ZUTTO System

ZT10SPX-ZR002 Data Sheet

The Zutto ZT10SPX-ZR002 is a 10G SFP+ ZR optical transceiver designed for ultra-long-range connectivity in Ethernet, SONET/SDH, and Fibre Channel applications. Supporting data rates up to 11.3Gbps, it enables seamless transmission over single-mode fiber for distances up to 80km. Featuring a cooled 1550nm EML transmitter and a high-sensitivity APD receiver, this transceiver delivers exceptional performance in demanding environments.

Compliant with SFF-8431 and SFF-8432 standards, the ZT10SPX-ZR002 includes hot-pluggable functionality and built-in digital diagnostics for easy integration and monitoring. With low power consumption of under 1.7W and a robust operating temperature range (0°C to 70°C), it offers a reliable and efficient solution for long-haul networking.

Features

- Supports 1.0 to 11.3Gb/s bit rates
- Hot-Pluggable SFP+ form factor
- Duplex LC connector
- Cooled 1550nm EML Transmitter, APD Receiver
- Up to 80 km on 9/125µm SMF
- Built-in digital diagnostic functions
- Power Supply :+3.3V
- Power consumption<1.7W
- Operating case temperature: 0~ 70°C
- RoHS compliant

Zutto ZT10SPX-ZR002

10G SFP+ ZR Optical Transceiver / Up to 80 km on $9/125\mu m$ SMF

Applications

- 10G Ethernet
- SDH/SONET
- Fibre Channel

Key Features

The Zutto ZT10SPX-ZR002 optical transceiver module showcases several main values that make it a standout choice in its field.

Ultra-Long-Range Connectivity

Supports transmission up to 80km on single-mode fiber, making it ideal for long-distance applications.

High-Speed Data Rates

Delivers reliable speeds up to 11.3Gbps, ensuring top-tier performance for bandwidth-intensive networks.

Energy Efficiency

Consumes less than 1.7W, providing an energy-conscious option for extensive network deployments.

Advanced Diagnostics and Easy Deployment

Features built-in digital diagnostics and hot-pluggable design for seamless monitoring and integration.

Absolute Maximum Ratings

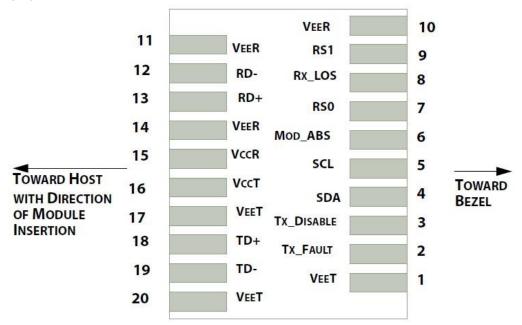
Parameter	Symbol	Min.	Typical	Max.	Unit	
Storage Temperature	Ts	-40		+85	°C	
Case Operating Temperature	TA	0		70	°C	
Maximum Supply Voltage	Vcc	-0.5		4	٧	
Relative Humidity	RH	0		85	%	

Electrical Characteristics

Symbol	Min.	Typical	Max.	Unit	Note
Vcc	3.135		3.465	V	
Icc			515	mA	
Р			1.7	W	
Rin		100		Ω	1
Vin,pp	100		1000	mV	
VD	2		Vcc	V	
VEN	Vee		Vee+0.8	V	
Vo	120		800	mV	
VLOS fault	2		Vcchost	٧	2
VLOS norm	Vee		Vee+0.8	٧	2
	Vcc Icc P Rin Vin,pp VD VEN Vo VLOS fault	Vcc 3.135 lcc P P Icc Rin Vin,pp 100 VD 2 VEN Vee Vo 120 VLOS fault 2	Vcc 3.135 Icc P Rin 100 Vin,pp 100 VD 2 VEN Vee Vo 120 VLOS fault 2	Vcc 3.135 3.465 Icc 515 P 1.7 Rin 100 Vin,pp 100 VD 2 VEN Vee Vee+0.8	Vcc 3.135 3.465 V Icc 515 mA P 1.7 W Rin 100 Ω Vin,pp 100 1000 mV VD 2 Vcc V VEN Vee Vee+0.8 V Vo 120 800 mV VLOS fault 2 VCCHOST V

Note:

- 1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.
- 2. LOS is an open collector output. Should be pulled up with $4.7k 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1.


Optical Parameters

Parameter	Symbol	Min.	Typical	Max.	Unit	Note
Transmitter Section:						
Center Wavelength	λt	1530	1550	1565	nm	
Spectral width	$\triangle \lambda$			0.4	nm	
Side Mode Suppression Ratio	SMSR	30			dBm	
Average Optical Power	Pavg	0		+5	dBm	
Laser Off Power	Poff			-30	dBm	
Extinction Ratio	ER	6			dB	
Transmitter Dispersion Penalty	TDP			3.0	dB	
Receiver Section:						
Center Wavelength	λr	1260		1620	nm	
Receiver Sensitivity	Sen			-23	dBm	1
Input Saturation Power(Overload)	Psat	-7			dBm	
Los Assert	LOSA	-35		-	dBm	
Los Dessert	LOSD			-24	dBm	
Los Hysteresis	LOSH	0.5			dB	

Note:

1. Measured with a PRBS 2 $^{\mbox{\tiny 31}}\mbox{-1}$ test pattern, @10.3125Gb/s, BER < 10 $^{\mbox{\tiny -12}}\mbox{, back to back}.$

