may involve more than one tissue 
type as damage to a tissue can affect the threshold of other tissues. The interdependent function of tissues in force 
handling means that events on one point have an impact on the entire system. Problems may not manifest at the site 
of origin. Even at a superficial ulcer, the microcirculation can be compromised at a depth of 10mm146.
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Figure 3. Representation of force over time, surpassing the tissue threshold in a very short or a long period 

It is not unlikely that a structural problem in a tissue manifests itself at a different location, making it hard to discover 
exactly what is causing injury.

The amount of force is negatively correlated with the time it is applied in relation to damage. However, this is not the 
entire story. Thixotropy of tissue causes it to have a tissue response time, its deformation can only begin when the tissue 
has become more viscoelastic. In a very short time frame lesser force can cause damage due to the inert and, slightly 
thixotropic nature of tissue 147. These properties are the reason tissue needs some time to respond to a force. Forces applied 
faster than the “tissue response time” cause trauma. This means tissue will need time to adapt to an incoming force. 
Logically, this means that pushing very fast will also cause bruises in the tissue. Similarly, pulling on a body may cause 
unanticipated tissue damage 148. This is well in line with findings that deep tissue damage develops in a short time frame 
and ischemia is likely not the only causative factor 149.

This also explains why manual handling techniques for moving patients can cause Morel-Lavallée like trauma which later 
is categorised as pressure damage (pressure sore). So not only relatively low but prolonged forces may cause injury, also 
short but high forces damage tissues. Therefore, we must adapt the time-force graph in order to reflect trauma induced by 
short peak forces (figure 3). 

Any patient movement can be both intentional and unintentional. Similarly, any movement can be gross or micro 
movement. Some of the patients’ movements can be made by themselves and other movements can be initiated 
by their carers manually (manual handling) or using mechanical aids. These types of movements when combined 
together with the identified complexities of the body’s internal systems for preventing and repairing tissue damage, 
leads to a reasoned conclusion that, the most effective preventative trajectory to maintaining the patient’s optimum 
tissue integrity is to control the two major factors that are within their external environment: Both the resting/
support surface interface and ways that patients are rested/supported, moved and stabilised.

DIFFERENCES BETWEEN HEALTH AND DISEASE 

In a healthy subject, lesions at the body-surface interface rarely develop.  Lesions occur when the tissue involved is 
not able to withstand the force applied. In order to develop force-induced damage in patients, it is required that a) 
the forces cannot be evaded, b) the tissue quality is reduced and/or c) homeostatic and/or regeneration processes are 
impaired. Patients suffering from generic, structural or systemic issues may qualify by having less opportunity to 
counter, recover or bypass the effects of forces on or in the tissue compared to a healthy subject.

General risk factors for acquiring pressure ulcers are summed up in the Braden scale: which addresses both causative 
external factors: pressure and friction and disabling factors (tissue threshold reducing): sensory perception, activity, 
mobility, nutrition, skin moisture. Table 1 provides more detail and examples in which the tissue threshold may be 
impaired by factors in the entire body, its systems, its structures and/or local factors.
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Behavioural issues, the position of the body in time and 
space, are usually summarised as mobility problems. 
Immobility causes vessels to be occluded for a longer 
period than the tissue can handle. Lack of oxygen 
causes cells to die. Normally, hypoxic signalling leads to 
repositioning of the body. Repositioning is compromised 
when the body cannot be timely repositioned. This is 
usually caused by an inability to move – as in the case 
of very ill or weak persons, or co-morbidity due to spinal 
cord injury. There is a trade-off in surface type – in terms 
of the positioning is easy on a relatively hard surface 
whilst a high conforming surface may increase the 
energy needed to reposition the body. This becomes even 
more important when it is understood that aged muscle 
in itself is “stuck in gear”, and is not able to produce 
the force needed to reposition the body 176. Another 
possibility is that the body is not detecting forces and/or 
hypoxia, usually as a result of neural pathology. Damage 
can also occur without obvious ischaemia, which makes 
it hard for the body to detect.

Immobility for longer than a few days causes numerous 
changes such as increased skin temperature, hyperaemia 
and increased transepidermal water loss177 of which 
reduced bone density and muscle atrophy178 are the most 
well-known179. Tissue deformation can be macro: muscle 
deformation180 and micro: thinning, stiffening, deformation 
of several tissue types and changes in collagen and elastine 
type and function181,182. Micro changes in tissue, especially 
stiffening, alter the cellular response. In as little as fourteen 
days of bed rest, a healthy middle-aged subject will develop 
significant muscle damage183. Apart from immobility, 
there are more marginal factors for reduced tissue quality. 
Atrophy compromises the force handling ability of muscle 
tissue184. Impaired force handling ability of muscle 
and other tissues may lead to numerous small, sublytic 
lesions. Repair will lead to a gradual fibrosis and further 
loss of tissue quality185. Ageing also impacts the ability to 
regenerate injured tissue like muscle186. The main cause 
for this is tissue fibroblast and macrophage senescence.

