
1

AN INTRODUCTION TO THE MINFARM API
Version 1.2 November 2021

2

Copyright © 2021 MinFarm Tech Ltd.

All rights reserved. This publication and its contents are proprietary to MinFarm

Tech Ltd. No part of this publication may be reproduced in any form or by any

means without the written permission of MinFarm Tech Ltd. MinFarm Tech Ltd.

has made every effort to ensure the correctness and completeness of the

material in this document. MinFarm Tech Ltd. shall not be liable for errors

contained herein. The information in this document is subject to change without

notice. MinFarm Tech Ltd. makes no warranty of any kind with regard to this

material, including, but not limited to, the implied warranties of merchantability

and fitness for a particular purpose.

Trademarks

All trademarks are the property of their respective owners.

3

CONTENTS
1.0 INTRODUCTION ... 4

2.0 WHY USE AN API? ... 4

3.0 WHAT IS AN API? ... 4

4.0 WHAT IS A REST API? .. 4

5.0 REQUEST AND RESPONSE.. 4

6.0 WHAT SECURITY OR AUTHENTICATION METHODS ARE USED WITH THE MINFARM API? .. 5

7.0 STEP 1: THE MINFARM DASHBOARD ... 6

7.1 REGISTER ... 6

7.2 CREATE A DEPLOYMENT .. 8

8.0 STEP 2: POSTMAN ... 13

8.1 IMPORTING THE MINFARM POSTMAN COLLECTION ... 15

8.2 EDITING THE ENVIRONMENT VARIABLES... 17

8.3 CREATING PERSONAL ACCESS TOKENS .. 18

8.4 CREATING THE COLLECTION VARIABLES .. 21

8.5 SYNC DEVICE LIST ... 24

9.0 THE MINFARM API COMMANDS ... 24

9.1 MINFARM API COMMAND TERMINOLOGY .. 25

9.2 SYNC DEVICE LIST ... 26

9.3 SHOW MAILBOXES ... 28

9.4 SHOW TERMINALS ... 29

9.5 SHOW APPLICATIONS .. 30

9.6 SHOW GATEWAY ... 31

9.7 SHOW GATEWAY DATA ... 32

9.8 SHOW DEVICES .. 33

9.9 SHOW DEPLOYMENTS ... 34

9.10 SHOW CUSTOMERS ... 35

9.11 HEARTBEAT MESSAGE FROM GATEWAY ... 36

9.12 UPLINKS: GET DEVICE 1 UPLINKS ... 40

9.13 UPLINKS: GET GATEWAY UPLINKS ... 41

9.14 UPLINKS: GET GATEWAY SATELLITE MESSAGES FOR DEVICE 1 .. 44

9.15 DOWNLINK DEVICE 1 ... 45

9.16 GATEWAY METRICS ... 48

9.17 DEVICE METRICS .. 51

9.18 GATEWAY PING.. 54

9.19 GATEWAY REBOOT .. 57

10.0 CONTACT DETAILS ... 61

APPENDIX 1 POSTMAN BASICS ... 62

4

1.0 INTRODUCTION

This guide is an introduction to the MinFarm API. It explains what is an API, and

ways of interacting with one. The user interface of the MinFarm API is called the

MinFarm Dashboard. The MinFarm API can be accessed using this user interface,

and also using an application called Postman. This guide presumes some basic

knowledge of Postman.

2.0 WHY USE AN API?

An API allows a program to interact with the MinFarm system.

3.0 WHAT IS AN API?

The acronym API stands for Application Programming Interface. An API allows

different applications communicate with one another. The MinFarm API is

located on the MinFarm Bridge Server. The MinFarm Bridger Server is hosted on

the Cloud.

4.0 WHAT IS A REST API?

The MinFarm API is a REST API, sometimes called RESTful API. REST stands for

Representational State Transfer. It describes your style of interaction with, and

how the API is set up. It employs standard HTTP methods of interaction with

functions such as GET (view), POST (create), PUT (edit) and DELETE (delete).

5.0 REQUEST AND RESPONSE

When interacting with the MinFarm API, a Request is first sent to the API, and a

Response is received back. The transfer protocol HTTP is used during this

transfer. The Request contains 4 parts:

• The start line: contains the HTTP version number, the method e.g.

GET/POST/PUT/DELETE, folder location in the API, and any parameters.

https://app1.minfarmtech.io/
http://www.postman.com/

5

• Header(s): the MinFarm API URL, Authorization Token, file type e.g.

application/json.

• A blank line: Separates the header from the body.

• Body: Sometimes called payload. Contains further information associated

with the Request. Not all Requests contain a Body.

The Response also contains 4 parts:

• The start line: contains the HTTP version number and a Status Code

response, e.g. 200 or 201 indicates a successful Request, Status Code 403

indicates an error.

• Header(s): Date, file type e.g. application/json, etc.

• A blank line: Separates the header from the body.

• Body: What was requested from the API.