Pin Assignment

Diagram of Host Board Connector Block Pin Numbers and Names

Pin Function Definitions

PIN#	Symbol	Function	Notes
1	VeeT	Module transmitter ground	1
2	Tx Fault	Module transmitter fault	2
3	Tx Disable	Transmitter Disable; Turns off transmitter laser output	3
4	SDA	2 wire serial interface data input/output (SDA)	
5	SCL	2 wire serial interface clock input (SCL)	
6	MOD-ABS	Module Absent, connect to VeeR or VeeT in the module	2
7	RS0	Rate Select 0. Not Used	
8	LOS	Receiver Loss of Signal Indication	4
9	RS1	Rate Select 1. Not Used	
10	VeeR	Module receiver ground	1
11	VeeR	Module receiver ground	1
12	RD-	Receiver inverted data out put	
13	RD+	Receiver non-inverted data out put	
14	VeeR	Module receiver ground	1
15	VccR	Module receiver 3.3V supply	
16	VccT	Module transmitter 3.3V supply	
17	VeeT	Module transmitter ground	1
18	TD+	Transmitter non-inverted data out put	
19	TD-	Transmitter inverted data out put	
20	VeeT	Module transmitter ground	1

Note:

- 1. The module ground pins shall be isolated from the module case.
- 2. This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to Host_Vcc on the host board.
- 3. This pin shall be pulled up with 4.7K-10Kohms to VccT in the module.
- 4. This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to Host_Vcc on the host board.

SFP Module EEPROM Information and Management

The SFP modules implement the 2-wire serial communication protocol as defined in the SFF -8472. The serial ID information of the SFP modules and Digital Diagnostic Monitor parameters can be accessed through the I²C interface at address A0h and A2h.

The memory is mapped in Table 1.

For more details of the memory map and byte definitions, please refer to the SFF-8472, "Digital Diagnostic Monitoring Interface for Optical Transceivers". The DDM parameters have been internally calibrated.

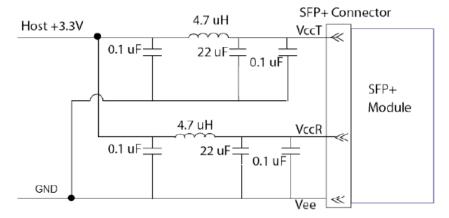
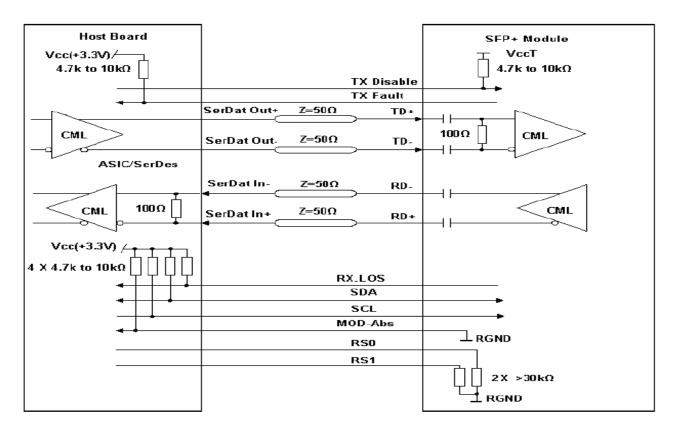
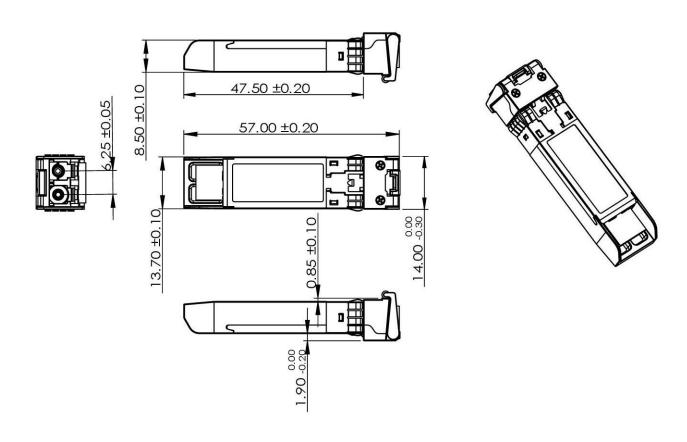

2 wire address 1010000X (A0h) 2 wire address 1010001X (A2h) 0 0 Alarm and Warning Thresholds (56 bytes) Serial ID Defined by 55 SFP MSA (96 bytes) **Cal Constants** (40 bytes) 95 95 Real Time Diagnostic Vendor Specific Interface (24 bytes) (32 bytes) 119 Vendor Specific (8 bytes) 127 127 Reserved in SFP User Writable MSA (128 bytes) EEPROM (120 bytes) 247 Vendor Specific (8 bytes) 255 255

Table 1. Digital Diagnostic Memory Map (Specific Data Field Descriptions)


Digital Diagnostic Monitor Characteristics

Data Address	Parameter	Accuracy	Unit
96-97	Transceiver Internal Temperature	±3.0	°C
98-99	VCC3 Internal Supply Voltage	±3.0	%
100-101	Laser Bias Current	±10	%
102-103	Tx Output Power	±3.0	dB
104-105	Rx Input Power	±3.0	dB

Recommended Circuit



Recommended Host Board Power Supply Circuit

Recommended High-speed Interface Circuit

Mechanical Dimensions(Unit:mm)

Dec 2024 | v2.0