The role of the arterial system in force related injuries 
has been discussed above. However, any age or disease-
related change to the vascular system will have an 
immediate effect on the reaction to force and the ability 
to handle hypoxia, due to issues such as reduced elasticity 
and or endothelial dysfunction187. Different pathologies 
require different measures, where the quality of the vessel 
wall is compromised 188. Reduced vessel quality can 
dramatically increase the time needed for recovery from 
minutes to days. The key factor is to prevent indentation 
and maximise recovery time. For example, in spinal cord 
injured patients, the vessel walls are not compromised and 
here, alternating pressure has a better outcome189.

Table 1: Possible causes for reduction of tissue 
threshold©

Generic factors

1.	 Mobility issues which compromise the ability to 
reposition the body. 

2.	 Ageing 156–158

3.	 Co-morbity (diabetes, spinal cord injury)

4.	 Nutritional problems, patients can be cachexic which 
means that they simply do not have the energy 
available to run the necessary processes159, 160.

5.	 Endocrinological issues like diabetes161

6.	 Slow metabolic processes leading to slower 
cell generation159.

7.	 Stress 158,163

Systemic factors

8.	 Sensory disability due to neural system impairment. 
Compromising detection of local pressure 
and/or ischaemia.

9.	 Neural problems reducing the homoeostatic capacity 
of the tissue.

10.	 Metabolic problems which hamper the homoeostatic 
capacity of the tissue159,164,165.

11.	 Endothelial disability; due to endothelial problems, the 
exchange of metabolites in the tissue is impaired, local 
energy balance is disturbed and oedema can occur. 

12.	 Non-resolving inflammation is not a primary cause, but 
it contributes significantly to the pathogenesis166.

13.	 Vasopressors [cox]

Structural factors

14.	 Atrophy functionally compromising tissue167.

15.	 Tissue stiffening, which also leads to problems in force 
distribution168.

16.	 Lymphatic sclerosis169.

17.	 Perfusion problems like vascular disease where vessels 
easily collapse or have impaired recovery ability170,171. 

18.	 Fascial dysfunction150,172,173.

19.	 Local metabolic capacity, wounds in areas with a high 
metabolic activity like hands and face usually heal faster 
than wounds in areas with a lower metabolic rate

20.	 Biotensegrity issues

Local factors

21.	 Moisture174,175.
22.	 Time issues (See figure 3).
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The fastest source of damage is trauma, which results from extreme forces on tissue – for instance, due to pulling the 
body to reposition a patient, or non-suitable contact surfaces (shoes). Connective tissue and interfaces between tissue 
types are especially prone to this type of injury. If the connective tissue or collagen structures are compromised, even 
a light force can cause pathological ruptures150,151. However vigilant patient carers are, manually handling a patient 
generates peak forces that easily lead to the rupture of compromised tissue. Laplace Law dictates the generated force 
will maximise at bone-tissue interfaces, causing deep tissue injury.

The quality of the dermis can be influenced by moisture - changes in its collagen and elastin and flattening of the 
dermal-epidermal junction - all leading to a decrease in its energy absorbing capacity and increasing the chances of 
force related damage 93,152. The same applies for a degradation of the epidermal-dermal junction.

Adipose and muscle tissue have thixotropic properties; if it is not moved, it becomes stiff. This can be understood 
by the combined effect of adipose cells and the fascia. However, this means that abrupt application of force on static 
tissue has an effect on muscle and adipose tissue that may cause microscopic ruptures in the compromised tissue 102. 
Generally, collagen will not deteriorate gradually but it is more likely to rupture. The mechanical integrity of the tissue 
can be further reduced by lipid position in fascia 153 and stiffening 154,155.



““Over 22 internal marginal influencing 
factors. These include generic (such as 
stress), systematic, structural and local 
factors, that can contribute to the loss of 
optimum tissue integrity.

If the tissue reperfusion is not optimal, tissue will be hypoxic for a longer period. Adipose, muscular, dermal and 
neural tissues are not equally sensitive to hypoxia. This may be another explanation why damage does not always 
occur at the location of the highest force, notwithstanding better resistance to hypoxia. The short-term and the 
mechanical properties of adipose tissue are negatively influenced by fibrosis as a result of long-term hypoxia190, 
which is another cause of connective tissue degradation reducing tear resistance.