6.0 WHAT SECURITY OR AUTHENTICATION METHODS ARE USED WITH
THE MINFARM API?

The MinFarm API uses OAuth 2.0 authentication. OAuth 2.0 does not share

password information, but gives the user a token, known as a Personal Access

Token (also called a Bearer Token), which allows access to a Scope, or access

capability, within the API. The MinFarm API supports four types of Scope: Read,

Write, Manager, and Firmware. Read is the most basic Scope allowing for Read

only access, and no editing. The Write Scope allows for editing. While the

Manager Scope contains full range of access. The Firmware scope is for more

advanced access and will not be discussed in this document. Contact MinFarm

for further information.

Each Personal Access Token is limited to one year and is in the form of a string

which must be copied and saved somewhere. The Personal Access Token is

6

generated via the MinFarm API user interface, i.e. in the MinFarm Dashboard.

See Section 8.3 below on how to do this.

The MinFarm API also supports another type of OAuth 2.0 authentication called

Authorization Code Grant. This is for more advanced access and will not be

discussed in this white paper. Please contact MinFarm for further information.

7.0 STEP 1: THE MINFARM DASHBOARD

The user interface of the MinFarm API is called the MinFarm Dashboard.

Accessing this user interface is the required first step in setting up access to your

device / sensor. To complete this section, you should have to hand all necessary

passwords and keys as provided by your satellite service provider and device /

sensor supplier. The user creates a Deployment by following the steps below:

7.1 REGISTER
Go to the MinFarm Dashboard and select <Register Account>.

https://app1.minfarmtech.io/
https://app1.minfarmtech.io/
https://app1.minfarmtech.io/

7

The homepage is displayed.

The various objects required in the Deployment are shown in the schematic

below.

8

7.2 CREATE A DEPLOYMENT
Add an IDP Mailbox by selecting <Add IDP Mailbox> in the drop-down menu on

the left-hand side. Enter the following: IDP Mailbox Username, IDP Mailbox

Password. Select <Save>.

Add an IDP Terminal by selecting <Add IDP Terminal>. Enter the following:

Name, Mobile ID, and the IDP Mailbox you have created. Select <Save>.

9

Add a Gateway by selecting <Add Gateway>. Select the IDP Terminal that you

have created. Select <Save>.

Add an Application by selecting <Add Application>. Adding an Application allows

you decide where to forward the data to. Select your particular device / sensor

in the <Type> drop-down menu.

Select <Next> and you are prompted to enter the Application Username and

Application Password. These credentials have been given to you by the device /

sensor provider. Select <Save>.

10

If when adding an application, and your particular device / sensor is not listed

under <Type>, then select <Basic HTTP / HTTPS>. This will send the data to a

HTTP endpoint. Enter the URL you would like to direct the data to. Note

Pipedream allows you to setup a public HTTP URL and see all traffic from your

device(s).

Add a Device by selecting <Add Device>. Select the Application that you have

just created. Device EUI, App EUI, and App Key are obtained from the device

provider. Class, Device Profile and Network Profile can be left at the default

settings for now. Note the Name of your device(s) could be the serial number of

the device, to allow for easy identification if you have a number of devices in the

field. Select <Save>.

https://pipedream.com/

11

Finally, create a Deployment by selecting <Add Deployment>. This brings all the

entered information together. Select a Gateway and a Device to add to the

Deployment. Select <Save>.

12

Note the network status of the newly created Deployment is shown as a

Disconnected yellow icon.

Once the gateway comes online, the Network Status changes to a Connected

green icon. This process takes a few minutes. Once established, all future data

exchange is encrypted.

13

Well done, you have completed the first part of connecting to the MinFarm API.

8.0 STEP 2: POSTMAN

Postman is a great tool for interacting with a REST API. It has an easy to use

interface that helps you to construct a HTTP Request. It can be used in your web

browser. An account will need to be created.

! Note that once a Deployment has been created, it cannot be edited. If you

want to change a Device in the Deployment, it is advised to delete the

Deployment, and then recreate the Deployment again with the new Device.

https://www.postman.com/downloads/

14

Postman streamlines the whole process of calling an API. The Postman

dashboard is shown below.

15

Some knowledge of Postman and writing Requests is assumed in this user guide.

Please refer to the Postman documentation for more information. Refer also to

Appendix 1 for a short recap on some Postman functionality.

8.1 IMPORTING THE MINFARM POSTMAN COLLECTION
MinFarm has emailed you a link to the MinFarm API Postman Collection and

associated Environment. The Requests in this Collection allow you to access the

MinFarm API and enable you send and receive data to and from your device(s)

and gateways in the field.

Click on the Postman link that you have received from MinFarm. A Postman page

similar to that shown below is displayed. The associated Environment can be

seen in the orange tab at the top left of the screen.

https://learning.postman.com/

16

Select the orange <Run in Postman> button at the top right of the screen. Select

<Run in - Postman for Web>. Note that you will prompted to setup a Postman

account if you have not already done so. You do not need a Postman account to

view the API commands, but you will need an account to interact with the API.

