C) ESTES:

Flying Model Rocket Catalog

Welcome to the exciting world of model rocketry.

To be the best model rocket company on the planet...

Our Mission:

To work relentlessly to create exceptional customer experiences. Everything we do is designed to ignite passion for creativity, exploration, and innovation.

Our Values:

Our safety record:
60 years and over 500 million launches.

Our uniqueness

In a growing digital world, little compares to the experience of building and launching a model rocket.

Our desire to teach:

We recognize the value of model rocketry as an educational tool.

Our employees:

Many of our current employees have been on this journey with us for decades!

Welcome to Estes Industries and

 the Exciting World of Model Rocketry!Since its creation by Vern and Gleda Estes 61 years ago, our company has made possible over 500 million rocket launches - with an amazing safety record.

What is a Flying Model Rocket?

Estes flying model rockets are activity kits designed of lightweight materials such as paper tubing, balsa wood and plastic. Fins attached to the body tube help provide guidance and stability. An engine mount assembly holds the engine in place during rocket flight in most models.

Vern and Gleda Estes, the founders of Estes Rockets.

Flight Sequence and Model Rocket Parts

What is a Model Rocket Engine?

Estes model rocket engines are used to thrust a model rocket into the air. They are factory-assembled and comply with the code requirements of the National Association of Rocketry. They are single use and range in power from A to F sizes. The engine is started using an electrical launch system that is powered by alkaline batteries.

Components of a Model Rocket Engine

How to prepare your rocket engine for launch:
1 Use the plug to secure the starter into the nozzle of your rocket engine.
 rockets. See page 66 for the Model Rocket Engine Performance Chart.

Different Engine Phases

Thanks to the recovery system, you can enjoy the thrill of launching Estes rockets ove and over. Every launch, however, requires a new engine as engines can be used only once.

THRUST PHASE
 LIFTOFF

How Does a Model Rocket Engine Work?

(1) When the engine is started, it produces thrust and boosts the rocket into the sky.
(2) After the propellant is used up, the delay is activated producing tracking smoke and allowing the rocket to coast.
(3)

After the delay is used, the ejection charge is activated which deploys the recovery system, such as a parachute or streamer.

Penrose, we have

Where to Launch Model Rockets

The chart below tells you what size field to use for each size engine. For launch information, look at the "NAR Model Rocket Safety Code" (page 96). You should always check with your local city government for any special regulations that may apply to your area. Generally speaking, you can fly most Estes model rockets in a clear area the size of a football field or soccer field. Launch in little or no wind, and make sure there is no dry grass close to the launch pad or in the flying field. Each engine size is designated by a letter and is up to twice as powerful as the letter before it. See the engine section (pages 66-67) of this catalog for more information.

Launch Sfte Dimensions		
Installed Total Impulse (N-sec)	Equivalent Motor Type	Minimum Site Dimensions (ft.)
$0.00-1.25$	$1 / 4 \mathrm{~A}, 1 / 2 \mathrm{~A}$	50
$1.26-2.50$	A	100
$251-5.00$	B	200
$5.01-10.00$	C	400
$10.01-20.00$	D	500
$20.01-40.00$	E	1000
$40.01-80.00$	F	1000

Recommended Launch Area

Minimum launch site dimension for circular area is diameter in feet, and for rectangular area is shortest side in feet.

- Choose a large field away from power lines, buildings, tall trees and low flying aircraft The larger the launch area, the better your chance of recovering your rocket. Football fields, parks and playgrounds are great. This diagram shows the smallest recommended launch areas.

- Make sure the launch area is free of obstructions, dry weeds, brown grass or highly flammable materials.
- Launch only during calm weather with little or no wind and good visibility.
-

Where to Find Details about a Rocket Kit in the Catalog
You'll find detailed information about each rocket in it's description:

- Measurements: length, diameter and estimated weight
- Special features
- Recovery system: parachute, streamer, tumble, spin, glide, featherweight, and break-apart
- Projected altitudes: estimates only
- Recommended engines
- Building classification

Size of an American football field.

„-

Example of a
Rocket Kit Description
2160 HiJinks $^{\text {m }}$

- Length: $14.5 \mathrm{in} .(36.8 \mathrm{~cm})$
- Diameter: 0.98 in . $(25 \mathrm{~mm})$
- Estimated Weight:
1.5 oz. (43 g)
- Fins: Plastic
- Recovery: Parachute
- Projected Altitude

1100 ft . (335 m)

- Recommended Engines: A8-3 for first launch; B4-4, B6-4, C6-5, C6-7

Building Classifications

All model rocket kits in this catalog require assembly unless otherwise indicated. Building classifications are designated by a letter given to each kit.

Get started with an Estes launch set

The easiest entry point into the fun and exciting world of Estes model rocketry is to purchase an Estes launch set. Each launch set contains a rocket (or two) and a complete, high tech Estes launch system. In addition to the fun of building, launching and recovering of your own model rocket, Estes flying model rockets have significant STEM educational value. STEM stands for Science, Technology, Engineering and Math, and model rocketry utilizes all four disciplines. So rocketeers often become scientists and engineers.
© WaRNIMG: Drilling, suwing, sandingo or machining wood products can expose you to wood dust, a substance known to the State of California to cause cancer. Avoid inhaling wood dust or use a dust mask or other safeguards for personal protection. For more information go to www.P65Warnings.ca.gov/wood

All Estes rockets that contain wood parts/components carry this warning.

Estes model rocketry is recommended for ages 10 and up with adult supervision for those under 12.

Start your Estes experience here!

The best way to start is with one of our launch sets.

1427 Alpha III® Launch Set Length: 12.1 in. (30.7 cm) Diameter: 0.98 in. (25 mm)
Estimated Weight: $1.2 \mathrm{oz} .(34 \mathrm{~g})$ Fins: Plastic
Projected Altitude: 1150 ft . (351 m) Recovery: 12 in. (30.5 cm) Parachute
mended Engines: A8-5, B4-4, B6-4, B6 first C 6 - 2 , \$35.99

1491 Taser ${ }^{\text {rTM }}$ Launch Set ength: 17 in. (43.2 cm) Diameter: 0.98 in. (25 mm) Estimated Weight: 1.5 oz . (42.5 g) ins: Plastic
Recovery: 12 in. (30.5 cm) Parachute rojected Altitude: 1100 ft . (335 m) Recommended Engines: A8-3 for firs $\$ 28.99$
\qquad

1469 Tandem- $\mathbf{X}^{\text {TM }}$ Launch Set

\$35.99
Crossfire ISX ${ }^{\text {TM }}$
Length: $15.6 \mathrm{in} .(39.6 \mathrm{~cm})$ Estimated Weight: 1.3 oz . (37 g) Fins: Laser cut wood
Recovery: 12 in. (30.5 cm) Parachute Projected Altitude: 1150 ft . (351 m) Recommended Engines:
A8-3 for first launch; B4-4, B6-4 A8-3 for firs
$\mathrm{C} 6-5, \mathrm{C} 6-7$

Alpha III
\& Taser launch sets are Estes best sellers:

Amazon ${ }^{\text {TM }}$
Length: 29.4 in. (74.7 cm) Diameter: 1.33 in. (34 mm) Estimated Weight: 3 oz (85 g) Fins: Plastic
Recovery:
18 in . (45.7 cm) Parachute
rojected Altitude: 600 ft . 183 m) Recommended Engines: B4-2 for first launch B4-4, B6-2, B6-4, C6-3, C6-5

1436 Javelin ${ }^{\text {TM }}$ Launch Set
Length: $15 \mathrm{in}$. . 38 cm)
Diameter: 0.98 in
Diameter: $0.98 \mathrm{in}.(25 \mathrm{~mm})$
Estimated Weight: 1.3 oz . $(36.9 \mathrm{~g})$
Fins: Plastic
Projected Altitude: 600 ft . (183 m)
Recovery: 12 in. (30.5 cm) Parachute, glide
Recommended Engines: A8-3 for first launch
B4-4, B6-4
\$29.99

A lightweight glider separates from the Javelin and then glides softly to the ground.

The Flicker nose cone lights up with different colors ranging from yellow to blue to red!

1437 Flicker ${ }^{\text {rTM }}$ Launch Set
LIGHTS, CAMERA, ACTION! Well almost. LIGHTS anyway! The Flicker is unique among Estes rockets in that the nose cone lights up with varous colors
and patterns! Bright LEDs light up the sky! Comes with a 15 inch parachute for ease of recovery. So come on, what are you waiting for? Get your
Flicker today and let's light up the sky!
Length: 21 in . (53.3 cm)
Diameter: $1.33 \mathrm{in}$. . 34 mm)
Estimated Weight: 3.2 oz . $(90.7 \mathrm{~g}$) Nose Cone:
Fins: Plastic
Projected Altitude: 650 ft . (198 m)
Recovery: 15 in. (38.1 cm) Parachute
Recommended Engines: B6-4 for first launch
C6-5
\$29.99

1499 Rascal $^{\text {TM }}$ \& HiJinks ${ }^{\text {TM }}$ Launch Set \$35.99

Rascal ${ }^{\text {m }}$
Length: $14.5 \mathrm{in} .(36.8 \mathrm{~cm})$
Diameter: 0.98 in. $(25 \mathrm{~mm})$
Estimated Weight: 1.5 oz . (43 g) Fins: Plastic
Recovery: 12 in. (30.5 cm) Parachute Projected Altitude: 1100 ft . (335 m) Recommended Engines: A8-3 for first launch; B4-4, B6-4, C6-5, C6-7

This rocket
transforms!
The Wacky
Wiggler goes
up as a rocket
and...

