

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-08/0237 of 26 October 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Chemofast Injection System VK, VK Nordic for concrete

Bonded fastener for use in concrete

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

CHEMOFAST Anchoring GmbH

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-08/0237 issued on 18 November 2019

European Technical Assessment ETA-08/0237 English translation prepared by DIBt

Page 2 of 31 | 26 October 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z97062.21 8.06.01-168/21

European Technical Assessment ETA-08/0237

Page 3 of 31 | 26 October 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Chemofast Injection system VK, VK Nordic for concrete" is a bonded anchor consisting of a cartridge with injection mortar VK or VK Nordic and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1, C 2, C 3, C 5 and C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4, C 6 and C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance for seismic performance categories C1	See Annex C 12 and C 13
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance			
Content, emission and/or release of dangerous substances	No performance assessed			

Z97062.21 8.06.01-168/21

European Technical Assessment ETA-08/0237

Page 4 of 31 | 26 October 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

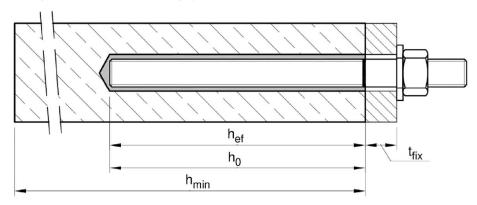
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

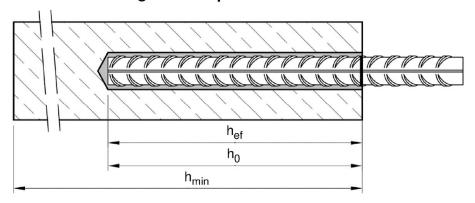
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

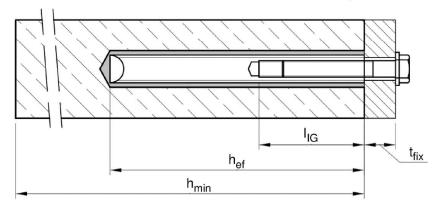
Issued in Berlin on 26 October 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Z97062.21 8.06.01-168/21



Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

 t_{fix} = thickness of fixture h_0 = nominal drill hole diameter

 h_{ef} = effective embedment depth I_{IG} = thread engagement length

 h_{min} = minum thickness of member

Chemofast Injection System VK, VK Nordic for concrete

Product description

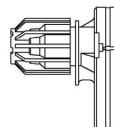
Installed condition


Annex A 1

Cartridge system

Coaxial Cartridge:

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml

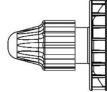

Imprint:

VK or VK Nordic

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Side-by-Side Cartridge:

235 ml, 345 ml up to 360 ml and 825 ml


Imprint:

VK or VK Nordic

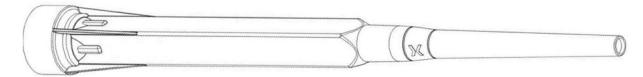
Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Foil tube Cartridge:

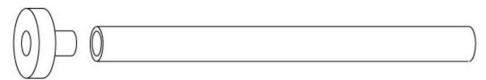
165 ml and 300 ml



Imprint:


VK or VK Nordic

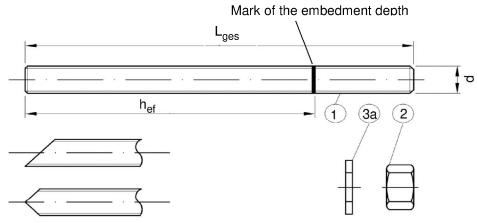
Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information


Static mixer SM-14W

Static mixer PM-19E

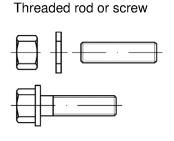
Piston plug VS and mixer extension VL

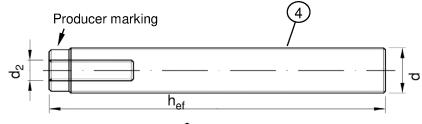
Chemofast Injection System VK, VK Nordic for concrete


Product description

Injection system

Annex A 2


Threaded rod M8 up to M30 with washer and hexagon nut



Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

Internal threaded rod IG-M6 to IG-M20

Marking Internal thread

Mark

M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

Filling washer VFS

Mixer reduction nozzle MR

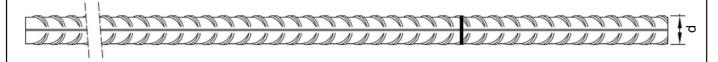
Chemofast Injection System VK, VK Nordic for concrete