A prominent issue in tissue damage is inappropriate inflammation. In essence, this is damage-induced damage. It 
is conceivable that a small number of dead cells, combined with failing inflammation or sensory failure, triggers a 
snowball effect191, leading to larger defects to which a response does not necessarily solve problems 192.

This is because the inflammatory response in itself can be a cause of nervous and muscular damage, eventually 
leading to nerve damage and rhabdomyolysis193. Further, immune senescence194 can lead to a reduced immune 
response and this inflammation195 is considered a major cause of age-related events.

Apart from the obvious hardship to reposition, the paraplegic person also faces the direct and indirect results of 
the spinal lesion196,197 which impacts movement, but also tissue (including bone) itself 198,199. Nerve fibres degrade 
over time, compromising the pivotal role that the neural system plays in tissue homeostasis and repair. Skin/tissue 
failure might be misdiagnosed as being force related tissue damage. Critically ill patients may develop acute skin/
tissue failure200,201, which appears as force related tissue damage but has a different aetiology202. Failing skin loses 
normal temperature control and cannot prevent transdermal loss of fluid, electrolyte and protein203. It is an indicator 
of body system failure.

The body uses complex systems of cells for homeostasis and repair. The impact/effect that forces have on the 
biotensegrity system at one point may manifest elsewhere in the system. The many ways that forces can exceed 
thresholds, and tissues comprised, makes typing ulcerations difficult204. Critically ill patients suffer from serious 
system malfunction where the neural and muscular system are deteriorating205.

Patients may help us to not only distinguish between skin/tissue failure that is due to body system failure of both 
critically ill and end of life patients (last 5 days approx.) and that of force related tissue damage (pressure injury), 
but also help discover what is age-related and what is disease-related marginal factors in pressure related tissue 
damage. So not only factors related to force and tissue threshold but also behavioural factors play a role in force 
related tissue damage.

CONCLUSION AND RECOMMENDATIONS

There is a common concept that force related tissue damage (presently referred to as pressure injury, historically 
called pressure ulcers etc.) results from vessel collapse and cell death due to compressing (pressure theory) tissue 
between bone and a hard surface (figure 1). This is an oversimplification of the processes involved as it focuses 
on passing the static tissue pressure threshold. However, it ignores the interrelation and dynamics of many forces 
exerted on tissue and the reasons why tissue thresholds have been passed.

Force related tissue damage occurs when events lead to stress and damage at a molecular, cellular, tissue, organ 
and organism level, well in advance of the skin being broken. Sublytic damage at one point can cascade via 

mechanical, physiologic, chemical or systemic pathways into pathological lesions. Present wound care 
science struggles to diagnose and cure lesions due to the complexity and processes involved 

regarding tissue homoeostasis, damage and regeneration. This paper identifies in 
table 1 over 22 internal marginal influencing factors. These include generic 

(such as stress), systematic, structural and local factors, that can 
contribute to the loss of optimum tissue integrity (i.e. 

that can cause/contribute to both a reduction in 
the tissue resistance threshold and/or a 

reduction in tissue recovery).

A predictive approach will require a greater use of available 
standard medical procedures which are applicable for wound care and 

would include current diagnostic tools for assessing and grading deep tissue 
injury (DTI), endothelial status and reperfusion injury. Incorporating the use of classical 

diagnostic tools such as medication screening206,207, laboratory values208,209, biomarkers210,211, tissue 
sampling212,213 and imaging106,123 guidelines. Together with available advanced diagnostic tools such as 

(epi) genetic212,214–216, proteomic217 and metabolomic218,219 screening they will allow us to predict, prevent and treat 
individuals at risk in the near future.

Some patients are more prone and of a higher risk to tissue damage, screening tools can overlook patients who 
don’t show tell-tale signs but are nevertheless prone and are at risk to tissue damage when the body’s threshold of 
resistance and/or ability to recover from damage, is reduced and/ or surpassed. Unnecessary external forces can be 
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generated by the practices used to rest the patient, by how they are moved and how they are re-stabilised, during and 
after their body mass has been re-orientated. They are an undesirable result from having to work against gravity and 
can be directly linked to the manual and/or mechanical handling practices being used to overcome the downward 
gravitational forces that are keeping the patient stable.

Any patient movement and stability should be controlled in a way, which requires working with gravity. Allowing 
the body to move and be re-orientated safely, further compliments and supports the body’s innate homeostasis to 
keep the patients skin and tissues within its natural threshold of resistance and repair. Thereby, maintaining its 
optimum tissue integrity. Ideally a patient should be rested, repositioned and stabilised by using gravity without the 
need for manual and/or mechanical handling. It should allow repositioning and stabilising to be at a sufficiently slow 
controlled rate and allowing the bodies homeostatic and biotensegrity processes to safely dissipate any potential 
related tissue damaging forces.