1413 Wacky Wiggler ${ }^{\text {TM }}$

Launch Set
Length: $17.6 \mathrm{in} .(44.7 \mathrm{~cm})$ Diameter: 1.1 in. $(28 \mathrm{~mm}$) 2.3 oz . $(45.4 \mathrm{~g})$

Fins: Plastic
Recovery: Break-apart
Recovery: Break-ap
800 ft . 244 m)
Recommended Engines: B6-4 for first launch; C6-5 \$29.99

The Rascal
\& HiJinks
Launch Set

comes with two

 preassembled rockets!1441 Journey ${ }^{\text {TM }}$ Launch Set
Length: 19.3 in. (49 cm) Diameter: 0.98 in. $(25 \mathrm{~mm})$
Estimated Weight: $1.8 \mathrm{oz} .(51 \mathrm{~g})$ Fins: Plastic
Projected Altitude.
1100 ft . (335 m)
Recovery:
12 in . $(30.5 \mathrm{~cm}$) Parachute Recommended Engines:
A8-3 for first launch; B4-4, B6-4, C6-5, C6-7 \$32.99

1403 Riptide Launch Se
Length: $18 \mathrm{in} .(45.7 \mathrm{~cm})$ Diameter: 1.35 in . (34 mm)
Estimated Weight: 2.7 oz (76.5 g) Fins: Plastic
Recovery: 12 in. (30.5 cm) Parachute Projected Altitude: 675 ft . (206 m) Recommended Engines: B4-4 for first launch; B6-4, C6-5
$\$ 37.99$

1418 Flip Flyer ${ }^{\text {TM }}$ Launch Set How could we make the amazing, better? By packaging it with its own launch pad and launch controller, that's how!
Length: $19.2 \mathrm{in}.(48.8 \mathrm{~cm})$ Diameter: 0.98 in. $(25 \mathrm{~mm})$ Estimated Weight: $3.2 \mathrm{oz} .(90.7 \mathrm{~g})$ Fins: Plastic
Recovery:
Nose cone:
9 in. $(23 \mathrm{~cm})$ Parachute Projected Altitude: 750 ft . (229 m) Recommended Engines: B6-4 for first launch; C6-5 \$29.99

Add to your fleet!

Our easiest to build and fly rockets.

1256 Alpha III®
The high-flying Alpha III® is another model rocketry classic! The iconic orange and black space model is easy to build and fun to fly!
Length: 12.1 in. (30.7 cm)
Diameter: 0.98 in. (25 mm)
Estimated Weight: 1.2 oz . $(34 \mathrm{~g})$ Fins: Plastic
Recovery: 12 in. (30.5 cm) Parachute Projected Altitude: 1150 ft . (351 m) Recommended Engines: A8-3 for first launch; $1 / 2 A 6-2$, A8-5, B4-4, B6-4, B6-6, C6-5, C6-7

2008 Generic E2X ${ }^{8}$
Length: 13.5 in. (34.3 cm)
Diameter: 0.98 in. (25 mm)
1.3 oz. (36.8 g)

Fins: Plastic
Recovery: 12 in. (30.5 cm) Parachute
Projected Altitude.
1100 ft (335 m)
Recommended Engines:
A8-3 for first launch; 1/2A6-2, A8-5, B4-4, B6-4, B6-6, C6-5, C6-7
$\$ 12.99$

$\$ 21.99$

Length: 16.5 in . (41.9 cm)
Estimated Weight: $1.4 \mathrm{oz} .(39.7 \mathrm{~g})$ Fins: Plastic
Recovery: 12 in . (30.5 cm) Parachute Projected Altitude: 1100 ft . (335 m) Recommended Engines: A8-3 for first launch; B6-4, C6-5
\$13.99

2452 Athena ${ }^{\text {TM }}$

ength: $17 \mathrm{in}.(43.2 \mathrm{~cm})$
Diameter: 0.98 in. (25 mm)
Estimated Weight: 1.4 oz . (39.7 g) Fins: Plastic
Recovery: 12 in. (30.5 cm) Parachute Projected Altitude: 1125 ft . (343 m) Recommended Engines: A8-3 for first launch; B6-4, C6-5 \$13.99

1260 No. 2 Estes Sky Writer ${ }^{\text {® }}$ "Draw" a crowd with a No. 2 Estes Sky Writer® ${ }^{\circledR}$ flying model rocket. Sign your name on the clouds Length: 26 in (66 cm)
Diameter: 0.98 in (25 mm)
Estimated Weight: 1.5 oz. (42.5 g)
Fins: Plastic
Recovery:
12 in. (30.5 cm) Parachute
Projected Altitude: 1100 ft (335 m)
Recommended Engines:
A8-3 for first launch; B4-4, B6-4, C6-5 \$14.99

2433 Zinger ${ }^{\text {rN }}$
Length: $15 \mathrm{in}$. . 38.1 cm)
Diameter: $0.74 \mathrm{in} .(19 \mathrm{~mm}$
Estimated Weight: 0.9 oz . $(25.5 \mathrm{~g})$ Fins: Plastic
Recovery: 6 in. $(15.2 \mathrm{~cm})$ Parachute Projected Altitude: 500 tt 152 m) Recommended Engines: 1/2A3-4T for first launch; \$10.99

0806 Firestreak SSTTM
0806 Firestreak SSTTM
Length: 10.2 in . (25.9 cm)
Diameter: 0.86 in. $(22 \mathrm{~mm})$
Estimated Weight: $1.1 \mathrm{oz} .(31.2 \mathrm{~g})$
Fins: Plastic
Recovery: 12 in. $(30.5 \mathrm{~cm})$ Streame Projected Altitude: 350 ft . (107 m) Recommended Engines: A3-4T for first launch; 1/2A3-2T, 1/2A3-4T, A10-3T
\$10.99

2169 Dragonite
Length: 16 in. (40.6 cm)
Diameter: 1.1 in . 28 mm) Estimated Weight: 1.8 oz . (51 g) Fins: Plastic
Recovery
.5 cm) Parachute Projected Altitude: 1125 ft . (343 m) Recommended Engines: A8-3 for first launch; B4-4, B6-4, C6-5, C6-7 \$16.99

Our highest-powered
beginner rocket!

2466 Show Stopper ${ }^{\text {TM }}$
Length: 26.2 in. $(66.5 \mathrm{~cm}$) Diameter: 1.64 in. (42 mm) Estimated Weight: $4 \mathrm{oz} .(113.4 \mathrm{~g})$ Fins: Plastic
Recovery: 15 in. (38.1 cm) Parachute Projected Altitude
Recommended Engines: C11-3 for first launch;
C11-5, D12-5, D12-7
\$25.99 \qquad

Length: 11.2 in. $(28.4 \mathrm{~cm})$ Diameter: $0.74 \mathrm{in}.(19 \mathrm{~mm})$ Estimated Weight: 0.60 oz . $(17 \mathrm{~g})$
Recovery:
12 in. (30.5 cm) Parachute
Projected Altitude: 600 ft . $(183 \mathrm{~m})$
Recommended Engines:
1/4A3-3T for first launch;
1/2A3-2T, A3-4T, A10-3T
$\$ 10.99$

chute

2490 Fractured ${ }^{\text {TM }}$
Length: 18 in. (45.7 cm) Diameter: 1.64 in . (42 mm) Estimated Weight: 3.7 oz . (104.9 g) Fins: Plastic
15 in. (38.1 cm) Parachute Projected Altitude:
550 ft . (168 m)
Recommended Engines B6-2 for first launch; B4-2, C6-3, C6-5
\$16.99

,

The Swift is lightweight and gently flutters to the ground without a parachute. During the ejection phase, the engine pops out. Insert another and pops out. Insert another and
you're ready to launch again!

0810220 Swift $^{\text {™ }}$
Length: 4.5 in. (11.4 cm)
Estimated Weight: . 09 o.z (2.5 g)
Fins: Laser cut wood
Recovery: Featherweight
Projected Altitude: 850 ft . $(259 \mathrm{~m}$) Recommended Engines: Reco
1/4A3-3T for first launch; 1/2A3-2T,
1/2A3-4T, A3-4T, A10-3T \$9.99

1381 Yankee $^{\text {TM }}$
Length: 11 in. (27.9 cm) Diameter: $0.74 \mathrm{in} .(19 \mathrm{~mm})$ Estimated Weight: 0.4 oz . $(12 \mathrm{~g})$ Fins: Laser cut wood Recovery: 18 in. (4.57 cm) Streamer Projected Altitude: 1700 ft . $(518 \mathrm{~m}$) A8-3 for first launch; $1 / 2$ B4-4, B6-4, B6-6, C6-5, C6-7 \$13.99

26 estesrockets.com

The Viking has 48 various fin configurations to choose from:
It's up to you to decide how to build the Estes Viking! How many fins? Where to place them? It's your choice to create the rocket YOU want!

72207220 Crossfire ISX ${ }^{\text {TM }}$ Length: Diameter: 0.98 cm) 25 mm) Estimated Weight: 1.3 oz. (37 g) Fins: Laser cut wood Recovery: 12 in. (30.5 cm) Parachute Projected Altitude: Recommended Engines Recommended Engines: B4-4, B6-4, C6-5, C6-7 \$13.99

1292 Wizard $^{\text {M }}$
Length: 12 in. (30.5 cm) Diameter: 0.74 in. $(19 \mathrm{~mm})$ Estimated Weight: $0.5 \mathrm{oz} .(14.2 \mathrm{~g})$ Recovery: 18 in $(45.7$ Projected Altitude: 1600 ft . (488 m) Recommended Engines: A8-3 for first launch; $1 / 2 A 6-2$, A8-5 B4-4, B6-4, B6-6, C6-5, C6-7
\$13.99

263 Hex-3 ${ }^{\mathrm{m}}$
Length: 3.2 in . $(8.1 \mathrm{~cm})$
Diameter: Hub: 3.8 in . $(9.6 \mathrm{~cm}$)
Overall Diameter: $11.5 \mathrm{in} .(29.2 \mathrm{~cm})$
Fins: Printed cardstock
Recovery: Tumble
Projected Altitude: 100 ft . (30 m) Recommended Engines: B6-0 for first launch; C6-0 \$8.99

\qquad 1

7238 Sequoia ${ }^{\text {TM }}$
Length: 20 in. (50.8 cm)
Diameter: 0.74 in (19 mm)
Estimated Weight: 1.1 oz . $(31.2 \mathrm{~g}$)
Recovery: 9 in. (22.9
Projected Altitude: 350 ft . (107 m)
Recommended Engines: A3-4T for first launch; A10-3T \$14.99

2442 Mini Fat Boy ${ }^{\text {m }}$
ength: 8.5 in. (21.6 cm)
Diameter: 1.64 in. $(42 \mathrm{~mm})$
Estimated Weight: 1.3 oz . (36.8 g)
Fins: Laser cut wood
ecovery: 12 in. (30.5 cm) Parachute Projected Altitude: 250 ft . (76 m)
\$13.99