Product description

Threaded rod; Internal threaded rod Filling washer; Mixer reduction nozzle

Annex A 3

Stee	Designation	Material							
hc	nc plated ≥ 5 ot-dip galvanised ≥ 4	acc. to EN ISO 683-4:2 µm acc. to EN ISO 0 µm acc. to EN ISO 5 µm acc. to EN ISO	4042 1461	2:2018 or 1:2009 and EN ISO 10684:	2004+AC:2009 or				
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
				$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 240 \text{ N/mm}^2$	A ₅ > 8%			
	Threaded rod		4.8	f _{uk} = 400 N/mm ²	$f_{yk} = 320 \text{ N/mm}^2$	A ₅ > 8%			
		acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8%			
		LIV 130 090-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%			
			8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ ≥ 8%			
		ann to	4	for anchor rod class 4.6 o	r 4.8				
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for anchor rod class 5.6 o	r 5.8				
			8	for anchor rod class 8.8					
3a Washer Steel, zinc plated, hot-dip galvanised or sherardized (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)									
3b	Filling washer	Steel, zinc plated, ho	t-dip	galvanised or sherardized		T=			
71 I	Internal threaded	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
	anchor rod	acc. to		$f_{uk} = 500 \text{ N/mm}^2$ $f_{yk} = 400 \text{ N/mm}^2$		$A_5 > 8\%$			
		EN ISO 898-1:2013	8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8%			
Stair	nless steel A4 (Mater	rial 1.4401 / 1.4404 / 1	.457	1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1 1.4565, acc. to EN 10088	o EN 10088-1:2014)				
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
1	Threaded rod ¹⁾³⁾	adad rad1)3)		f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²	A ₅ ≥ 8%			
	Throughou four / /	acc. to	70	f _{uk} = 700 N/mm ²	f _{vk} = 450 N/mm ²	A ₅ ≥ 8%			
		EN ISO 3506-1:2020		f _{uk} = 800 N/mm ²	f _{vk} = 600 N/mm ²	A ₅ ≥ 8%			
			50	for anchor rod class 50	1.7"				
2	Hexagon nut ¹⁾³⁾	acc. to	70	for anchor rod class 70					
		14 5 18 13 30 11 12	80	for anchor rod class 80					
За	Washer	A4: Material 1.4401 / HCR: Material 1.4529	1.44 9 or 1	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 .4565, acc. to EN 10088-1 :N ISO 7089:2000, EN ISC	578, acc. to EN 10088-1 : 2014	1:2014			
3b	Filling washer	Stainless steel A4, H	igh c	orrosion resistance steel					
	Internal threaded	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
	The state of the s	() =)							
1	anchor rod ¹⁾²⁾	acc. to	50	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N/mm}^2$	$A_5 > 8\%$			
	Washer	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H	80 1.43 1.44 9 or 1 06, E	for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 .4565, acc. to EN 10088-1 :N ISO 7089:2000, EN ISC orrosion resistance steel	578, acc. to EN 10088- : 2014 : 7093:2000 or EN ISO	1			


 $^{^{1)}}$ Property class 70 or 80 for anchor rods and hexagon nuts up to M24 and Internal threaded anchor rods up to IG-M16 $^{2)}$ for IG-M20 only property class 50

³⁾ Property class 80 only for stainless steel A4 and HCR

Chemofast Injection System VK, VK Nordic for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range $0.05d \le h_{rib} \le 0.07d$ (d: Nominal diameter of the bar; h_{rib} : Rib height of the bar)

Table A2: Materials Reinforcing bar

Part	art Designation Material					
Reba	ar					
1	Reinforcing steel according to EN 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} and k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$				

Chemofast Injection System VK, VK Nordic for concrete	
Product description Materials reinforcing bar	Annex A 5

Specification of the intended use

Fasteners subject to (Static and quasi-static loads):

	Working life	50 years	Working life 100 years				
Base material	uncracked concrete	cracked concrete	Base material	uncracked concrete			
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M Ø8 to Ø IG-M6 to I	Ø 32 ,	No performano	e assessed			
Temperature Range	I: - 40°C t II: - 40°C t III: - 40°C t	74 1040 00 11 1040 00	No performano	e assessed			

Fasteners subject to (seismic action):

	Performance Category C1	Performance Category C2
Base material	Cracked and un	cracked concrete
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M30, Ø8 to Ø32	No performance assessed
Temperature Range	I: -40°C to $+40^{\circ}\text{C}^{1)}$ II: -40°C to $+80^{\circ}\text{C}^{2)}$ III: -40°C to $+120^{\circ}\text{C}^{3)}$	No performance assessed

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

Base material:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Specifications	Annex B 1

^{2) (}max. long-term temperature +50°C and max. short-term temperature +80°C)

^{3) (}max. long-term temperature +72°C and max. short-term temperature +120°C)

Page 11 of European Technical Assessment ETA-08/0237 of 26 October 2022

English translation prepared by DIBt

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air (CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature in concrete:

VK:	-10°C up to +40°C for the standard variation of temperature after installation.
VK Nordic:	-20°C up to +10°C for the standard variation of temperature after installation.