If this is your first time accessing Postman, you may be asked some questions.

You can continue ‘without a team’, select the default when prompted to create

a workspace, and you do not need a desktop agent.

The screen below shows an example of an imported MinFarm API Collection

(MinFarm API - Test site x) on the left-hand side tool-bar.

! Note some web browser settings may need to be changed so the <Run in

Postman> button can be activated. In Settings turn off ‘Block popup windows’.

If this does not work then contact MinFarm for two JSON files, one for the

Collection and one for the Environment. When in Postman, select the

<Import> button.

17

8.2 EDITING THE ENVIRONMENT VARIABLES
Select Environments on the left-hand side of the screen and select the required

Environment. In this example the Environment is called MinFarm API - Test site

x.

Some Environment variables need to be filled in with information that has come

from the Deployment you have setup in Section 7.2. Find the information you

have entered in the MinFarm Dashboard, and add each variable value to both

the <Initial Value> and <Current Value>. Select <Save>.

• gatewayName

• deviceName1

• deploymentName

• devEui1

In this example these are populated as shown below.

https://app1.minfarmtech.io/

18

8.3 CREATING PERSONAL ACCESS TOKENS
Security in the form of Personal Access Tokens (PATs) was discussed in Section

6.0. To obtain the required PATs, go to API in the drop-down menu at the top

right of the MinFarm Dashboard.

! Note the correct Environment also needs to be correctly selected from the drop-

down Environment menu at the top right of the dashboard. See above screenshot.

19

Select <Personal Access Tokens> and <Create Token>. Call the token name

‘Write’, and select the write scope as shown below.

20

Select <Save>. The PAT has been created. Copy all of the access token. It is

important to select all of the access token and ensure that the start and end of

the selected area contains no white space.

Note that it must be copied at this point and saved somewhere, as it will no

longer be accessible after exiting this screen. Should you forget to save the

token, simply delete the token and create a new one.

Paste into the <Initial Value> and <Current Value> of the

personalAccessTokenWrite variable in your Environment. Select <Save>.

21

8.4 CREATING THE COLLECTION VARIABLES
As well as Environment variables, Postman also uses some local Collection

variables. These need to be set the first time you use the Collection, and also

anytime you log out of Postman and log back in again. In the screenshot below,

no Collection variables can be seen if you hover over the gatewayId01 variable

in the URL, i.e. the initial and current values are blank.

22

To set these Collection variables it is necessary to run the following series of

Postman Requests:

GET Startup: Get Deployment Id

Select <Send>. Expect a successful response of 200 OK. Select the Console on

the bottom left-hand side to confirm ‘Found deployment’.

23

GET Startup: Get Gateway Id

Confirm that a successful response of 200 OK is received for the Gateway, and

the Console shows ‘Found gateway’.

GET Startup: Get Device 1 Id

Confirm that a successful response of 200 OK is received for the Device, and the

Console shows ‘Found device’.

24

GET Startup: Get Firmware Id

Only if you are using the Firmware feature is it necessary to set the Firmware Id

variable. Contact MinFarm if you need further information on this, and need it

added to your Collection. Confirm that a successful response is received for the

Firmware, and the Console shows ‘Found firmware’.

8.5 SYNC DEVICE LIST
Finally, it is necessary to push to the Gateway the Device(s) that you have

created in the MinFarm Dashboard. Refer to Section 9.2.

See Section 9.1 below for an explanation of the types of Request used by the

MinFarm API, and what polling of Requests means.

9.0 THE MINFARM API COMMANDS

The Collection that you have received contains various Postman Requests. These

Requests allow you to view the information flow between your Gateway,

Terminal, and Device(s). The Requests and expected Responses are detailed in

the Sections below.

https://app1.minfarmtech.io/

25

Note 1: Times are in UTC.

Note 2: Screenshots from Postman are shown below. Where the Postman

screen is not large enough to show a screenshot of all data in the Postman

Response, the data has been copied from the Response, and shown here in table

format.

9.1 MINFARM API COMMAND TERMINOLOGY
The MinFarm API support two types of commands, Instant and Queued.

• Instant commands are processed immediately by the MinFarm API. A

Response is immediately returned which includes the command result.

The IDP satellite link does not need to be active for this type of command.

• Queued commands can take several minutes to process, and use a polling

approach which runs the command as a background task. The command

result is made available at a later stage. The MinFarm API immediately

returns a Response indicating whether the command has been queued

for processing. If the command was queued successfully, the Response

includes an id which can be used later to poll the result of the command.

Initially, the command result will be PENDING. When the command

processing is complete (less than 5 minutes for most queued commands),

the processing result is made available in the command result. If the

command processing does not complete within a certain time, the

command result is set to TIMEOUT and the command processing is

cancelled.

The result field can take the following values:

0: PENDING. Description: Keep polling for the result.

1: SUCCESS. Description: The command was successful.

2: TIMEOUT. Description: The command timed out.