7237 Goblin $^{\text {TM }}$
Length: $14.4 \mathrm{in} .(36.6 \mathrm{~cm})$ Diameter: 1.33 in. (34 mm) Estimated Weight: 2.5 oz . 70.9 g) Recovery:
2×36 in. (91.3 cm) Projected Altitude: 1400 ft . (427 m)
Recommended Engines
D12-5 for first launch; C11-3,
C11-5, D12-7
\$19.99

7242 Super Neon ${ }^{\text {TM }}$ Length: 22.3 in. (56.6 cm) Diameter: 0.98 in. (25 mm)
Estimated Weight
1.9 oz . $(53.9 \mathrm{~g}$)

Fins: Laser cut wood Recovery:
12 in. (30.5 cm) Parachute Projected Altitude:
1000 ft . 305 m)
Recommended Engines: A8-3 for first launch; B4-4, B6-4, C6-5 \$19.99

7239 Sky Warrior ${ }^{\text {M }}$
7239 Sky Warrior
Length: 19 in. $(48.3 \mathrm{~cm})$
Length: 19 in. (48.3 cm)
Diameter: 1.33 in. $(34 \mathrm{~mm})$
Estimated Weight: 1.9 oz (53.9 g)
Fins: Laser cut wood
Recovery: 12 in. (30.5 cm) Parachute Projected Altitude: 850 ft . (259 m)
Recommended Engines: B6-4 for first launch; C6-5

3232 Centuri ${ }^{\text {B }}$
Length: 29.3 in. $(74.4 \mathrm{~cm})$
Diameter: 1.33 in. (34 mm)
Estimated Weight
3.1 oz . $(87.9 \mathrm{~g})$
Fins: Laser cut wood

Fins: Laser
Recovery:
12 in. (30.5 cm) Parachut Projected Altitude
600 ft . (183 m)
Recommended Engines:
B4-4 for first launch;
36-4, C6-5
\$21.99

7234 Crossbow SST
Length: 15 in . (38.1 cm) Diameter: 0.74 in. $(19 \mathrm{~cm})$ Estimated Weight: 1.1 oz . (31.2 g) Fins: Laser cut wood
Recovery:
Proje (0.5 cm) Parachute
Projected Altitude: 1600 ft (488 m)
A8-3 for first launch; B6
$\$ 15.99$

After assembling your EggsCaliber and Space Crater rocket nose cones, insert an egg into the payload and prepare for liftoff.

2123 EggsCaliber ${ }^{\text {TM }}$
Length: 20 in. $(50.8 \mathrm{~cm})$
Diameter: 1 in. $(25 \mathrm{~mm})$
Estimated Weight. (without egg): $2.6 \mathrm{oz} .(74 \mathrm{~g})$ Fins: Laser cut wood Recovery:
1×12 in. $(30.5 \mathrm{~cm})$ Parachute,
x $18 \mathrm{in}$. . 45.7 cm) Parachute
Projected Altitude: 1700 ft . $(518 \mathrm{~m}$) without egg Projected Altitude: 1700 ft . $(518 \mathrm{~m}$) without egg
Recommended Engines: With egg: B6-2 for first launch; C6-3, C11-3, D12-3, E9-4; Without egg: B4-2 for first launch; B6-2, C6-5, D12-5
Requires $3 / 16$ in. (5 mm) MaxiTM Launch Rod PN 2244; sold separately
\$25.9

7265 Space Crater ${ }^{\text {rM }}$

length: $18.5 \mathrm{in} .(47 \mathrm{~cm})$
Diameter: 0.98 in. (25 mm)
Estimated Weight: 2.6 oz . (72.7 g) Fins: Plastic
Recovery: $15 \mathrm{in} .(38.1 \mathrm{~cm})$ Parachute Projected Altitude: 650 ft . (198 m) Recommended Engines: Without eg B6-4 for first launch; C6-5. With egg:
C6-3
\$22.9

9719 Super Big Bertha ${ }^{\text {TM }}$ Length: $36.8 \mathrm{in}$. (93.4 cm) Estimated Weight: 8.9 oz . (252.3 g)
Fins: Laser cut wood Recovery: 24 in . (61 cm) Parachute
Projected Altitude: 1200 ft . (366 m)
Recommended Engines: E16-4 for first launch; F15-6 NOTE: This rocket can also be launched on a D12-3 engine when you purchase
PN $9753-24 \mathrm{~mm}$ to 29 mm Engine Adapter.
\$39.99
PuO

1948 Big Bertha ${ }^{\text {TM }}$ Length: 24 in. (61 cm) Diameter: $1.64 \mathrm{in}.(42 \mathrm{~mm})$ 5 ated Weight. 5.5 oz . (71 g) Fins. Laser cut wood ecovery: $18 \mathrm{in} .(45.7 \mathrm{~cm})$

Projected Altitude:
500 ft . (152 m)
Recommended Engines: 36-4 for first launch; B4-2 4-4, B6-2, C6-5
\$26.99

Bertha Rocket Sizes
261 Baby Bertha ${ }^{\text {TM }}$ Length: 12.8 in. (32.5 cm) Diameter: 1.64 in. $(42 \mathrm{~mm})$ 1.9 oz (53.9 g) Fins: Laser cut wood Recovery: 12 in. (30.5 cm) Parachute
Projected Altitude:
$575 \mathrm{ft} .(175 \mathrm{~m})$ Recommended Engines: A8-3 for first launch; B4-4, B6-4, C6-5
$\$ 14.99$

Super Big Bertha, Big Bertha \& Baby Bertha

7266 Red Nova ${ }^{\text {T }}$
The scale-like Estes Red Nova™ is impressive up close and in the sky! Great decals complete the scale-look. You'd

swearth:

Length:
21.6 in . $(54.9 \mathrm{~cm})$
1.64 in. (42 m

Estimated Weight:
3 oz. (85 g)
Fins: Laser cut wood
Recovery: 15 in. (38.1 cm) Parachute
Projected Altitude: 800 ft . 244 m)
Recommended Engines:
D12-5 for first launch; D12-7
D12-5 for first launch; D MaxiTLaunch Rod PN 2244; sold separately.
\$21.99

7000 Bull Pup 12D
1:9 Scale
A great flier, the authentic-looking Estes Bull Pup 12D is a sport-scale replica of the Air Force air-to-ground missile used throughout the 1960s.
Length: 15.6 in . $(39.6 \mathrm{~cm})$
Diameter: 1.33 in $(34 \mathrm{~mm})$
Estimated Weight: $1.8 \mathrm{oz} .(51 \mathrm{~g})$
Fins: Laser cut wood
Recovery: 12 in. (30.5 cm) Parachute Projected Altitude: 675 ft . (206 m) Recommended Engines:
A8-3 for first launch; B4-4, B6-4, C6-5 \$20.99

Length: $23.4 \mathrm{in}$. (59.4 cm) Diameter: 1.33 in. (34 mm) Estimated Weight:
2.4 oz . (68 g)

Fins: Laser cut wood Recovery: 15 in. (38.1 cm) Parachute Projected Altitude 600 ft . (183 m) Recommended Engines: Recommended Engines: B6-4 for
$\$ 21.99$

Welcome to the exciting world of multi-stage rockets...

Many full-sizze rockets that leave earth's atmosphere are staged rockets. The amount of fuel required to lift millions of pounds of mass requires huge rockets that have multiple stages (segments) stacked on top of the main booster stage. Each upper stage requires its own rocket engine and fuel and each subsequent stage is used to increase velocity to escape earth's gravitational pull and reach Low Earth Orbit (LEO is 99 to 1,200 miles). While Estes multi-stage rockets will not get to LEO, they are designed to increase a model rocket's maximum altitude.

A 2-stage model rocket uses a first-stage booster engine (it has no ejection charge) to get the rocket moving vertically. When the booster engine uses up its propellant, it then ignites the upper stage engine. The booster separates from the upper stage and it tumbles to the ground. After the upper stage is ignited (also called a sustainer stage), it then accelerates to its maximum height (or apogee) and an ejection charge at apogee deploys the recovery system.

Each multi-stage rocket booster contains an Estes engine. Once the engine fuel is exhausted, the boosters detach and tumble gently to the ground for reuse.

this is how

rockets fly!
from the third stage, and it tumbles to the ground. The third stage then accelerates to its maximum height (or apogee), and an ejection charge at apogee deploys the recovery system.

While a full-size rocket can take several minutes to burn through the various stages to obtain LEO, in an Estes rocket, the boost and upper stage burnouts can be measured in a matter of seconds. Multi-stage rockets are challenging and exciting to launch. Recovering a small 3-stage rocket on a streamer from over 2,500 feet altitude can be a task!

1329 Multi-Roc ${ }^{\text {TM }}$
Length: 25 in. (63.5 cm)
Diameter: 0.98 in. (25 mm Estimated Weight: 2.6 oz . (73.7 g) Recovery: 12 in. (30.5 cm) Parachute; Clide; Tumble Projected Altitude: 1200 ft . (366 m) Projected Altitude: 1200
Recommended Engines: Recommended Engines: B6-4 for first Launch: B6-6, C6-5, C6-7 Two Stage rocket with booster: Booster Stage:
B6-0 for first Launch; C6-0 Second Stage Rocket: B6-4 for first launch; B6-6, C6-5, C6-7 \$22.99

7217 Hyper Bat ${ }^{\text {TM }}$
Length: 21.9 in . (55.6 cm) Diameter: 0.98 in. $(25 \mathrm{~mm})$ Estimated Weight: 1.8
Fins: Laser cut wood Recovery:
12 in. (30.5 cm) Parachute; Tumble Projected Altitude: 2125 ft . (648 m) Recommended Engines Rocket Only: B6-4
B6-6, C6-5, C6-7 Two Stage: Booster launch; A8-0, C6-0 B6-0 for first Upper Stage: B6-6 for first launch; A8-5, C6-5, C6-7
\$17.99

[^0]7250 Twin Factor ${ }^{\text {TII }}$
Length: 6 in. (15.2 cm)
Diameter: $4.3 \mathrm{in} .(10.9 \mathrm{~cm})$
Estimated Weight: 0.8 oz . $(22.7 \mathrm{~g})$ Recovery: Tumble
Projected Altitude.
Projected Altitude: 150 ft . (46 m) Recommended Engines: A3-4T for first launch; A10-3T, A10-PT Two Stage rocket with single booster: Booster Stage: A10-0T
Second Stage Rocket.
A3-4T for first launch; 1/4A3-3T, 1/2A3-2T,
1/2A3-4T, A10-3
\$13.99