This paper proposes a future trajectory that is both desirable and achievable and would bring wound care prevention, 
diagnosis and assessment up to date. A trajectory that consigns statements such as: “Off-loading the area still offers 
the best chance for tissue that is ischemic or injured, but not infarcted” 220 to be logical at first sight but in reality 
non-sufficient for practical application. The evidence base for this approach to safer care demonstrates that 
force related tissue damage prediction and prevention, rather than treatment, is always the preferred approach to 
maintaining the patient’s optimum tissue integrity.

Categorising force related tissue damage using terms like inflammation, amount of tissue lost or necrosis does not 
fully address events leading to force related tissue damage. Recognising parameters of force, behaviour and tissue 
threshold in the events leading to ulceration may impact the way we prevent and treat force related tissue damage. 
Clearer guidelines are required that not only recognise, identify, and incorporate the exact tissues and systems 
involved but also make sure the latest up to date options for prevention, diagnosis, assessment and treatment are 
available and used.
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If you want to teach people
a new way of thinking, don’t bother trying 

to teach them. Instead, give them a tool,  the use 
of which will lead to new ways of thinking.

- Buckminster Fuller

““

“ I seek through comprehensive 
anticipatory design science and its 
reductions to physical practices to reform the
environment instead of trying to reform humans,
being intent thereby to accomplish prototyped
capabilities of doing more with less...
- Buckminster Fuller

“

FORCE RELATED
TISSUE DAMAGE

“ A combined ergonomic and
biotensegritalogical approach to remove the 
risks to both patient’s skin/tissue and the 
carers musculo-skeletal system associated 
with inbed care and positioning.
- Phil Strong

“

FOR MORE BACKGROUND INFORMATION ON OUR REASONING.

Please note that the sub links to further information can be found within the links below:

https://www.linkedin.com/pulse/cards-table-eliminating-tissue-damage-gamble-phil-strong

https://www.linkedin.com/pulse/why-metamorphosis-needed-protect-both-patients-carers-phil-strong

https://www.linkedin.com/pulse/matching-external-environment-patients-innate-phil-strong

https://www.linkedin.com/pulse/hidden-time-bomb-causing-injuries-nurses-carers-phil-strong

https://www.linkedin.com/pulse/banishing-bad-backs-making-inbed-patient-care-safer-
nurses-strong

https://www.linkedin.com/pulse/moving-handling-making-
safer-carers-well-patients-phil-strong

https://www.linkedin.com/pulse/
open-letter-presidents-npuap-epuap-

phil-strong

http://www.npuap.org/wp-content/uploads/2012/01/NPUAP-Posi-
tion-Statement-on-Staging-Jan-2017.pdf

https://www.linkedin.com/pulse/4-ways-cell-may-die-harm-jaap-smit

https://www.linkedin.com/pulse/missing-synergy-when-moving-patients-being-cared-inbed-phil-strong-2

https://www.linkedin.com/pulse/forgotten-interface-when-caring-patients-confined-bed-
phil-strong

https://www.linkedin.com/pulse/why-implementing-effec-
tive-inbed-care-management-approach-phil-strong

https://www.linkedin.com/pulse/why-
your-inbed-care-safety-important-phil-strong

https://www.linkedin.com/pulse/championing-change-need-
improve-inbed-care-both-patients-phil-strong

https://www.linkedin.com/pulse/inbed-patient-movement-logical-approach-phil-strong

https://www.linkedin.com/pulse/einstein-effect-inbed-care-phil-strong-1

https://www.linkedin.com/pulse/matter-how-well-intentioned-care-tissue-integrity-protect-
ed-strong

https://www.linkedin.com/pulse/ideal-inbed-care-environ-
ment-fantasy-possibility-phil-strong

     https://www.linkedin.com/pulse/
inbed-care-management-alterna-

tive-view-phil-strong

https://www.linkedin.com/pulse/why-curiosity-improving 
-safe-patient-care-phil-strong

https://www.linkedin.com/pulse/changing-way-we-think-safe-patientcare-phil-strong

https://www.linkedin.com/pulse/improving-safe-patient-care-knowledge-gap-phil-strong

https://www.linkedin.com/pulse/challenge-innovative-product-adoption-health-social-care-phil-strong

https://www.linkedin.com/pulse/impact-emerging-technology-inbed-care-phil-strong

https://www.linkedin.com/pulse/unconscious-behavioural-drift-phil-strong

https://www.linkedin.com/pulse/forgotten-question-when-assessing-patient-in-bed-care-phil-strong

https://www.linkedin.com/pulse/we-moving-patients-assaulting-them-phil-strong
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