26

The processing of a queued command involves several steps: the

command is forwarded by the MinFarm API to the Gateway; the Gateway

runs the command; the Gateway sends the command result back to the

MinFarm API; the MinFarm API saves the command result. The IDP

satellite link must be active for this type of command.

9.2 SYNC DEVICE LIST
Request: Post Device List: Sync Device List

Description: Initiates a push to the Gateway of the Device(s) you have created.

Type of Command: Queued.

URL: {{baseUrl}}/api/v1/deployment/{{deploymentId01}}/sync

Expected Response: 200 OK

Example Response: The Deployment name and creation time is displayed in the

Response.

27

Request: GET Device List: Sync Status

Description: Poll status of queued command.

Type of Command: Queued.

URL: {{baseUrl}}/api/v1/deployment/{{deploymentId01}}/sync

Expected Response: 200 OK

Example Immediate Response: The same id is returned. "deployment_result" of

0 to show it is pending.

Example Response after approximately 5 minutes: The same id is returned.

“deployment_result” of 1 to show it is successful. A sync can take 5 minutes or

more depending on the number of devices.

28

9.3 SHOW MAILBOXES
Request: GET Show Mailboxes

Description: Shows a list of all IDP Mailboxes created in the MinFarm Dashboard.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/idp-mailbox

Expected Response: 200 OK

Example Response:

29

9.4 SHOW TERMINALS
Request: GET Show Terminals

Description: Shows a list of all Terminals created in the MinFarm Dashboard.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/idp-terminal

Expected Response: 200 OK

Example Response:

30

9.5 SHOW APPLICATIONS
Request: GET Show Applications

Description: Shows a list of all Applications created in the MinFarm Dashboard.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/application

Expected Response: 200 OK

Example Response: Note some sensitive information has been blurred out from

the screenshot below.

31

9.6 SHOW GATEWAY
Request: GET Show Gateways

Description: Shows a list of all Gateways created in the MinFarm Dashboard.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/gateway

Expected Response: 200 OK

Example Response:

32

9.7 SHOW GATEWAY DATA
Request: GET Show Gateway Data

Description: Shows the most recent messages sent by the Gateway over the

satellite link.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/gateway/{{gatewayId01}}/data

Expected Response: 200 OK

Example Response:

[

 {

 "id": 9371,

 "created_at": "2021-07-13 17:26:03",

 "updated_at": "2021-07-13 17:26:03",

 "message_id": "59463268",

 "message_utc": "2021-07-13 17:25:59",

 "receive_utc": "2021-07-13 17:25:59",

 "mobile_id": "01043241SKYAA0A",

33

 "region_name": "EMEARB7",

 "sin": "144",

 "payload": "\"\"",

 "ota_message_size": 24,

 "custom_data":

"{\"frame_count_client\":0,\"frame_version\":1,\"tel

emetry_command\":4,\"telemetry_data\":{\"version_maj

or\":2,\"version_minor\":1,\"version_patch\":0,\"cpu

_usage_since_boot\":32,\"cpu_usage_since_last_call\"

:21,\"last_power_on\":\"2021-07-13

17:07:07\"},\"req_frame_count_server_short\":0,\"res

ult\":1,\"mic\":\"4A2E7F44\",\"command_type\":144}"

 }

]

9.8 SHOW DEVICES
Request: GET Show Devices

Description: Shows a list of all Devices created in the MinFarm Dashboard.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/device

Expected Response: 200 OK

Example Response: Note some sensitive information has been blurred out from

the screenshot below.

34

9.9 SHOW DEPLOYMENTS
Request: GET Show Deployments

Description: Shows a list of all Deployments created in the MinFarm Dashboard.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/deployment

Expected Response: 200 OK

Example Response:

35

9.10 SHOW CUSTOMERS
Request: GET Show Customers

Description: Shows a list of all Customers created in the MinFarm Dashboard.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/customer

Expected Response: 200 OK

Example Response:

36

9.11 HEARTBEAT MESSAGE FROM GATEWAY
Request: POST Heartbeat: Telemetry Heartbeat Start Request

Description: Initiates a heartbeat message from the Gateway. A heartbeat is a

packet of data sent from the Gateway on a regular basis, in this example every

3600 seconds. There are two aspects to the heartbeat: the heartbeat command

and subsequent response; and the actual heartbeat pulses. The heartbeat is one

way of checking an open communication pathway to the Gateway.

Type of Command: Queued.

URL: {{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry

Body:

{

 "command": 1,

 "interval": 3600

}

A telemetry “command” of 1 initiates a heartbeat command. Interval of 3600

seconds, i.e. 1 hour. This heartbeat interval can be changed as required.

37

Expected Response: 201 Created

Example Response: Returns an id.

Request: GET Heartbeat: Telemetry Heartbeat Start Status

Description: Poll status of queued command.

Type of Command: Queued.

URL:

{{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry/{{telemetryHeartbeatI

d}}

Expected Response: 200 OK.

Example Immediate Response: The same id is returned. “result” of 0 to show it

is pending.