2092 Mongoose ${ }^{\text {TM }}$
ALL PRE-COLORED PARTS!
Length: 27 in . (68.6 cm)
Diameter: 0.98 in. (25 mm)
Estimated Weight: $2.3 \mathrm{oz}(65 \mathrm{~g})$
Recovery:
12 in. $(30.5 \mathrm{~cm})$ Parachute; Tumble Projected Altitude: 1600 ft . (488 m) Recommended Engines:
Single Stage rocket only - no booster: A8-3 for first launch; B4-4, B6-4, C6-5. Two Stage rocket with booster: Booster Stage: B6-0 for first Flight; C6-0 Second Stage Rocket:
A8-5 for first launch; B6-6, C6-7
\$16.99

275 Sterling Silver ${ }^{\text {TM }}$
Length: 22 in. (55.9 cm)
Diameter: 0.74 in. $(19 \mathrm{~mm})$
Estimated Weight:
Estimated Weigh
Fins: Laser cut wood Recovery:
30 in. (76.2 cm) Streamer; Tumble Projected Altitude:
2600 ft . 792 m)
Single Stage rocket only - no booster: A8-5 for first launch; B6-6, C6-7. Two Stage rocket with booster: Booster Stage: A8-0 for first launch B6-0, C6-0
Second Stage Rocket: A8-5 for first
\$14.99

2448 Mini Comanche- $\mathbf{3}^{\text {T1 }}$
Length: 31.1 in . (79 cm)
Diameter: $0.74 \mathrm{in} .(19 \mathrm{~mm})$
Estimated Weight: $1.5 \mathrm{oz} .(42.5 \mathrm{~g})$ Fins: Laser cut wood
Recovery:
18 in. (45.7 cm) Streamer; Tumble Projected Altitude: 900 ft . (274 m) Recommended Engines: Single Stage rocket only - no booster: 1/4A3-3T for first launch; 1/2A3-2T, Two Stage rock Booster Stage: A10-0T
Second Stage Rocket:
A3-4T for first launch; A10-3T Three Stage rocket with two boosters: First Stage booster: A10-0T Third Stage Rocket: A3-4T for first launch; or A10-3T \$14.99

2437 Savage ${ }^{\text {TM }}$
Length: 31.8 in . 80.8 cm)
Diameter: 1.33 in. (34 mm)
Estimated Weight
Fins: Plastic
Recovery:
15 in (38.1 cm) Parachute; Tumble Projected Altitude:
1600 ft . (488 m)
2437 Savage
Single Staded Engines:
B6-4 for first launch. B4- no booste Two Stage rocket with booster: Booster Stage: D12-0
Second Stage Rocket: B6-4 for first launch; A8-5, B6-6, C6-5, C6-7 \$25.99

245 Comanche-3

Length: 41 in . (104.1 cm)
Diameter: 0.98 in . (25 mm) Fins: Laser Cut wo 2.5 oz . (70.9 g)
ins. Laser cut wood
Recovery. $36 \mathrm{in}$. . 91.4 cm) Dual Streamer; Tumble
Recommended Engines: $\mathbf{f t}$ (686 m) Recommended Engines A8-3 for first launch; B4-4, B6-4, C6-5 Two Stage rocket with single booster: Booster Stage: C6-0
Second Stage Rocket: B4-4, B6-6, C6-7 Three Stage rocket with two boosters: First Stage booster: C11-0 or D12-0 Second Stage booster: B6-0 or C6-0 Third Stage Rocket: B6-6 or C6-7
\$23.99

The Comanche
models are
3-stage rockets with 2 boosters that can attain extremely high

Comanche Series Sizes

Mini-Comanche-3 \& Comanche-3

3227 Loadstar ${ }^{\text {rM }}$ II

Length: $23.3 \mathrm{in} .(59.2 \mathrm{~cm})$ Payload Diameter: 1.64 in . $(42 \mathrm{~mm})$ Estimated Weight: 2.8 oz . $(79.4 \mathrm{~g})$ Fins: Laser cut wood
Recovery: 18 in. (45.7 cm) Parachute; Tumble
Projected Altitude: $1000 \mathrm{ft}(305 \mathrm{~m})$ Projected Altitude: 1000 ft (305 m) Recommended Engines:
S4-4 for first launch. B6-4 B4-4 for first launch; B6-4, C6-5
Booster Stage: B6-0 for first launch; C6-0 Second Stage Rocket:
A8-5 for first launch; B6-4, B6-6 and C6-7 A8-5 for fir
$\$ 22.99$

payload, you can blast bugs up to 1000 ft . in the air!

Recruit your
own fleet of insectronauts!

7248 Supernova ${ }^{\text {TM }}$

Length: 27.5 in . (69.9 cm)
Length: 27.5 in . $(69.9 \mathrm{~cm})$
Diameter: $0.98 \mathrm{in}.(25 \mathrm{~mm})$ Estimated Weight: 2 oz. (56.7 g) Fins: Laser cut wood Recovery:
9 in. (22.9 cm) Parachute; Tumble Projected Altitude:
1550 ft . (472 m)
Recommended Engines:
Single Stage rocket only - no booster B4-4 for first launch; A8-5, B6-4, C6 Two Stage rock
B6-0 for first launch; C6-0 Second Stage Rocket: A8-5 for first launch; B6-6, C6-7
\$22.99

The Double Ringer
 has unique cylindrical gliders that detach and circle back to earth.
 What goes
 up...

...
must come down in
fun
fashion!

Fun Recovery Systems

Watching your model rocket liftoff is only part of the fun seeing the whoosh - pop of the parachute when the rocket reaches apogee is equally thrilling! Estes model rocketry recovery systems vary depending upon each rocket's specifications and engineering design. Most model rockets rely on traditional parachute or streamer recovery. Factors such as rocket size, engine power, and launch site dimension, are used to determine the size or number of parachutes to be used or if a streamer should be used to keep a highperformance rocket from drifting too far from the launch site and getting lost. A few model rockets are so light that they either simply tumble or flutter gently back to earth; in essence, their lightweight construction is the recovery system. And then there are combinations of recovery systems and other unique methods of recovery. These include spin and glide recovery. Spin recovery is created by the rocket's spinning (usually with helicopter blades), creating drag. Glide recovery utilizes lift created by varying wing shapes and designs, requiring careful trimming for optimum performance. Every Estes model rocket includes a recovery system so that you can launch it over and over again!

2416 Flip Flyer $^{\text {TM }}$
Length: 19.2 in. (48.8 cm) Diameter: 0.98 in. (25 mm) Estimated Weight: $3.2 \mathrm{oz} .(90.7 \mathrm{~g})$ Fins: Plastic
Recovery:
9 in. $(22.9 \mathrm{~cm})$ Parachute; Spin Projected Altitude: 900 ft . (274 m) Recommended Engines: B6-4
$\mathbf{\$ 2 0}$

7279 Double Ringer ${ }^{\text {rim }}$
Length: 25.3 in. (64.3)
Diameter: 1.33 in. (34 mm)
Estimated Weight: 3.8 oz . $(107.8 \mathrm{~g})$
Fins: Plastic
Fins: Plastic
15 in (38.1
Priecter 1 cm) Parachute; Glide Projected Altitude: 500 ft . (152 m) B6-2 for first launch: C6-3
\$19.99

2183 Shuttle Xpress ${ }^{\text {TM }}$
Length: 17.7 in . (45 cm)
Diameter: 1.35 in. (34 mm)
Estimated Weight: 3.2 oz (90.7 g)
Recovery: 12 in. (30.5 cm) Parachute; Glid
Projected Altitude: 600 ft . (183 m)
Projected Altitude: 600 ft . (183 m)
Recommended Engines: B4-2 for firs
launch; B4-4, B6-2, B6-4, C6-3, C6-5
\$20.99

The Shuttle Express model rocket is equipped with two gliders that detach and glide back to earth during recovery!

A perfect
competition competition rocket featuring
helicopter blades!

7272 Mini "A" Heli
Length: 17 in. (43.2 cm)
Diameter: 0.54 in. (14 mm)
Rotor Diameter: 24.2 in. (61.5 cm) Estimated Weight: 0.76 oz. (21.5 g) Fins. Laser cut wood
Projected Altitude: 400 ft . (122 m) Recommended Engines: A10-3T \$14.99

The Quinstar is a lightweight rocket which allows for a spin recovery that requires no parachute.

7241 Quinstar ${ }^{\text {TM }}$
Height: 3 in. (7.6 cm) Diameter: 8 in. $(20.3 \mathrm{~cm}$) (22.7 g) ins: Las Recovery: Spin Projected Altitude 150 ft (46 m) Recommended Engines. B6-0 for first launch; C6-0 $\$ 21.99$ $\because A$

Imagine

new worlds!

What's your story

 for these unique rockets?

1250 interceptor ${ }^{\text {m }}$

Standing over 2 ft . tall, this model rocket features aser cut precision balsa parts, a slotted body
tube for extra secure wing and fin mounting a detailed blow molded nose cone and three
5 -color decal sheets that will finish this model
with eye-popping décor.
Length: 26 in. (66 cm)
Diameter: 1.33 in . (34 mm)
Estimated Weight: 3.9 oz . (110.6 g)
Fins: Laser cut wood
Projected Altitude: 525 cm) Parachute
Recommended Engines: B4-2 for first launch; B6-4, C6-5
B6-4, C

7235 Odyssey $^{\text {TM }}$

Length: $22.7 \mathrm{in} .(57.7 \mathrm{~cm})$
Diameter: 1.33 in. $(34 \mathrm{~mm})$
Estimated Weight: 57.9 cm)
Fins: Laser cut wood
Recovery: 18 in (45
Recovery: $18 \mathrm{in}$. . 45.7 cm) Parachute
Projected Altitude: 950 ft
Projected Altitude: 950 ft . (290 m)
Recommended Engines:
C11-3 for first launch; D12-5
Requires $3 / 16$ in. (5 mm) Maxi ${ }^{\text {TM }}$
Launch Rod PN 2244; sold separately.
\$29.99

7253 Explorer Aquarius ${ }^{\text {TM }}$
A scale-like model of the future, the interstellar voyage Explorer Aquarius. Stretch your skills with this unique the air!
Length: 21.8 in . (55.4 cm)
Diameter: 2.75 in. (70 mm)
Estimated Weight: 4.2 oz . (119.1 g)
ins: Laser cut wood
Recovery: 18 in. (45.7 cm) Parachut
Recommended Engines: D12-3 for first launch; D12-5, E12-4, E12-6
Requires $3 / 16$ in. (5 mm) Maxi™ Launch Rod PN 2244 old separately.
\$38.99

Scale model rockets make history and your hobbies come...