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Specifications (Continued)	Annex B 2

Table B1: Installation parameters for threaded rod											
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	t	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective and advantage		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Ellective embedmer	Effective embedment depth		[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned ins	h _{ef,max} stallation d _f ≤	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture	Push through in		[mm]	12	14	16	20	24	30	33	40
Maximum installatio	n torque	max T _{inst}	[Nm]	10	20	40	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]		f + 30 m : 100 mr			ľ	n _{ef} + 2do)	
Minimum spacing s _m		s _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance		c _{min}	[mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for reinforcing bar

Reinforcing bar	Ø 81)	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 25 ¹⁾	Ø 28	Ø 32		
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d_0	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]	0.	h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2d ₀			
Minimum spacing	s _{min}	[mm]	40 50		60	70	80	100	125	140	160
Minimum edge distance	c _{min}	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded anchor rod

Internal threaded anchor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Internal diameter of anchor rod	d_2	[mm]	6	8	10	12	16	20	
Outer diameter of anchor rod1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30	
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35	
Effective and administrational	h _{ef,min}	[mm]	60	70	80	90	96	120	
Effective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22	
Maximum installation torque	max T _{inst}	[Nm]	10	10	20	40	60	100	
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40	
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 3 ≥ 100	30 mm 0 mm	h _{ef} + 2d ₀				
Minimum spacing	s _{min}	[mm]	50	60	80	100	120	150	
Minimum edge distance	c _{min}	[mm]	50	60	80	100	120	150	
1) Will 1 1 1 1 5 1 4000 4 0 0005 40 0000									

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Installation parameters	Annex B 3

Table B4: Parameter cleaning and installation tools										
					arrenn)	and the state of t				
Threaded Rod	Re- inforcing bar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD	d _t Brust	-10	d _{b,min} min. Brush - Ø	Piston plug	Installation direction and us		
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1
M8	8		10	RBT10	12	10,5				
M10	8 / 10	IG-M6	12	RBT12	14	12,5		No plua	roquirod	
M12	10 / 12	IG-M8	14	RBT14	16	14,5		ivo piug	required	
	12		16	RBT16	18	16,5				
M16	14	IG-M10	18	RBT18		18,5	VS18			
	16		20	RBT20		20,5	VS20			
M20		IG-M12	24	RBT24		24,5	VS24			
6	20		25	RBT25	27	25,5	VS25	h _{ef} >	h _{ef} >	all
M24		IG-M16	28	RBT28	_	28,5	VS28	250 mm	250 mm	all
M27	25		32	RBT32	34	32,5	VS32			
M30	28	IG-M20	35	RBT35	37	35,5	VS35			
	32		40	RBT40	41,5	40,5	VS40			

Cleaning and installation tools

Hand pump

(Volume 750 ml, $h_0 \ge 10 d_s$, $d_0 \le 20 mm$)

Compressed air tool

(min 6 bar)

Brush RBT

Piston Plug VS

Brush extension RBL

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Cleaning and installation tools	Annex B 4

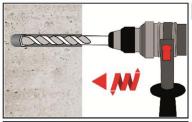
Table B5:	Table B5: Working time and curing time VK									
Tempera	ture in bas	se material	Maximum working time	Minimum curing time ¹⁾						
	Т		t _{gel}	t _{cure}						
- 10°C	to	- 6°C	90 min ²⁾	24 h						
- 5 °C	to	- 1 °C	90 min	14 h						
0°C	to	+ 4 °C	45 min	7 h						
+ 5 °C	to	+ 9 °C	25 min	2 h						
+ 10 °C	to	+ 19°C	15 min	80 min						
+ 20 °C	to	+ 29 °C	6 min	45 min						
+ 30 °C	to	+ 34 °C	4 min	25 min						
+ 35 °C	to	+ 39 °C	2 min	20 min						
	+40°C		1,5 min 15 min							
Carti	ridge tempe	erature	+5°C to	+40°C						

The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

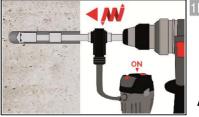
Table B6: Working time and curing time VK Nordic

Temperature in base material			Maximum working time	Minimum curing time 1)		
	Т		t _{gel}	t _{cure}		
- 20 °C	to	- 16°C	75 min	24 h		
- 15°C	to	- 11 °C	55 min	16 h		
- 10°C	to	- 6°C	35 min	10 h		
- 5°C	to	- 1 °C	20 min	5 h		
0°C	to	+ 4 °C	10 min	2,5 h		
+ 5 °C	to	+ 9 °C	6 min	80 min		
	+ 10 °C		6 min	60 min		
Cart	tridge tempe	rature	-20°C to +10°C			

¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.


Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Working time and curing time	Annex B 5

²⁾ Cartridge temperature must be at least +15°C


Installation instructions

Drilling of the bore hole

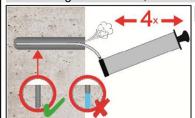
Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment depth.
Drill bit diameter according to Table B1, B2 or B3.
Aborted drill holes shall be filled with mortar.
Proceed with Step 2 (CAC and MAC).

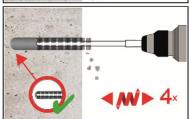
Hollow drill bit system (HDB)

Drill a hole to the required embedment depth.

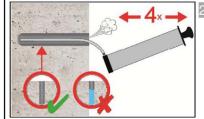
Drill bit diameter according to Table B1, B2 or B3.


Aborted drill holes shall be filled with mortar.

Proceed with Step 2 (CAC and MAC).


Attention! Standing water in the bore hole must be removed before cleaning

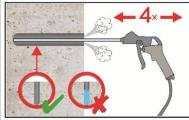
Manual Air Cleaning (MAC)

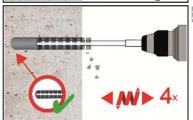

for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ ($d_0 < 14$ mm uncracked concrete only) with drilling method HD, HDB and CD

2a. Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

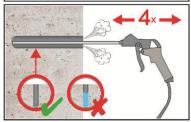
Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)

Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

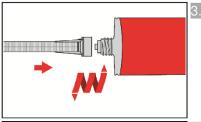

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Installation instructions	Annex B 6


Installation instructions (continuation)

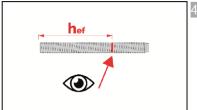
Compressed Air Cleaning (CAC):


All diameter with drilling method HD, HDB and CD

2a. Blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)



Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)


Finally blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

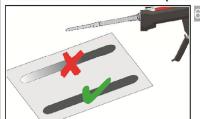
Screw on static-mixing nozzle SM-14W/PM-19E and load the cartridge into an appropriate dispensing tool. With foil tube cartridges cut off the foil tube clip before use

For every working interruption longer than the maximum working time t_{work} (Annex B 5) as well as for new cartridges, a new static-mixer shall be used.

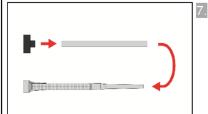
Mark embedment depth on the anchor rod.

The anchor rod shall be free of dirt, grease, oil or other foreign material.

Chemofast Injection System VK, VK Nordic for concrete


Intended Use

Installation instructions (continuation)


Annex B 7

Installation instructions (continuation)

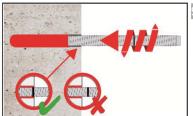


Not proper mixed mortar is not sufficient for fastening. Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes, for foil tube cartridges at least 6 full storkes).


Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B4 for the following applications:

- Horizontal and vertical downwards direction: Drill bit-Ø $d_0 \ge 18$ mm and embedment depth $h_{ef} > 250$ mm
- Vertical upwards direction: Drill bit- \emptyset d₀ \ge 18 mm Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

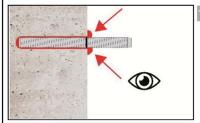
Injecting mortar without piston plug VS:


Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets. Observe the temperature related working time t_{work} (Annex B 5).

Injecting mortar with piston plug VS:

Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

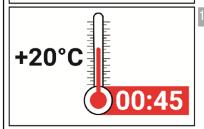
Observe the temperature related working time t_{work} (Annex B 5). .



Insert the anchor rod while turning slightly up to the embedment mark.

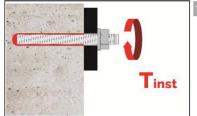
Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Installation instructions (continuation)	Annex B 8

Installation instructions (continuation)



Annular gap between anchor rod and base material must be completely filled with mortar. In case of push through installation the annular gap in the fixture must be filled with mortar also.

Otherwise, the installation must be repeated starting from step 7 before the maximum working time t_{work} has expired.



For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).

Temperature related curing time t_{cure} (Annex B 5) must be observed.