38

Example Response after approximately 5 minutes: The same id is returned.

“result” of 1 to show it is successful.

{

 "result": 1,

 "request": {

 "id": 270,

 "created_at": "2021-07-13 12:08:34",

 "updated_at": "2021-07-13 12:08:34",

 "gateway_id": 12,

 "command": 1,

 "data": "{\"interval\": 3600}",

 "result": 1,

 "state": "FINISHED",

 "frame_count_server_short": 9,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28"

 },

 "response": {

 "id": 597,

 "created_at": "2021-07-13 12:10:03",

 "updated_at": "2021-07-13 12:10:03",

 "gateway_id": 12,

39

 "command": 1,

 "data": "{}",

 "result": 1,

 "state": "FINISHED",

 "req_frame_count_server_short": 9,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28",

 "telemetry_req_id": 270

 }

}

Request: GET Heartbeat: Get Telemetry Heartbeat Pulses

Description: Shows heartbeat pulses from Gateway - at specified interval.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry/heartbeat-pulses

Expected Response: 200 OK.

Example Response: 3600 seconds after Request is sent. With an interval of 3600

seconds expect one heartbeat message per hour. 3 heartbeats are shown in the

example below.

[

 {

 "id": 561,

 "created_at": "2021-07-13 15:10:02",

 "updated_at": "2021-07-13 15:10:02",

 "gateway_id": 12,

 "command": 2,

 "data": "{}",

 "result": 1,

 "state": "FINISHED",

 "req_frame_count_server_short": 0,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28",

40

 "telemetry_req_id": null

 },

 {

 "id": 599,

 "created_at": "2021-07-13 14:10:02",

 "updated_at": "2021-07-13 14:10:02",

 "gateway_id": 12,

 "command": 2,

 "data": "{}",

 "result": 1,

 "state": "FINISHED",

 "req_frame_count_server_short": 0,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28",

 "telemetry_req_id": null

 },

 {

 "id": 598,

 "created_at": "2021-07-13 13:11:04",

 "updated_at": "2021-07-13 13:11:04",

 "gateway_id": 12,

 "command": 2,

 "data": "{}",

 "result": 1,

 "state": "FINISHED",

 "req_frame_count_server_short": 0,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28",

 "telemetry_req_id": null

 }

]

9.12 UPLINKS: GET DEVICE 1 UPLINKS
Request: GET Uplinks: Get Device 1 Uplinks

Description: Shows any uplink messages coming from the Device. Note different

Devices have different reporting intervals.

41

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/device/{{deviceId1}}/data

Expected Response: 200 OK.

Example Response:

[

 {

 "id": 7874,

 "created_at": "2021-07-13 15:45:03",

 "updated_at": "2021-07-13 15:45:03",

 "gateway_id": 12,

 "idp_uplink_id": 9317,

 "dev_eui": "008000000400B024",

 "dev_f_port": 1,

 "dev_f_cnt_up": 104,

 "dev_frm_payload":

"00000000000000000000800A15",

 "state": "SENDING"

 }

]

9.13 UPLINKS: GET GATEWAY UPLINKS
Request: GET Uplinks: Get Gateway Uplinks

Description: Shows uplinks received from the Gateway for all Devices associated

with this Gateway. The most recent 50 uplinks are returned.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/gateway/{{gatewayId01}}/uplink

Expected Response: 200 OK.

Two examples are given in your Collection. If from_id is set to 0, the oldest 50

uplinks are returned. If from_id is omitted, the most recent 50 uplinks are

returned.

Example Response 1 where a body of from_id set to 0 is added:

42

Example of two uplinks received:

[

 {

 "id": 60017,

 "created_at": "2021-10-13 08:07:03",

 "updated_at": "2021-10-13 08:07:03",

 "gateway_id": 29,

 "idp_uplink_id": 62029,

 "dev_eui": "98208E0000001590",

 "dev_f_port": 1,

 "dev_f_cnt_up": 138,

 "dev_frm_payload": "80C005D2F241A8BE77",

 "state": "FINISHED",

 "gateway_timestamp": "2021-10-13 08:05:54"

 },

 {

 "id": 60016,

 "created_at": "2021-10-13 08:06:03",

 "updated_at": "2021-10-13 08:06:03",

 "gateway_id": 29,

 "idp_uplink_id": 62028,

 "dev_eui": "98208E0000001590",

43

 "dev_f_port": 1,

 "dev_f_cnt_up": 137,

 "dev_frm_payload":

"2000026CF6000000000000000000000000",

 "state": "FINISHED",

 "gateway_timestamp": "2021-10-13 08:05:13"

 }

]

A good way of using this endpoint is to initially call the endpoint with from_id

set to 0 (to get the oldest uplinks) or to omit from_id (to get the latest uplinks).

Store the id of the most recent uplink returned. When calling the endpoint again,

set from_id to this stored id. The endpoint will only return new uplinks with an

id greater than from_id.

Example Response 2 where a body of from_id set to 60017 is added:

All ids greater than 60017 are returned.