Scale model rockets

in this category are detailed, miniature replicas of full-scale military, commercial, or space agency rockets, which come in a variety of scale sizes and model rocket engine requirements. Rockets in this class usually require advanced-level building skills using many handcrafted or molded detail parts. These rockets often require that rocketeers attempting to build these models have mastered a variety of skills in assembly, painting, and launching techniques.

7255 Little Joe I 1:34 Scale Length: 17.62 in. (44.75 cm) Diameter: 2.34 in. (59.43 mm) Estimated Weight.: 3.2 oz . $(90.7 \mathrm{~g}$) Fins: Laser cut wood Recovery:
15 in. (38.1
Projected cm) Parachute Projected Altitude: 400 ft . (122 m) Recommended Engines: B6-4 fo
first launch: C6-5 first launch; C6-5 \$32.99

The Little Joe I booster was the first rocket designed solely for manned spacecraft qualifications and to measure critical parameters in flight.

Little Joe II was used from 1963-1966 for five unmanned tests of the Apollo spacecraft launch escape system.

7227 Apollo Little Joe iI 1:45 Scale
Length: 23.3 in $(59.18 \mathrm{~cm})$ Diameter: 3.42 in (86.9 mm) Estimated Weight: $8.3 \mathrm{oz}(235.3 \mathrm{~g}$) Ens Plastic
Recovery: 24 in . (61 cm)P arachute Projected Altitude: $800 \mathrm{ft}(244 \mathrm{~m}$) Recommended Engine
Composite E30-4
equires $3 / 16$ in (5 mm) MaxiTM launch od (2244), sold separately.
\$53.99

921 Liberty Bell 7 Mercury Redstone 1:34 Scale
ength: 28.6 in. (72.6 cm) Diameter: 2.05 in. (53 mm) Estimated Weight: 3.07 oz . (104.9 g) ins: Laser cut wood Recovery:
5 in. (38.1 cm) Parachute Projected Altitude: 200 tute Recommended Engines: 661 m) \$26.99

2446 Mini Honest John 1:24 Scale
Check out this mini-engine powered version of the U.S. Army Honest John. The Estes Mini Honest John is a sport scale model featuring a molded piastic ose cont fun to fly
Length: $11.75 \mathrm{in} .(29.8 \mathrm{~cm})$
iameter: $0.98 \mathrm{in} .(25 \mathrm{~mm})$
Esimated Weight: 1.2 oz . (34 g)
ins: Laser cut wood
Recovery: $12 \mathrm{in}$. (30.5 cm) Parachute
Projected Altitude: 325 ft . (99 m)
Recommended Engines: 1/2A3-2T for first launch A3-4T, A10-3T
\$12.99

An iconic weapon of the
Cold War, the MGR-1 Honest John battlefield rocket could carry nuclear or conventional warheads.

240 Honest John 1:14 Scale
Length: 23 in. (58.4 cm)
Diameter: 1.64 in. (42 mm)
Estimated Weight: 4.4 oz . (124.7 g) Fins: Laser cut wood
Recovery: 15 in . (38.1 cm) Parachut Projected Altitude: $1400 \mathrm{ft}$. (427 m) Recommended Engines: DI2-5 Requires $3 / 16$ in. (5 mm) MaxiT Launch Rod (2244) sold separately.
$\$ 28.99$

Made to be a fin-stabilized, unguided artillery rocket, the Honest John was mounted on the back of military trucks. It had a range of $\mathbf{1 5 . 4}$ miles with a 20 kiloton nuclear warhead or with a 20 kiloton nuclear warhead or
a 1500 pound conventional warhead.

2056 U.S. Army Patriot M-104 1:10 Scale
Length: 21.3 in. (54.1 cm) Diameter: 1.64 in. (42 mm) Estimated Weight: 2 oz. (56.7 g) Fins: Laser cut wood
Recovery: 12 in . (30.5 cm) Parachute Projected Altitude: 600 ft . (183 m) Recommended Engines: B4-4 36-4, B6-6, C6-5 \$18.99

After capture by American dozens of end of Wh ballist missiles were brought to White Sands, New Mexico for testing, and formed the basis for the U.S. space program.

The MIM-104 Patriot is a surface-to-air missile system used by the United States Army and several allied nations.

3228 V2 1:25 Scale
3228 V2 1:25 Scaile
Now you can build and fly your own scale Now you can build and fly your own scale
model of the rocket that ushered in the model of the rocket that ushered in the space age! Standing at nearly 23 in ., this the recommended Estes E12 engines (not included)
Length: 22.4 in. (56.9 cm)
Diameter: 2.6 in. (66 mm)
Estimated Weight: 6.3 oz . (178.6 g) Fins: Laser cut wood Recovery; $18 \mathrm{in}$. (45.7 cm) Parachute Projected Altitude: 725 ft . (221 m) Recommended Engines: C11-3 for first aunch; D12-3, E12-4, E12-6 Requires $2 / 34$. . $\left(5 \mathrm{~mm}\right.$) Maxi ${ }^{\text {TM }}$ Launch . 99

\$26.99

The Canadian Black Brant line of sounding rockets is one of the most successful launch vehicles ever flown. Since the flown. Since the late 1950s, seve hundred Black Brant rockets research missions for Canada and NASA.

7243 Black Brant II 1:13 Scale
The Estes Black Brant II is a $1: 13$ scale replica of one of the earliest of the Black Brant sounding rockets. Loaded with scale details, this rocket really moves using the recommended Estes
12 engines (not 63.2 cm)
piameter 133 in (34 mm)
Estimated Weight: 3 oz (85 g)
Estimated Weight: 3 oz
Recovery: 18 in. (45.7 cm) Parachute Projected Altitude: 1300 ft . (396 m)
Recommended Engines: D12-5 for first launch
D12-7
$\$ 23.99$

293 Black Brant III 1:10 Scale his detailed, 1:10 scale model rocke is straightforward to build and an excellent kit for the first-time scale modeler.
Length: $20.4 \mathrm{in} .(51.8 \mathrm{~cm})$
Diameter: 0.98 in. (25 mm)
Estimated Weight: 1.2 oz . (34 g)
ins: Laser cut wood
Recovery: 12 in. $(30.5 \mathrm{~cm}$) Parachute
Projected Altitude: 1300 ft . (396 m) Recommended Engines: A8-3 for firs
B6-6, C6-5, C6-7
\$14.99

In service for nearly 22 years, the Black Brant III was a reliable sounding rocket for the Canadian Space Agency and NASA.

The Nike Apache carried hundreds of NASA research projects aloft during its operational life.

The Nike Smoke was a sounding rocket, part of a research project on the behavior of the horizontal winds in the upper atmosphere it was developed by NASA in the 1960 s and was based on the Nike booster.

7247 Nike Smoke 1:10 Scale Now you can build your own 1:10 scale replica of the NASA Nike Smoke sounding rocket! This large, scale model rocket is made from quality Estes parts and looks as great as it flies!
Length: 22.9 in. (58.2 cm) Diameter: 1.64 in . (42 mm) Estimated Weight: 2.4 oz. (68 g) Recovery:
Recovery:
Projected 1 cm) Parachute Projected Altitude: 650 ft . (198 m) first launended Engines: B6-4 for \$24.99

Fly big!
 Attain great heights

 with these challenging builds and flights.2162 Big Daddy ${ }^{\text {TM }}$
Length: 19 in. $(48.3 \mathrm{~cm})$
Diameter: 3 in. $(76 \mathrm{~mm}$)
Estimated Weight: $5.3 \mathrm{oz} .(150.3 \mathrm{~g})$
Estimated Weight: 5.3 oz . (150.3 g)
Fins: Laser cut wood Recovery: 24 in . 61 cm) Parachute
Projected Altitude: 900 ft (274 m) Projected Altitude: 900 ft . (274 m)
Recommended Engines: $11-3$ for first Recommended Engines: C11-3 for firs
launch; D12-3, D12-5, E12-4, E12-6 Requires $3 / 16$ in. (5 mm) Maxi ${ }^{\text {™ }}$ Launch Rod PN 2244; sold separately $\$ 34.99$

7271 SA-2061Sasha ${ }^{\text {TM }}$
Diameter: 1.64 in. (42 mm)
Estimated Weight:
6.1 oz . (172.9 g)

Fins: Laser cut wood
Recovery: 18 in . (45.7 cm) Parachute
Projected Altitude: 2300 ft (701 m)
Upper Stage: D12-5 for first launch; E12-6 With booster: D12-7 for first launch; D12-0, E12-0, E12-8
Requires $3 / 16$ in. (5 mm) Maxi ${ }^{\text {™ }}$ Launch Rod PN 2244; sold separately.
\$29.99

2440 Magician ${ }^{\text {TM }}$
Length: 34 in. (86.4 cm) Diameter: 1.33 in . (34 mm) Estimated Weight: $3.5 \mathrm{oz} .(100 \mathrm{~g})$ ins: Laser cut wood Recovery: 18 in . (45.7 cm) Parachute Projected Altitude: 1600 ft (488 m) Recommended Engines: D12-5 fo first launch; E12-6 launch rod PN in. (5 mm) Maxim $\$ 23.99$

7225 Extreme $12{ }^{\text {ma }}$
Length: 46.4 in . (117.8 cm)
Diameter: 1.64 in. $(42 \mathrm{~mm})$
Estimated Weight: 7.1 oz (201.3 g) Fins: Laser cut wood
Recovery. 18 in . (35.7 cm) Parachute
Projected Altitude: 1900 ft (579 m)
Single Stage: D12-3, D12-5 for first launch;
E12-4, E12-6
With Booster:
D12-5 for first launch; D12-0, E12-0, D12-7, E12-6, E12-8
Requires 3/16 in. (5 mm) Maxi ${ }^{\text {TM }}$ Launch Rod PN 2244; sold separately.
\$32.99

3226 Hi-Flier ${ }^{\text {® }}$ XL
Length: 31 in. (78.7 cm)
Diameter: 1.64 in. (42 mm)
Estimated Weight: 3.5 oz . $(99.2 \mathrm{~g}$) Recovery: 18 in
Projected Altitude: 1325) Parachute Projected Altitude: 1325 ft . (404 m) launch; D12-5, D12-7, E12-6, E12-8 Requires $3 / 16$ in (5 mm) MaxiTM Launch Rod PN 2244; sold separately. \$21.99

1951 Executioner
Length: 38.5 in. (97.8 cm)
Diameter: 26 in $(66 \mathrm{~mm})$
Estimated Weight: 8.1 oz . (229.9 g)
Fins: Laser cut wood
Recovery: 24 in . (61 cm) Parachute Projected Altitude: 600 ft . 183 m) Recommended Engines: D12-3 for first launch; D12-5, E12-4, E12-6
\$34.99

Pro Series II:

■ Our biggest rockets!