Do not move or load the fastener during curing time.

Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1, B2 or B3).

In case of static requirements (e.g. seismic), fill the annular gab in the fixture with mortar (Annex A 3). Therefore replace the washer by the filling washer VFS and use the mixer reduction nozzle MR.

Chemofast Injection System VK, VK Nordic for concrete

Intended Use

Installation instructions (continuation)

Annex B 9

ī	Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods										
Tr	readed rod			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm ²]	36,6	58	84,3	157	245	353	459	561
Cł	naracteristic tension resistance, Steel failu	re ¹⁾									
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
CI	naracteristic tension resistance, Partial fac	tor ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,	0			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	36			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8	37			
Stainless steel A4 and HCR, class 80 $\gamma_{Ms,N}$ [-] 1,6											
CI	naracteristic shear resistance, Steel failure	, 1)		ī							
٦	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
rarm	Steel, Property class 5.6 and 5.8	V ⁰ Rk.s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
eve	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
nt	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
h lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
×	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
CI	naracteristic shear resistance, Partial facto	r ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	§7			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	25			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	88			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
St	Stainless steel A4 and HCR, class 80 $\gamma_{Ms,V}$ [-] 1,33										
- 1											

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Fastener type not part of the ETA

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

²⁾ in absence of national regulation

Table C2:	Characteristic v	alues of te	nsion load	s under static and quasi-static actio					
Fastener				All Anchor types and sizes					
Concrete cone fa	ailure		,						
Uncracked concre	ete	k _{ucr,N}	[-]	11,0					
Cracked concrete)	k _{cr,N}	[-]	7,7					
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}					
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}					
Splitting									
	h/h _{ef} ≥ 2,0			1,0 h _{ef}					
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$					
	h/h _{ef} ≤ 1,3			2,4 h _{ef}					
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}					

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Tabl	le C3: C	haracteristic va	lues of ten	nsion load	ls un	der s	tatic a	and q	uasi-	statio	actio	on	
	ded rod				M8	M10	M12	M16	M20	M24	M27	M30	
Steel fa			1				A	,	-	1 04)			
S	cteristic tension	resistance	N _{Rk,s}	[kN]	A _s · f _{uk} (or see Table C1)								
Partial	A CONTROL CONTROL OF		γ _{Ms,N}	[-]	see Table C1								
		nd concrete failure esistance in uncracke		20/25									
O Harac	I: 40°C/24°				10	12	12	12	12	11	10	9,0	
nge	II: 80°C/50°	Dry wet			7,5	9,0	9,0	9,0	9,0	8,5	7,5	6,5	
Temperature range	III: 120°C/72	3-2-0 W -0.0-2-0 W 3-0 W		, nu , m	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0	
oeratı	I: 40°C/24°	С	TRk,ucr	[N/mm²]	7,5	8,5	8,5	8,5					
Тетр	II: 80°C/50°	C flooded bore hole			5,5	6,5	6,5	6,5	_ N	No Performance Assessed			
	III: 120°C/72	2°C			4,0	5,0	5,0	5,0		, 1000000			
Charac		esistance in cracked	concrete C20/	25									
	I: 40°C/24°	50700			4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5	
Temperature range	II: 80°C/50°	C Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5	
ture	III: 120°C/72	2°C	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5	
pera	I: 40°C/24°		-nk,ci	[10//////]	4,0	4,0	5,5	5,5					
Tem	II: 80°C/50°	C flooded bore hole			2,5	3,0	4,0	4,0	No Performance Assessed			e	
	III: 120°C/72	2°C			2,0	2,5	3,0	3,0					
Reduk	tion factor $\psi^0_{ t SL}$	us in cracked and un	cracked concr	ete C20/25									
ture	I: 40°C/24°	C Dry, wet			0,73								
Temperature range	II: 80°C/50°	C concrete and flooded bore	ψ^0 sus	[-]	0,65								
Ten	III: 120°C/72	P°C hole			0,57								
Increas	sing factors for	concrete	Ψ _c	[-]				(f _{ck} / 2	20) ^{0,11}				
Charac	cteristic bond re	esistance depending		τ _{Rk,ucr} =	Ψ _c • τ _{Rk,ucr} (C20/25)								
	concrete strenç			$\tau_{Rk,cr} =$			Ψο	• ^τ Rk,α	cr(C20/2	25)			
	ete cone failur ant parameter	е			l			200 To	able C2				
Splitti								See 12	ible 02				
Releva	ant parameter							see Ta	able C2				
7674	ation factor	210			1,0				1,2				
	and wet concre	7.C	γ _{inst}	[-]	1,0	1	,4		1000	lo Perf		e	
	Second Flore						, 1			Asse	essed		
Chen	mofast Injecti	on System VK, VI	K Nordic for	concrete									
	ormances acteristic value	s of tension loads u	ınder static ar	nd quasi-stat	ic action	on (Thr	eaded	rod)		Anne	ex C 3	3	