44

9.14 UPLINKS: GET GATEWAY SATELLITE MESSAGES FOR DEVICE 1
Request: GET Uplinks : Get Gateway Satellite Messages (Filter for Device 1)

Description: Shows satellite messages from the Gateway filtered for a specific

Device. This gives extra information than the command in Section 9.12 above,

in that it returns the entire message that is sent over satellite, including for

example ota message size.

Type of Command: Instant.

URL: {{baseUrl}}/api/v1/gateway/{{gatewayId01}}/data

Body:

{

 "search": "008000000400B024"

}

Enter the dev_eui of the Device you would like information on. This is the same

dev_eui as used when setting up a Deployment in the MinFarm Dashboard.

Expected Response: 200 OK.

Example Response where “dev_eui” of Device is 008000000400B024:

[

 {

 "id": 9317,

 "created_at": "2021-07-13 15:45:03",

 "updated_at": "2021-07-13 15:45:03",

 "message_id": "59462588",

 "message_utc": "2021-07-13 15:44:58",

 "receive_utc": "2021-07-13 15:44:58",

 "mobile_id": "01043241SKYAA0A",

 "region_name": "EMEARB7",

 "sin": "30",

 "payload": "\"\"",

 "ota_message_size": 22,

 "custom_data":

"{\"frame_count_client\":43,\"dev_f_cnt_up\":104,\"d

ev_frm_payload\":\"00000000000000000000800A15\",\"mi

c\":\"14413CDA\",\"dev_eui\":\"008000000400B024\",\"

45

dev_f_port\":1,\"encrypt_message\":1,\"command_type\

":30}"

 }

]

9.15 DOWNLINK: DEVICE 1
Request: POST Downlink: Device 1 Downlink

Description: Initiates remote downlink configuration of Device, e.g. you can

select to change the reporting period of a Device.

Type of Command: Queued.

URL: {{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry

Body:

{

 "command": 7,

 "dev_eui": "008000000400B024",

 "dev_f_port": 100,

 "dev_frm_payload": "7265706F727420706572696F6420

31383030"

}

A telemetry “command” of 7 initiates remote configuration of your Device.

Enter the “dev_eui” of the Device you would like to select. This is the same

“dev_eui” as used when setting up a Deployment in the MinFarm Dashboard.

Also, enter “dev_frm_payload”. “dev_frm_payload” is the payload in hex. This

is Device specific, and you will need to contact the manufacturer for this

information.

Expected Response: 201 Created.

Example Response: Returns an id.

46

Request: GET Downlink: Telemetry Status

Description: Poll status of queued command.

Type of Command: Queued.

URL:

{{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry/{{telemetryDownlinkId

}}

Expected Response: 200 OK.

Example Immediate Response: The same id is returned. “result” of 0 to show it

is pending.

{

 "result": 0,

 "request": {

 "id": 272,

 "created_at": "2021-07-13 16:00:04",

 "updated_at": "2021-07-13 16:00:04",

 "gateway_id": 12,

47

 "command": 7,

 "data": "{\"dev_eui\": \"008000000400B024\",

\"dev_f_port\": 100, \"dev_frm_payload\":

\"7265706F727420706572696F642031383030\"}",

 "result": 0,

 "state": "QUEUED",

 "frame_count_server_short": null,

 "network_session_id": null

 },

 "response": []

}

Example Response after approximately 5 minutes: The same id is returned.

“result” of 1 to show it is successfully scheduled for transmission to the Device

by the Gateway.

{

 "result": 1,

 "request": {

 "id": 272,

 "created_at": "2021-07-13 16:00:04",

 "updated_at": "2021-07-13 16:00:04",

 "gateway_id": 12,

 "command": 7,

 "data": "{\"dev_eui\": \"008000000400B024\",

\"dev_f_port\": 100, \"dev_frm_payload\":

\"7265706F727420706572696F642031383030\"}",

 "result": 1,

 "state": "FINISHED",

 "frame_count_server_short": 10,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28"

 },

 "response": {

 "id": 598,

 "created_at": "2021-07-13 16:03:02",

 "updated_at": "2021-07-13 16:03:02",

 "gateway_id": 12,

 "command": 7,

 "data": "{}",

48

 "result": 1,

 "state": "FINISHED",

 "req_frame_count_server_short": 10,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28",

 "telemetry_req_id": 272

 }

}

9.16 GATEWAY METRICS
Request: POST Metrics: Telemetry Gateway Metrics

Description: Initiates Gateway metrics. The firmware version is returned, and

last Gateway reboot time.

Type of Command: Queued.

URL: {{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry

Body:

{

 "command": 4

}

A telemetry “command” of 4 initiates retrieval of Gateway metrics.

Expected Response: 201 Created.

Example Response: Returns an id.

49

Request: GET Metrics: Telemetry Status (Gateway)

Description: Poll status of queued command.

Type of Command: Queued.

URL:

{{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry/{{telemetryMetricsGat

ewayId}}

Expected Response: 200 OK.