- Fly with our biggest engines!

The biggest thrills you can experience with Estes

- This is where your journey from your first Alpha rocket launch takes you!

Sturdy pre-slotted body tube for fin alignment \& strength

9716 Star Orbiter ${ }^{\text {TM }}$
Length: 45.2 in . (114.8 cm)
Diameter: $1.64 \mathrm{in} .(42 \mathrm{~mm})$ Estimated Weight: 5.9 oz (167.2 g) Fins: Laser cut wood Recovery: 18 in. $(45.7 \mathrm{~cm}$) Nylon Parachute Projected Altitude: 1800 ft . (549 m) Recommended Engines. E16-6 for first launch; F15-8 \$24.99

9752 PS II ${ }^{\text {TM }}$ Booster For use with rockets 9706 Ascender", and 9707 Majestic Recommended Engine: F15-0
\$9.99

3172 PS IITM Shock Cord Accessory Pack 3 heavy-duty elastic shock cords; $1 / 2 \mathrm{in}$. $(13 \mathrm{~mm}) \times 96 \mathrm{in}$. $(243.8 \mathrm{~cm})$ \$10.99

2240 PS II ${ }^{\text {TM }}$ Launch Controller

- 2240 Pro Series II Launch Controlle - 30 feet launch cable

Required set back distance for rocket engines with more than 30 g propellant
Audible Continuity

- Easily hear if the starter is connecte correctly
Two hands required for launch
- Even with the Safety Key left in, the rocket will not launch without both buttons pressed
- Requires 4 "C" size alkaline batteries

9753 PS IITM
$\mathbf{2 4 ~ m m}$ to $\mathbf{2 9 ~ m m}$ Engine Adapter Set
\$5.99

3556 PS II ${ }^{\text {TM }}$
Recovery Wadding
Approximately 225 sheets for larger rockets. Can be used in any Estes rocket.
\$9.99

				\％	\％							0							｜lose	骨｜	骨｜
									mm												$\sim \sim$
			$\stackrel{\sim}{\square}$	\bigcirc	m¢0	¢	へ丁	「比	\bigcirc	咎	$\stackrel{\sim}{0}$	N	\cdots	－	－	̇	\％	O－m	8	85	\％ 9
			号	O	\cdots	\cdots	\bigcirc	\pm	N	\％	N	笭			管遂。	¢	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\sim}$	N		
	圜			∞	∞	－	－i¢	$\stackrel{¢}{\circ}$	$\stackrel{\sim}{\circ} \mathrm{O}$	\bigcirc	$\stackrel{\infty}{\circ}$	示	엉		筬等	何	－	～	$\stackrel{0}{\square}$		－
	欴	\％		～	\％\％\％	\％${ }_{0}$	\％	$\overbrace{0}^{\circ}$	0	¢	\％	®．	$\stackrel{\circ}{\circ}$		\％	$\stackrel{-1}{-1}$	$\stackrel{\circ}{\circ}$	～	\％	\％¢	
		¢	～～1	잉ㅇㅇㅇ	$\stackrel{\circ}{\circ} \mathrm{O}$	¢ ¢ ¢	\bigcirc	\bigcirc	\div	©	¢	$\stackrel{\square}{-}$	$\stackrel{\square}{6}$	\％	$\stackrel{0}{0}$ O－O	\bigcirc	$\stackrel{\sim}{\sim}$	R	\％	${ }_{6}^{\circ}$	家
		㢦	\cdots	울	¢	¢		－	¢ m j	Nへ	N	c	m	－	－	－	8		¢	¢	¢
			－	0_{0}°	$\stackrel{0}{\circ} \stackrel{0}{\circ}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	\％ 0_{0}^{0}	P	$\stackrel{\sim}{\sim}$	－	\bigcirc	\％	\bigcirc	\bigcirc	－	－	O	－	\％	\％	
			$\stackrel{\sim}{\sim}$	in is	¢ $¢$	\％ir	的め	∞	¢®	츨	¢	$\stackrel{1}{7}$			7	，	（z）	－	迺		\％ợ
	这			－هi－	\bigcirc	\bigcirc	¢	$\stackrel{0}{\circ}$	¢ ¢ ¢								$\stackrel{O}{-}$				
	은흏	\％							\sim												
		$\begin{array}{\|l} \stackrel{\rightharpoonup}{\ddot{\otimes}} \underset{\gtrless}{2} \end{array}$		Bho	$\stackrel{\rightharpoonup}{C}$	Con	$\stackrel{\sim}{\text { ¢ }}$		8	\％	8	8	O	－	O－0	O	O	冎	¢		\％omem
						우ㅇㅜㅜ웅		\％${ }_{\text {¢ }}^{\text {¢ }}$	等㨧	N	¢	¢	¢ ${ }_{6}^{\circ}$			\mid	岂	\％	訔		¢
	훈 ¢				会尔	둥	砍吕	\％	항	\％	\％	\％	\pm		風包	過	边		${ }^{-}$		萨華

MODEL ROCKET ENGINE PERFORMANCE CHART CONTINUED

6201\＄	t	¢＇\＆	ع10	£8＇9	920	08°	62	00 ¢ 1	98	0 －ε	JNON	09＇z	Id－OLV	S0G1
66． 2 Z\＄	2	0 t	じレ	て＇\＆L	89＇Z	$60 \cdot \mathrm{Z}$	6.9	カt＇9z	60 G	0．81	INON	89 ¢ ε	0－917	S69
$66.97 \$$	乙	09	でて	0＇t6	てと＇દ	¢ヶ¢	L＇9	9て＇Gz	689	0.61	INON	$19^{\circ} 6$	0－¢゙」	0991
66 ¢ $2 \$$	ε	6.98	ع＇ı	1．89	$90{ }^{\circ}$	00^{\prime}	$0 \cdot 2$	0ع＇1を	tSt	0.91	INON	08：8乙	0－213	1691
$66.11 \$$	乙	8\＆ぇ	t80	－0\％	とが	91	t＇L	06 てع	968	0＇ャl	INON	00.02	0－210	¢9¢ı
$66 \angle \$$	乙	で	カーロ	て＇6z	$\varepsilon 0^{\circ} \mathrm{L}$	080	6 ＇t	01 亿z	02l	$0 \cdot 9$	ヨNON	$00 \cdot 01$	0－ルつ	Z¢ף
6L＇LL\＄	ε	でて	とtio	がして	9L＇0	00°	\downarrow ¢	08 Sl	\＆	0＇t	INON	00．01	0－93	9191
6LOL\＄	ε	¢9	ع ${ }^{\circ} \mathrm{O}$	L＇Gl	cs\％	08°	L＇z	01てし	ELI	0＇t	INON	00＇9	0－98	8091
6201\＄	ε	L＇t	＋10	¢ $\varepsilon 1$	Lto	08°	0 0	0ε ¢	98	$0 \cdot \varepsilon$	ENON	09\％	0－8V	0091
62015	†	$\mathrm{G}^{\circ} \mathrm{E}$	て10	$8 \cdot 9$	ャで0	08°	6	00 ¢ 1	EL	O＇t	INON	09＇z	10－016	0191
66 Z Z\＄	乙	0 t	じレ	L＇t8	66 Z	60 ＇	6.9	カャワて	968	0＇tl	8	89＇\＆	8－91ヨ	8691
2\＄	乙	09	てして	がtol	69 ¢	¢ヶ¢	L＇G	＇¢z	GZt	0＇s	8	196t	GL	91
66 ¢ $¢ \$$	ε	$6{ }^{\circ} \mathrm{E}$	ع＇L	¢ ¢9	ャでて	0Ľ	1．	081 L	0 ¢	0＇zl	8	0862	8－て1ヨ	＋691
$66.12 \$$	乙	でって	980	0.95	29	09.	カ2	06 て\＆		$0 \cdot 8$	L	00．02	L－てı0	8991
$66^{\circ} \mathrm{LS}$	Z	かてし	カャ゙0	8＇$\varepsilon \varepsilon$	61＇	080	6＇t	0 OLZ	\＆LL	0＇t	L	0001	L－ト1）	tzGı
6L＇LI\＄	ε	でて	\＆ャo	と＇t乙	980	091	†＇	0 0＇Gl	LL	c＇z	L	000．	L－9）	St91
6LOL\＄	ε	¢．9	とで0	で81	t900	080	L＇z	01てし	LL	s＇z	9	00＇9	9－98	L091
6201\＄	ε	l＇t	＋10	L＇Gl	cs ${ }^{\circ}$	09，0	0 －ε	$0 ¢$ ¢ 1	$L 9$	$0{ }^{\circ}$	G	09＇z	¢－8V	6691
6201\＄	†	6.1	20°	9＇9	£ $\chi^{\circ} 0$	080	$6{ }^{\circ}$	088	82	$0 \cdot 1$	\dagger	GZ＇	Lt－EVZ／L	tosl
			$\log _{10 \mathrm{O}}^{\mathrm{IO} I_{\mathrm{d}}}$	${ }^{2} 46$	！！̣｜			xew			$\begin{aligned} & \text { кepog } \\ & \text { әu!ı } \end{aligned}$	əs｜ndu｜ 	$\begin{gathered} \text { әd } K_{\perp} \\ \text { әu! } 6 u \ni \end{gathered}$	${ }^{\circ} \mathrm{poN}$

\．WARNING：
This product can
expose you to silica， which is known to the
State of Califor
ancer．
a

[^1]The famous model rocket engines that made model rocketry the great ativity itis today. Estes model rocket engines have been proven consistent The concept of a factory assembled model rock the foundation of this scientific and educational activity! 3% of all Estes engines are static-tested at the factory for reliability and adherence to performance specifications. All engines comply with the code requirements of the National
Fire Protection Association and re Fire Protection Association and are certified by the National Association of Rocketry,

HOW DOES A MODEL ROCKET ENGINE WORK?