Table C4: Characteristic	values	of sh	ear lo	ads ui	nder s	tatic a	nd qu	asi-st	atic acti	on
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	0,6 • A _s • f _{uk} (or see Table C1)							
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	W _{el} • f _{ul}	(or see	Table C	(1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	If	[mm]		n	nin(h _{ef} ; 1	12 • d _{nor}	_m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Threaded rod)	Annex C 4

Internal threaded anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Steel failure ¹⁾											
Characteristic tension resistance, 5.	8 N _{Rk,s}	; [kN]	10	17	29	42	76	123			
Steel, strength class 8.	8 N _{Rk,s}	, [kN]	16	27	46	67	121	196			
Partial factor, strength class 5.8 and 8.8	γ _{Ms,N}	ı [-]			1	,5					
Characteristic tension resistance, Stainless Steel A4 and HCR, Strength class 70 2)		[kN]	14	26	41	59	110	124			
Partial factor	γ _{Ms,N}	[-]			1,87			2,86			
Combined pull-out and concrete cone	failure	·									
Characteristic bond resistance in uncrac	ked concre	e C20/25		·			,				
<u>□ 1: 40°C/24°C</u> Dry, wet			12	12	12	12	11	9,0			
5 II. 60°C/50°C			9,0	9,0	9,0	9,0	8,5	6,5			
III: 120°C/72°C concrete		er [N/mm	6,5	6,5	6,5	6,5	6,5	5,0			
I: 40°C/24°C flooded b	τ _{Rk,u}	or Liviniii	8,5	8,5	8,5						
il: 80°C/50°C hole	3016		6,5	6,5	6,5	No Perf	Assessed				
III: 120°C/72°C			5,0	5,0	5,0						
Characteristic bond resistance in cracke	d concrete	220/25									
1: 40°C/24°C			5,0	5,5	5,5	5,5	5,5	6,5			
II: 80°C/50°C Dry, wet concrete			3,5	4,0	4,0	4,0	4,0	4,5			
### ### Concrete	I .	. [N/mm	2,5	3,0	3,0	3,0	3,0	3,5			
은 듇 I: 40°C/24°C	τ _{Rk,c}	- [[14/11111	4,0	5,5	5,5			200			
Dry, wet concrete 1	oore		3,0	4,0	4,0	No Perf	No Performance A				
III: 120°C/72°C			2,5	3,0	3,0						
Reduktion factor $\psi^0_{ extsf{SUS}}$ in cracked and ι	ıncracked c	oncrete C	20/25								
				0,73							
Entrangle III: 40°C/24°C Dry, wet concrete flooded in hole	1 11/	[-]		0,65							
년 III: 120°C/72°C hole				0,57							
Increasing factors for concrete	Ψο	[-]			(f _{ck} / 2	20) ^{0,11}					
Characteristic bond resistance dependin	g on	τ _{Rk,ucr} =	3	Ψ _c • τ _{Rk,ucr} (C20/25)							
the concrete strength class		τ _{Rk,cr} =	=		Ψc • τ _{Rk,}	_{cr} (C20/25)					
Concrete cone failure											
Relevant parameter					see Ta	able C2					
Splitting failure											
Relevant parameter					see Ta	able C2					
Installation factor											
or dry and wet concrete	γ _{inst}	[-]			1	,2					
or flooded bore hole				1,4	2 2		ormance A				
 Fastenings (incl. nut and washer) must The characteristic tension resistance for For IG-M20 strength class 50 is valid 								ea roa.			

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Internal threaded anchor rod)	Annex C 5

Internal threaded anchor rods				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure without lever arm ¹)			I	ı		1	ı		
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61	
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98	
Partial factor, strength class 5.8 a	γ _{Ms,V}	[-]				1,25				
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40	
Partial factor		γ _{Ms,V}	[-]			1,56			2,38	
Ductility factor	[-]	1,0								
Steel failure with lever arm1)										
Characteristic bending moment, Steel, strength class	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325	
	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519	
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]	1,25						
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456	
Partial factor		γ _{Ms,V}	[-]		2,38					
Concrete pry-out failure										
Factor		k ₈	[-]	2,0						
Installation factor		γ _{inst}	[-]	1,0						
Concrete edge failure										
Effective length of fastener		I _f	[mm]		min((h _{ef} ; 12 • d	nom)		min (h _{ef} ; 300mm	
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30	
Installation factor		γ _{inst}	[-]				1,0			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Internal threaded anchor rod)	Annex C 6