Example Immediate Response: The same id is returned. “result” of 0 to show it

is pending.

{

 "result": 0,

 "request": {

 "id": 273,

 "created_at": "2021-07-13 16:24:59",

50

 "updated_at": "2021-07-13 16:24:59",

 "gateway_id": 12,

 "command": 4,

 "data": "[]",

 "result": 0,

 "state": "SENT",

 "frame_count_server_short": 11,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28"

 },

 "response": []

}

Example Response after approximately 5 minutes: The same id is returned.

“result” of 1 to show it is successful. “last_power_on”, and firmware version*

are shown.

* firmware version seen as

"version_major\":2,\"version_minor\":1,\"version_patch\":0 i.e. 2.1.0 in this

example.

{

 "result": 1,

 "request": {

 "id": 273,

 "created_at": "2021-07-13 16:24:59",

 "updated_at": "2021-07-13 16:24:59",

 "gateway_id": 12,

 "command": 4,

 "data": "[]",

 "result": 1,

 "state": "FINISHED",

 "frame_count_server_short": 11,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28"

 },

 "response": {

 "id": 600,

51

 "created_at": "2021-07-13 16:26:03",

 "updated_at": "2021-07-13 16:26:03",

 "gateway_id": 12,

 "command": 4,

 "data": "{\"last_power_on\": \"2021-07-12

15:04:10\", \"version_major\": 2, \"version_minor\":

1, \"version_patch\": 0, \"cpu_usage_since_boot\":

21, \"cpu_usage_since_last_call\": 0}",

 "result": 1,

 "state": "FINISHED",

 "req_frame_count_server_short": 11,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28",

 "telemetry_req_id": 273

 }

}

9.17 DEVICE METRICS
Request: POST Metrics: Telemetry Device 1 Metrics

Description: Initiates retrieval of Device metrics. Various Device parameters are

returned, e.g. “per”, snr”, “rssi”, “uplink_sf”, “downlink_sf”, “last_seen_time”.

“per”: packet error rate

“snr”: signal to noise ratio

“rssi”: received signal strength indicator

“uplink_sf”: uplink spreading factor

“downlink_sf”: downlink spreading factor

“last_seen_time”: last message from Device

Type of Command: Queued.

URL: {{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry

Body:

52

{

 "command": 5,

 "dev_eui": "008000000400B024"

}

A telemetry “command” of 5 initiates retrieval of Device metrics. Enter the

dev_eui of the Device you would like metrics on. This is the same dev_eui as

used when setting up a Deployment in the MinFarm Dashboard.

Expected Response: 201 Created.

Example Response: Returns an id.

Request: GET Metrics: Telemetry Status (Device)

Description: Poll status of queued command.

Type of Command: Queued.

53

URL:

{{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry/{{telemetryMetricsDev

iceId}}

Expected Response: 200 OK.

Example Immediate Response: The same id is returned. “result” of 0 to show it

is pending.

{

 "result": 0,

 "request": {

 "id": 276,

 "created_at": "2021-07-13 16:54:41",

 "updated_at": "2021-07-13 16:54:41",

 "gateway_id": 12,

 "command": 5,

 "data": "{\"dev_eui\":

\"008000000400B024\"}",

 "result": 0,

 "state": "SENT",

 "frame_count_server_short": 14,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28"

 },

 "response": []

}

Example Response after approximately 5 minutes: The same id is returned.

“result” of 1 to show it is successful.

{

 "result": 1,

 "request": {

 "id": 276,

 "created_at": "2021-07-13 16:54:41",

 "updated_at": "2021-07-13 16:54:41",

 "gateway_id": 12,

54

 "command": 5,

 "data": "{\"dev_eui\":

\"008000000400B024\"}",

 "result": 1,

 "state": "FINISHED",

 "frame_count_server_short": 14,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28"

 },

 "response": {

 "id": 603,

 "created_at": "2021-07-13 16:57:03",

 "updated_at": "2021-07-13 16:57:03",

 "gateway_id": 12,

 "command": 5,

 "data": "{\"per\": 0, \"snr\": 9, \"rssi\":

-54, \"join_time\": \"2021-01-15 12:11:15\",

\"uplink_sf\": \"SF12BW125\", \"downlink_sf\":

\"SF10BW125\", \"last_seen_time\": \"2021-07-13

16:43:02\"}",

 "result": 1,

 "state": "FINISHED",

 "req_frame_count_server_short": 14,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28",

 "telemetry_req_id": 276

 }

}

9.18 GATEWAY PING
Request: POST Ping: Telemetry Ping

Description: Initiates a ping to the Gateway. A quick way of seeing if your

Gateway is active and receiving data.

Type of Command: Queued.

URL: {{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry

55

Body:

{

 "command": 3

}

A telemetry “command” of 3 initiates a Gateway ping.

Expected Response: 201 Created.

Example Response: Returns an id.

Request: GET Ping: Telemetry Status

Description: Poll status of queued command.