1. When engine is ignited, it produces thrust and boost rocket into sky.
2. Atter propellant is used up, delay is activated, producin racking smoke and allowing rocket to coast.
3. After delay, ejection charge is activated, deploying recovery
system.

WHAT SIZES ARE AVAILABLE?
Estes engines are available in a wide variety of sizes and power levels:

TYPE	TOTAL IMPULSE	ENGINE TYPES
$1 / 4 \mathrm{~A}$	$0.313-0.625$	Mini
$1 / 2 \mathrm{~A}$	$0.626-1.25$	Standard, Mini
A	$1.26-2.50$	Standard, Mini
B	$2.51-5.00$	Standard
C6	$5.01-10.00$	Standard
C11	$5.01-10.00$	D Size
D	$10.01-20.00$	D Size
E	$20.01-30.00$	E Size
F	$45.01-50.00$	F Size

Each engine type is color coded.

```
Single Stage - Green
\(\square\) Upper Stage - Purple (Upper stage engines can be used as single stage engines in lightweight rockets.)
```



``` ejection charge.)
\(\square\) Plugged - Blue (Plugged engines are used for R/C
gliders and contain no delay or ejection charge.)
```


Each engine has an alphanumeric code printed on it

B = TOTAL IMPULSE

 This letter is the total power (in engine. Each succeeding letter has up to twice the total power as the previous letter. (Example: "B" engines have up to twice the powe of "A" engines, which results in rocket will reach.)

6 = AVERACE THRUST

 This number shows the engine's average push or how fast the engine powers the rocket to go. The higher the number, the faster the speed. It is measured in Newtons (4.45 Newtons $=1 \mathrm{lb}$.4 = TIME DELAY
This number gives you the time delay in seconds between the end of the thrust phase and ignition of the ejection charge. Engine types ending
in " 0 " have no time delay or eiection in 0 have no time delay or ejection
and are used for booster stages and and are used for booster stages and
special purposes only Engines ending
in special purposes only. Engines ending
in "P" have no time delay or ejection charge and the forward end is
plugged.

ENGINE TIME/THRUST CURVES

Take your rocketry hobby to the next level with Estes

accessories!

The key to any successful rocket launch, whether it's a full-size rocket or a flying model rocket, is the accuracy with which the rocket is assembled. To accomplish this task, full-size rocket companies utilize many assembly jigs and fixtures to ensure accurate alignment of critical components. Here at Estes, we do our best to provide our rocketeer customers with useful jigs, fixtures, and templates for accurate alignment and assembly of our model rocket kits. In addition, we have a variety of useful tools and accessories that can make your model rocket building experience truly enjoyable. And equally important, the accuracy these tools provide will assure that your rocket performs at its ultimate potential.

The Tube Marking Guide allows for accurate and consistent fin placement when building your rocket.

2227 Tube Marking Guide The tube marking guide is an easy way to mark your fin and launch lug placement. The marking guide is a must for an
\$12.99

The Ultimate Tube Marking Guide helps mark body tubes of all different sizes.

2315 Tube Cutting Guides Assorted sizes: BT-5, BT-20, BT-50, BT-55, and BT-60 (hobby knife not included) \$11.99

The Tube Cutting Guides come in different sizes and allow for straight and even lines when cutting and marking your body tubes.

BODY TUBE PACKS

High quality spiral wound paper tubes. Use tube couplers to connect tubes of the same diameter. Outer diameters listed. (not all body tube sizes shown)
$3084 \cdot$ BT-5 $\cdot 0.54 \mathrm{in} . / 14 \mathrm{~mm}$ diameter $\cdot 18 \mathrm{in} . / 45.7 \mathrm{~cm}$ long ($\mathbf{4}$ pack) $\$ 7.49$ $\mathbf{3 0 8 5} \cdot$ - BT-20 • $0.74 \mathrm{in} . / 19 \mathrm{~mm}$ diameter $\cdot 18 \mathrm{in} . / 45.7 \mathrm{~cm}$ long ($\mathbf{4}$ pack) $\$ 8.49$ $3086 \cdot$ BT-50 • $0.98 \mathrm{in} . / 25 \mathrm{~mm}$ diameter • $18 \mathrm{in} . / 45.7 \mathrm{~cm}$ long ($\mathbf{3}$ pack) $\$ 8.49$ $3087 \cdot$ BT-55 • 1.33 in./ 34 mm diameter • 18 in./45.7 cm long ($\mathbf{3}$ pack) $\$ 8.99$ $3089 \cdot$ BT-60 • $1.60 \mathrm{in} . / 41 \mathrm{~mm}$ diameter • $18 \mathrm{in} . / 45.7 \mathrm{~cm}$ long (3 pack) $\$ 9.49$ $3090 \cdot$ BT-80 • $2.60 \mathrm{in} . / 66 \mathrm{~mm}$ diameter • $14 \mathrm{in} . / 45.7 \mathrm{~cm}$ long (2 pack) \$8.99

3176 BT-5, BT-20, BT-50 Tube Couplers (2 each) $\$ 3.99$

3177 BT-55, BT-60 Tube Couplers (2 each) \$5.49

3178 BT-80 Tube Couplers (2 each) \$4.99

2320 Launch Lug Pack
Contains 4 each: $1 / 8 \times 23 / 8$ in $(3 \times 60 \mathrm{~mm}), 1 / 8 \times 11 / 4$ in $(3 \times 32 \mathrm{~mm}), 3 / 16 \times 2$ in. $(5 \times 51 \mathrm{~mm})$ and $1 / 4 \times 1$ in $(6 \times$ 25 mm) launch lugs
$\$ 5.99$

196 Large Tube Coupler Pack includes two couplers for BT-55, ET-56 and BT-60;One for BT-80
$\$ 6.99$
 9750 PS IITM 29 mm
Engine Retainer Set (2 sets) \$8.99

975124 mm
Engine Retainer Set (2 sets) \$7.99

318718 mm 318718 mm
Engine Retainer Set (3 sets) \$6.99

For complete size and specifications of all these parts, go to estesrockets.com.

3175 BT-5 through BT-55 Centering Ring Assortment
\$5.99

3171 Clear Payload Assortment $\$ 17.99$

2278 Shock Cords \& Mount Pack Includes three $1 / 8$ in. $\times 36$ in. $(3 \mathrm{~mm} \times 914 \mathrm{~mm}$) and one $1 / 4$ in $\times 36$ in. $(6 \mathrm{~mm} \times 914 \mathrm{~mm}$) rubber shock cords). Includes shock cord mounts and instructions.
\$5.99

3180 Clay Nose Cone Weights $\$ 5.99$

NOSE CONE ASSORTMENTS
Each package of nose cones may contain a wo piece. All have eyelets for shock cord and shroud line attachments.
3160 NC-5 Nose Cone Assortment (5 pack) \$5.49 3161 NC-20 Nose Cone Assortment (4 pack) \$5.49 3162 NC-50 Nose Cone Assortment (5 pack) \$8.99 3163 NC-55 Nose Cone Assortment (4 pack) \$7.99 3164 NC-56 Nose Cone Assortment (4 pack) \$7.99 3165 NC-60A Nose Cone Assortment (3 pack) \$8.99 3168 NC-80B Nose Cone (1 Pack) \$4.49 3173 Sci-Fi Nose Cone Assortment (5 pack) \$16.99

3181 Engine Mount Parts Assortment 3 each engine mounts for mini-engines, standard engines, and D engines.
$\$ 8.49$

274 Recovery Wadding

Flame-resistant wadding protects recovery system. Required in most Estes rockets. Contain system. Required in most Estes rockets. Contains approximately
\$5.49

3143 Engine Hook Accessory Pack Hooks fit mini engines (two), regular and D engines (three) and E12 engines (two) \$5.49

2250 1/4A3, 1/2A3, A3 and A10 Engine Plugs (20 pack) $\$ 5.99$ 2251 1/2A6, A8, B4, B6, and C6 Engine Plugs (20 pack) \$5.99 2252 C11, D12, E9, E12, E16 and F15 Engine Plugs (20 pack) \$5.99

2302 Model Rocket Starters Easy-to-use Estes starters in a convenient six pack. It's always good to have spares. $\$ 5.49$

Standard to D Engine Adapters Two simple steps transform a standard engine into a D size. Insert a standard engine into the adapter, and insert the adapter into a rocket. 3 adapters per pack. Reusable. (Engines not included.) \$5.99

2316 Mini to Standard Engine Adapters wo simple steps transform a mini-engine into a standard size. Insert a mini-engine to the adapter, and insert the adapter into Engines not included.) \$5.99

3170 Waterslide Decal Set
\$12.99

Recovery parachutes

> All parachutes are fully-assembled

Sturdy sewn fabric chutes for your biggest, heaviest rockets.

226124 in . $\mathbf{6 1}$ cm) Nylon Parachute $\$ 12.99$
227330 in. (76.2 cm) Nylon Parachute $\$ 16.99$

EXPLORE IT, ENGINEER IT, LAUNCH IT!

Inspiring students, young and old - that's the focus of Estes Education! Log onto Estesrockets.com/education to find everything you need for your classroom or youth organization.

Estes Makes it EASY!

Building Estes model rockets is the best hands-on activity I have ever done with kids.