²⁾ For IG-M20 strength class 50 is valid

Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure									-			772
Characteristic tension res	istance	N _{Rk,s}	[kN]	$A_s \cdot f_{uk}^{1)}$								
Cross section area		A _s	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor		γ _{Ms,N}	[-]					1,42)				
Combined pull-out and	concrete fail											
Characteristic bond resist	ance in uncra	acked conci	ete C20/25									
_Φ <u>I: 40°C/24°C</u>	Dry, wet			10	12	12	12	12	12	11	10	8,5
emptane discrete disc	concrete			7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0
g g III: 120°C/72°C	COHOICE	TD1	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
ੁੱਛੇ <u>I: 40°C/24°C</u>	flooded	^τ Rk,ucr	[[,4/,1,1,1]	7,5 5,5	8,5	8,5	8,5	8,5	No Performance			P
Б <u>II: 80°С/50°С</u>	bore hole				6,5	6,5	6,5	6,5	No Performan Assessed			0
III: 120°C/72°C		<u> </u>		4,0	5,0	5,0	5,0	5,0				
Characteristic bond resist	ance in crack	ed concrete	e C20/25									
<u>Ι: 40°C/24°C</u>	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
1: 40°C/24°C 1: 80°C/50°C 1: 40°C/24°C 1: 80°C/50°C 1: 8	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0 3,0	4,5 3,5	4,5
## B		^τ Rk,cr	[N/mm ²]	2,0	2,5	3,0	3,0 5,5	3,0	3,0	3,5		
E I: 40°C/24°C II: 80°C/50°C	flooded			4,0 2,5	4,0	5,5 4,0	4,0	5,5	l N	е		
III: 120°C/72°C	bore hole			2,5	3,0 2,5	3,0	3,0	4,0 3,0	Assessed			
	araskad and	Lunaraakad	acceptate C		2,5	3,0	3,0	3,0				
Reduktion factor ψ^0_{sus} in		Tuncracked	Concrete C	20/23								
<u>Θ</u> I: 40°C/24°C	Dry, wet			0,73								
II: 80°C/50°C	concrete	Ψ ⁰ sus	[]	0.65								
e a	flooded	Ψsus	[-]	0,65								
II: 40°C/24°C III: 80°C/50°C III: 120°C/72°C	bore hole			0,57								
Increasing factors for con-	crete	Ψς	[-]	(f _{ck} / 20) ^{0,11}								
Characteristic bond resist	ance		τ _{Rk,ucr} =									
depending on the concrete	e strength		τ _{Rk,cr} =	$ ψ_{c} \cdot τ_{Rk,ucr}(C20/25) $ $ ψ_{c} \cdot τ_{Rk,cr}(C20/25) $								
Concrete cone failure			-nk,ci				+ C	nk,cr				
Relevant parameter							500	e Table	C2			
Splitting							300	Table	UZ.			
Relevant parameter							500	Table	C2			
							566	Table	02			
		1		1.0				1.	,2			
Installation factor								No Performance				
		γ _{inst}	[-]	1,0		1,4		- 1		lo Perfo	ormanc	<u>е</u>

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 7
Characteristic values of tension loads under static and quasi-static action	
(Reinforcing bar)	

²⁾ in absence of national regulation

Table C8: Characterist	tic values	of shea	r load	ds un	der s	tatic a	and q	uasi-	static	actio	า
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm					'	,					
Characteristic shear resistance	V ⁰ Rk,s	[kN]				0,5	0 · A _s	f _{uk} 1)			
Cross section area	A _s	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]		,			1,5 ²⁾				
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm											
Characteristic bending moment	M ⁰ Rk,s	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]			,		1,5 ²⁾				
Concrete pry-out failure		1									
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure											
Effective length of fastener	If	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300m					mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0	,			

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Reinforcing bar)	Annex C 8

²⁾ in absence of national regulation

Table C9:	Table C9: Displacements under tension load ¹⁾										
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concrete	e C20/25 und	ler static and quasi-sta	atic action	on							
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete C	20/25 under	static and quasi-station	c action								
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70			
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05	0,105						
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	19			0,1	70			
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245			
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	19			0,1	70			
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245			

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C10: Displacements under shear load¹⁾

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{v0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete	Cracked concrete C20/25 under static and quasi-static action									
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 9
Displacements under static and quasi-static action	
(threaded rods)	