Type of Command: Queued.

URL:

{{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry/{{telemetryPingId}}

Expected Response: 200 OK.

56

Example Immediate Response: The same id is returned. “result” of 0 to show it

is pending.

{

 "result": 0,

 "request": {

 "id": 275,

 "created_at": "2021-07-13 16:45:08",

 "updated_at": "2021-07-13 16:45:08",

 "gateway_id": 12,

 "command": 3,

 "data": "[]",

 "result": 0,

 "state": "QUEUED",

 "frame_count_server_short": null,

 "network_session_id": null

 },

 "response": []

}

Example Response after approximately 5 minutes: The same id is returned.

“result” of 1 to show it is successful.

{

 "result": 1,

 "request": {

 "id": 275,

 "created_at": "2021-07-13 16:45:08",

 "updated_at": "2021-07-13 16:45:08",

 "gateway_id": 12,

 "command": 3,

 "data": "[]",

 "result": 1,

 "state": "FINISHED",

 "frame_count_server_short": 13,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28"

 },

 "response": {

57

 "id": 602,

 "created_at": "2021-07-13 16:47:02",

 "updated_at": "2021-07-13 16:47:02",

 "gateway_id": 12,

 "command": 3,

 "data": "{}",

 "result": 1,

 "state": "FINISHED",

 "req_frame_count_server_short": 13,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28",

 "telemetry_req_id": 275

 }

}

9.19 GATEWAY REBOOT
Request: POST Reboot: Telemetry Gateway Reboot

Description: Initiates reboot of Gateway.

Type of Command: Queued.

URL: {{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry

Body:

{

 "command": 6

}

A telemetry “command” of 6 initiates a Gateway restart.

Expected Response: 201 Created.

Example Response: An id is returned.

58

Request: GET Reboot: Telemetry Status

Description: Poll status of queued command.

Type of Command: Queued.

URL:

{{baseUrl}}/api/v1/gateway/{{gatewayId01}}/telemetry/{{telemetryRebootId}}

Expected Response: 200 OK.

Example Immediate Response: The same id is returned. “result” of 0 to show it

is pending.

{

 "result": 0,

 "request": {

 "id": 277,

 "created_at": "2021-07-13 17:04:50",

 "updated_at": "2021-07-13 17:04:50",

 "gateway_id": 12,

 "command": 6,

 "data": "[]",

59

 "result": 0,

 "state": "QUEUED",

 "frame_count_server_short": null,

 "network_session_id": null

 },

 "response": []

}

Example Response after approximately 5 minutes: The same id is returned.

“result” of 1 to show it is successful.

{

 "result": 1,

 "request": {

 "id": 277,

 "created_at": "2021-07-13 17:04:50",

 "updated_at": "2021-07-13 17:04:50",

 "gateway_id": 12,

 "command": 6,

 "data": "[]",

 "result": 1,

 "state": "FINISHED",

 "frame_count_server_short": 15,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28"

 },

 "response": {

 "id": 604,

 "created_at": "2021-07-13 17:07:03",

 "updated_at": "2021-07-13 17:07:03",

 "gateway_id": 12,

 "command": 6,

 "data": "{}",

 "result": 1,

 "state": "FINISHED",

 "req_frame_count_server_short": 15,

 "network_session_id":

"6dbc4662ba4ea29c05f6e82d2d34a40b21ba9c4e72bfc03a191

5216f1ed5a75efd5fd9672a503265223238937df18fa77ac236b

2b9dded6068740ec2ca539b28",

60

 "telemetry_req_id": 277

 }

}

After approximately 20 minutes check the Gateway metrics as described in

Section 9.16. The Gateway reboot time is displayed in the field “last_power_on”.

61

10.0 CONTACT DETAILS

MinFarm Tech Ltd

Webpage: www.minfarmtech.com

Email: support@minfarm.se

http://www.minfarmtech.com/

62

APPENDIX 1 POSTMAN BASICS

• To make a simple call to a remote URL - enter the request URL, select a

method in the drop-down menu (i.e. GET, POST etc.), add a Personal

Access Token in the Authorization tab of the Request Header, select a

JSON file response, and select <Send>. If successful, a JSON file response

is obtained with a successful status code.

• A Collection can be created. A Collection is a group of requests. These are

listed to the left of the home screen. A Collection can be run automatically

by selecting <Runner> on the home page. This is an easy way of

automating a Collection.

• It is usually helpful to setup an Environment. An Environment contains

variables that can be used in requests. Each variable is given a name and

a value. An Environment allows variables to be stored and reused (e.g.

Personal Access Tokens, URL etc.), so if a value needs to be updated, it

only needs to be changed in one place, and not in every request. There

are Environment variables and Collection variables.

• The Postman Console, to the bottom left of the screen, allows for deeper

troubleshooting. All raw data can be viewed in the Postman Console.

• Postman has a great tool for advanced users. Select the Code symbol to

the right of the home screen. Code snippets of the HTTP Request are

shown for a number of coding languages.

63