Mary Roberts,
longtime Estes employee \& former 4-H rocketry leader

TEACHING WITH ESTES ROCKETRY

 IS REAL-WORLD STEMEstes Curriculum \& Lesson Plans Include:

- NGSS standards
- 3-D Practices, Core Ideas, Crosscutting
- Engage: Interact with STEM curriculum with proven methods.
- Explore: Use authentic materials to engineer and experience the model rocket phenomenon with
 crosscutting adventures.
- Explain: Students gather data and summarize experiences by interpreting results and communicating possible improvements, successes and challenges.
- Elaborate: Take the student's understanding to the next level, digging deeper, reaching higher, applying concepts in selfdirected learning.
- Evaluate: Students evaluate their engineering design process and scientific explorations relating to real-world applications.

FREE ONLINE RESOURCES

At EstesRockets.com/education you can find useful information about:

■ Classroom Activities:

- Close reading
- Journaling
- Games
- Model Rocket Basics for:
- Youth Groups
- Homeschooling
- Enrichment
- How to Choose a Launch Site

■ Videos, Animation, and More!

Estes offers 12-piece rocket bulk packs especially for educators and youth group leaders. (Rocket engines, recovery wadding, starters, and engine plugs are sold separately.)

HOW TO CHOOSE THE RIGHT ROCKET FOR YOUR GROUP

 Consider these four things when making your plan AgeYounger kids (Grades 5-8) need rockets that are simpler to assemble. They're not quite ready for the challenge of gluing on individual fins yet, so choose one of our kits with a one-piece plastic fin unit and fewer assembly steps. Older kids do a better job of reading, understanding and following assembly instructions. They will have the hand-eye skills to glue wood fins to the body tube.

Staff

Conducting a build session with 30 kids yourself is a challenge. We recommend that you get helpers for both your build session and on your launch. Short on adult volunteers? Recruit kids from higher grade levels.

Time

Do you have a single session to both build and fly the rocket? Consider the amount of time needed for glue to dry and how much time it will take to prep the rockets before launch.

Flying Field Size

Recovery method (parachute or streamer), engine size (A, B, C) and wind all play a role in what rocket is best suited for the size field you may have. You can't make your field bigger, but you can choose the right size rocket to fly on it!
Parachutes drift farther and come down slower, so you'll need a bigger field.
Streamers have very little drift and mostly come down within a small radius of your launch pad.
Rocket engines double in power with each succeeding engine letter. For example: B engines effectively fly your rocket twice as high as A engines.

THESE ARE OUR EASIEST TO BUILD ROCKETS

These Rockets Are More Challenging To Build

Three balsa fins that glue onto

 body tube.12 ROCKETS INCLUDED:

1756 Alpha ${ }^{\text {® }}$ (12-pack) Length: 12.3 in. (31.2 cm) Recovery:
12 in. $(30.5 \mathrm{~cm})$ Parachute Fin Type: Laser cut wood Recommended Engine A8-3 for first launch; $1 / 2 \mathrm{~A} 6-2$, A8-5, B4-4,
$\mathrm{B6} 64, \mathrm{B6}-6, \mathrm{C}-5, \mathrm{C}-7$

12 ROCKETS INCLUDED!

THE LIFETIME LAUNCH SYSTEM IS DESIGNED FOR TEACHERS (Includes Controller \& Launch Pad).

Pro Series II Launch Controller
Pro Series II Launch Controller

- Students get a better launch view.
- Audible Continuity
- Students can easily hear if the starter is connected correctly.
- Two hands required for launch
- Even with the safety key left in, the rocket will not launch without both buttons pressed.

Lifetime Launch System
\square Stands 18 in. (45.7 cm) off the ground!

- Students can easily see the starter wires and make a good connection.
- Tiltable
- Students can make last-minute adjustments to the launch angle.
- Includes $1 / 8 \mathrm{in}$. ($\mathbf{3} \mathrm{mm}$) and $3 / 16$ in. (5 mm) two piece launch rods - The rods store inside a pad leg.

Designed to withstand the rigors of multiple use, the launch pad and launch controller are
the best Estes
has ever
made!

* The Lifetime Launch System comes with a lifetime limited warranty available to read at estesrockets.com/lifetime-launch-system-warranty.

BRING NEXT GENERATION SCIENCE INTO YOUR CLASSROOM

Students actively engage in scientific and engineering practices and apply crosscutting concepts to deepen their understanding of the core ideas in these fields.

1706 Orbis
Length: $10-12$ in. ($25-30.5 \mathrm{~cm}$) Diameter: 0.74 in. (19 mm) Estimated Weight: 0.76 oz . $(21.5 \mathrm{~g})$ Fins: 3D Printed
Recovery: 9 in. $(22.9 \mathrm{~cm}$) Parachute
Projected Altitude: $400 \mathrm{ft}(122 \mathrm{~m}$) Projected Altitude: $400 \mathrm{ft}(122 \mathrm{~m}$) Recommended Engines: A8-3 for first launch; B6-4, C6-5
$\$ 59.99$

Students 3D print these parts!

National Association of Rocketry MODEL ROCKET SAFETY CODE
 (Basic Version, Eff. August 2012)

1. Materials. I will use only lightweight, non-metal parts for the nose, body, and fins of my rocket.
2. Motors. I will use only certified, commercially-made model rocket motors, and will not tamper with these motors or use them for any purposes except those recommended by the manufacturer.
3. Ignition System. I will launch my rockets with an electrical launch system and electrical motor igniters. My launch system will have a safety interlock in series with the launch switch, and will use a launch switch that returns to the "off" position when released.
4. Misfires. If my rocket does not launch when I press the button of my electrical launch system, I will remove the launcher's safety interlock or disconnect its battery, and will wait 60 seconds after the last launch attempt before allowing anyone to approach the rocket.
5. Launch Safety. I will use a countdown before launch, and will ensure that everyone is paying attention and is a safe distance of at least 15 feet away when I launch rockets with D motors or smaller, and 30 feet when I launch larger rockets. If I am uncertain about the safety or stability of an untested rocket, I will check the stability before flight and will fly it only after warning spectators and clearing them away to a safe distance. When conducting a simultaneous launch of more than ten rockets I will observe a safe distance of 1.5 times the maximum expected altitude of any launched rocket
6. Launcher. I will launch my rocket from a launch rod, tower, or rail that is pointed to within 30 degrees of the vertical to ensure that the rocket flies nearly straight up, and I will use a blast deflector to prevent the motor's exhaust from hitting
the ground. To prevent accidental eye injury I will place launchers so that the end of the launch rod is above eye level or will cap the end of the rod when it is not in use.
7. Size. My model rocket will not weigh more than 1500 grams (53 ounces) at liftoff and will not contain more than 125 grams (4.4 ounces) of propellant or 320 N -sec (71.9 pound-seconds) of total impulse. 8. Flight Safety. I will not launch my rocket at targets, into clouds, or near airplanes, and will not put any flammable or explosive payload in my rocket.
8. Launch Site. I will launch my rocket outdoors, in an open area at least as large as shown in the accompanying table, and in safe weather conditions with wind speeds no greater than 20 miles per hour. I will ensure that there is no dry grass close to the launch pad, and that the launch site does not present risk of grass fires.

LAUNCH SITE DIMENSIONS

LAUNCH SITE DIMENSIONS
Installed Total Impulse (N-sec) Equivalent Motor Type Minimum Site Dimensions (ft.) $0.00-1.25$ $1 / 4 \mathrm{~A}, 1 / 2 \mathrm{~A}$ 50 $1.26-2.50$ A 100 $2.51-5.00$ B 200 $5.01-10.00$ C 400 $10.00-1-20.00$ D 500 $20.01-40.00$ E 1000 $40.01-80.00$ F 1000 $80.01-160.00$ G 100 $160.01-320.00$ Two Gs 1500

10. Recovery System. I will use a recovery system such as a streamer or parachute in my rocket so that it returns safely and undamaged and can be flown again, and I will use only flame-resistant or fireproof recovery system wadding in my rocket 11. Recovery Safety. I will not attempt to recover my rocket from power lines, tall trees, or other dangerous places
www.nar.org

- ESTES A proud sponsor of the Team America Rocketry Challenge

ESESTES:
 Our retwren policy

YOU'RE COVERED WITH THE ESTES FULL ONE-YEAR WARRANTY

Your Estes model rocket product is warranted against defects in materials or workmanship for one year from the date of the original purchase. If this Estes product, because of a manufacturing mistake, malfunctions or proves to be defective within the one-year warranty period, it will be repaired or replaced, at Estes' option and at no charge to you.

This warranty does not cover incidental or consequential damage to persons or property caused by the use, abuse, misuse, failure to comply with operating instructions or improper storage of the
warranted products. Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above exclusion may not apply to you. This warranty gives you specific legal rights and you may also have other rights which vary from state to state.
For repair or replacement under this warranty, please contact us at www. estesrockets.com or by mail at Estes Industries, LLC, Customer Service Department, 1295 H Street, Penrose, Colorado 81240-9698.

INDEX

Rockets

Ceneral

Accessories	
Altimeter	
Altitrak	76
Bulk Packs for Educators	99
Designer's Special ${ }^{\text {m }}$	
Engine Performance Chart	
Engine Thrust Curves	
Estes Education. . .	82-83
Fun Recovery.	
How Engines Work.	
Introduction	
Launch Sets.	
Model Rocketry Basics	
Model Rocket Engines	
Multi-Stage Rockets	
NAR Safety Code.	
PS $\mathrm{II}^{\text {m }}$	
PS IIT" Accessories	
Rocket Kit Details	
Scale Models.	50-59
STEM Learning.	
Supporting Organizations	
arranty.	
come	

Estes catalogs are highly collectible! We recommend keeping it but if you choose not to, please recycle.

Prices and availability are subject to change without notice. Color of product may vary.
© 2019 Estes Industries, LLC, 1295 H Street, Penrose, CO 81240-9698.
All rights reserved. Printed in USA. PN2927-19 (3-19)

Get Involved!

Below you'll find links to the web pages of respected groups and institutions who support our contributions to the development of young people. Like Estes, many of these organizations provide their own unique learning opportunities for students, youth leaders and teaching professionals. Together, we strive to create an environment rich with resources to keep your students interested, inquisitive, and inspired. Please take a moment to visit their sites today.

nar.org

Girl Scouts
girlscouts.org

challenger.org

rocketcontest.org

the

spacecamp.com

gocivilairpatrol.com

[^0]: 38 estesrockets.com

[^1]: This warning is on
 all Estes engine all Estes eng
 packaging．