Table C11: D	Γable C11: Displacements under tension load¹)											
Internal threaded a	nchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Uncracked concrete	e C20/25 under	static and quasi	-static acti	on								
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,023	0,026	0,031	0,036	0,041	0,049				
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,033	0,037	0,045	0,052	0,060	0,071				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119				
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172				
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119				
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172				
Cracked concrete C	20/25 under st	atic and quasi-st	atic action									
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,090			0,070						
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,105			0,105						
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,219			0,170						
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,255			0,245						
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,219			0,170						
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,255			0,245						

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \ \tau;$

Table C12: Displacements under shear load¹

Internal threaded	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20					
Uncracked and cracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{v0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04			
ranges	δ _{V∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0 \text{-factor } \cdot V;$

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 10
Displacements under static and quasi-static action	
(Internal threaded anchor rod)	

Anchor size rein	forcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concr	ete C20/25 ι	ınder static and	quasi-s	tatic act	ion						
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1						
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90				0,070			
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05	0,105						
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245			
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219		_		0,170			
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255	0,245						

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C14: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{v0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	Cracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor $\cdot V$; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

Chemofast Injection System VK, VK Nordic for concrete	
Performances Displacements under static and quasi-static action (Reinforcing bar)	Annex C 11

	ristic values of tension loads under seismic action ance category C1)
--	---

G.												
Threade	d rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel fail	ure											
Characte	ristic tension resi	stance	N _{Rk,s,eq,C1}	[kN]				1,0 •	$N_{Rk,s}$			
Partial fa	ctor		γ _{Ms,N}	[-]	see Table C1							
Combine	ed pull-out and	concrete failure										
Characte	eristic bond resist	ance in uncracke	d and cracked	concrete C2	20/25							
1	: 40°C/24°C			[N/mm²] -	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
ange	I: 80°C/50°C	Dry, wet concrete	^{- τ} Rk,eq,C1		1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
Femperature range	II: 120°C/72°C				1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
oerat -	: 40°C/24°C				2,5	2,5	3,7	3,7				
Tem	I: 80°C/50°C	flooded bore hole			1,6	1,9	2,7	2,7	No Performance Assessed			е
1	II: 120°C/72°C				1,3	1,6	2,0	2,0				
Increasin	ng factors for con-	crete	Ψ _c	[-]				1	,0			
	eristic bond resist oncrete strength o	τ	Rk,eq,C1 =			ψ _c •	^τ Rk,eq,	_{C1} (C20)/25)			
Installat	ion factor											
for dry ar	nd wet concrete				1,0				1,2			
for floode	ed bore hole		γ _{inst} [-]		1,4				No Performance Assessed			

Table C16: Characteristic values of shear loads under seismic action (performance category C1)

Threaded rod				M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]	0,70 · V ⁰ _{Rk,s}							
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0)1)							

¹⁾ Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1) (Threaded rod)	Annex C 12

Table C17: Characteristic values of tension loads under seismic action (performance category C1)												
Reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure												
Characteristic tension resistance	N _{Rk,s,eq,C1}	[kN]				1,0	• A _s • 1	fuk ¹⁾				
Cross section area	As	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,N}	[-]					1,42)					
Combined pull-out and concrete failure												
Characteristic bond resistance in uncra	icked and cra	acked con	crete C	220/25								
<u>θ</u> <u>I: 40°C/24°C</u> Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
\(\text{II} \)			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
## 6 III: 120°C/72°C concrete	τ _{Rk, eq,C1}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
ि हु ☐: 40°C/24°C flooded	nk, eq,C1	[14/11111]	2,5	2,5	3,7	3,7	3,7	No Performance Assessed				
II: 80°C/50°C bore hole			1,6 1,3	1,9 1,6	2,7	2,7	2,7					
III: 120°C/72°C bore note					2,0	2,0	2,0					
Increasing factors for concrete	Ψc	[-]	1,0									
Characteristic bond resistance depending on the concrete strength class	τ _{Rk}	_{k,eq,C1} =	Ψ _c • τ _{Rk,eq,C1} (C20/25)									
Installation factor												
for dry and wet concrete			1,2									
for flooded bore hole	γinst	[-]	1 4 No Perf				ormanc essed	е				

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Table C18: Characteristic values of shear loads under seismic action (performance category C1)

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V _{Rk,s,eq,C1}	[kN]	$0.35 \cdot A_s \cdot f_{uk}^{2}$								
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,52)								
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0) ³⁾								

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 13
Characteristic values of tension loads and shear loads under seismic action	
(performance category C1) (Reinforcing bar)	

²⁾ in absence of national regulation

²⁾ in absence of national regulation

³⁾ Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended