Soil Moisture and Temperature sensor Introduce

Type NO.: RD-SMT-P-O

1. Product Introduce

 H_{D}

The sensor is a combination of soil moisture and soil temperature sensors. It has the advantages of convenient carrying, sealing and high precision. It is an ideal choice for soil moisture and soil temperature measurement.

The soil moisture part is a high-precision, high-sensitivity sensor manufactured by high-frequency electronic technology based on the principle of frequency domain reflection. By measuring the dielectric constant of soil, it can directly and stably reflect the true moisture content (volume water content) of various soils. It is the most popular soil moisture measurement method in the world.

The soil temperature is partly composed of the German-class imported Class A ST-1-PT1000 precision platinum resistance and high-precision transmitter. The transmitter part is composed of a power module, a temperature sensing module, a transmission module, a temperature compensation module and a data processing module, and has high applicability to the use environment.

2. Product Features

1. The sensor is compact in size, high in measurement accuracy, fast in response, and interchangeable.

- 2. Good sealing, waterproof grade IP68, can be directly buried in the soil, and is not corroded.
- 3. Real-time temperature and humidity monitoring function, which can measure the temperature of soil at different depths.
- 4. The soil quality is less affected and the application area is wide.

5. High measurement accuracy, reliable performance, ensuring normal operation, fast response, high data transmission efficiency.

3. Product application

Applicable to water-saving agricultural irrigation, meteorological monitoring, environmental monitoring, greenhouses, flowers and vegetables, grassland pastures, soil speed measurement, plant cultivation, scientific experiments, etc., which need to measure soil temperature and humidity.

4. Product Parameter

1. Technical Parameters

- (1) Measurement parameters: soil volumetric water content; soil temperature
- (2) Unit of measurement: %(m3/m3); °C
- (3) Water component range: 0 ~ 100% (can choose 30%, 50% equal range or custom any range);
- (4) Temperature range: -30 ~ 70 ° C (can be customized 0 ~ 50 ° C or any other range);
- (5) Measurement accuracy: ±2% (m3/m3) in the range of 0 to 50% (m3/m3); ±0.2°C
- (6) Working range: -30 $^\circ$ C ~ 70 $^\circ$ C
- (7) Output signal:

A: voltage signal (0 ~ 2V, 0 ~ 2.5V, 0 ~ 5V, 0 ~ 10V Optional)

➢ B: 4 to 20 mA (current loop)

 H_{D}

> C: RS485 (standard Modbus-RTU protocol, device default address: 01)

(8) Supply voltage:

- > $5 \sim 24V$ DC (when the output signal is $0 \sim 2V$, $0 \sim 2.5V$, RS485)
- > 12~24V DC (when the output signal is 0~5V, 0~10V, 4~20mA)

(9) Stabilization time: <1 second

(10) Response time: <1 second

(11) Measuring area: a cylinder with a diameter of 7 cm and a height of 7 cm centered on the center probe

2. Physical parameter

(1) Probe specifications: 55mm, φ3mm

(2) Probe material: 316L stainless steel;

(3) Sealing material: ABS engineering plastic, epoxy resin, waterproof grade IP68

(4) Cable specification: standard 2 meters (can be customized for other cable lengths, up to 1200

meters)

3. Impedance requirements for current signals

Supply Voltage	9V	12V	20V	24V
Maximum impedance	125Ω	250Ω	500Ω	>500Ω

5. Product size

6. Connection diagram

Colour	Description	Note
Brown	Power positive	4.5-30V DC
Black	GND	GND
Yellow	485-A	485-A
Blue	485-B	485-B

7. Measurement methods

1. Surface speed test

- (1) Select a representative soil environment to clean up surface debris and vegetation
- (2) Insert the sensor vertically and completely into the soil
- (3) If there is a hard object, the measurement location should be replaced and re-measured
- (4) For accurate data, it is recommended to measure multiple times and take the average
- (5) To measure deep soil moisture, it is recommended to use our company's dedicated soil drill

2. Ground measurement

H_D

(1) Make a soil profile in the vertical direction, slightly deeper than the installation depth of the

bottommost sensor, between 20cm and 50cm in diameter

(2) Insert the sensor horizontally into the soil profile

(3) After the installation is completed, the excavated soil is backfilled in order, layered and compacted,

and horizontal installation is guaranteed.

(4) If you have the conditions, you can put the removed soil in a bag and number it to keep the soil moisture unchanged, and backfill it in reverse order.

3. Three-tier installation

4. Six-tier installation

H₀

8. Data conversion method

The soil temperature and moisture sensor has good linear characteristics in the range of soil saturated water content. The following is a typical calibration formula, which can be used by the user. If higher precision is required, secondary calibration is required.

1. Current voltage analog output

 H_{D}

Ov: soil volumetric water content; T: soil temperature

V: voltage value collected by the collector, unit: V;

A: Current value collected by the collector, potential: mA

output signal	Moisture conversion method	Temperature conversion
		method (-30 ~ 70 ° C)
0 ~ 2V DC	θv = 50*V	T = 50*V - 30
0 ~ 5V DC	θv = 20*V	T = 20*V - 30
0 ~ 10V DC	θv = 10*V	T = 10*V - 30
4 ~ 20mA	θv = 6.25*A - 25	T = 6.25*A - 55

2. Standard Modbus-RTU protocol

Baud rate: 2400bit/s, 4800bit/s, 9600 bit/s can be set, the factory default is 9600bit/s

Check digit: none;

Data bit: 8; Stop bit: 1

3. Data frame format definition

Using Modbus-RTU communication protocol, the format is as follows:

Time for initial structure \geq 4 bytes

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC code

End structure \geq 4 bytes of time

Address code: the address of the transmitter, which is unique in the communication network (factory default 0x01).

Function code: the instruction function instruction issued by the host, this transmitter only uses the function code 0x03 (read register data).

Data area: The data area is specific communication data, pay attention to the high byte of 16bits data first! CRC code: two-byte check code.

Host inquiry frame structure

HD

Address code	code Function code Register start address		Register length	Check digit low	Check digit high
1 byte	1 byte	2 bytes	2 bytes	1 byte	1 byte

Slave response frame structure

Address code	Function code	Effective bytes	Data 1 area	Data 2 area	Data N area	Check code
1 byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes	2 bytes

4. Register address

Register address	PLC or configuration address	Content	Operation	Definition description
0000 H	40001 (Decimal)	Soil Temperature	Read only	Real-time value of soil temperature value (expand 10 times)
0001 H	40002 (Decimal)	Soil Moisture	Read only	Real-time value of soil moisture value (expand 10 times)
0030 H	40049 (Decimal)	Device address	Read and write	1~254 (factory default 1)
0031H	40050 (Decimal)	Baud rate	Read and write	Baud rate: 2400 Baud rate: 4800 Baud rate: 9600 Baud rate: 19200

5. Address Modification

For example, the sensor with address 1 is changed to address 2, and the host \rightarrow slave

Original address	Function code	Start register high	Start register low	High starting address	Low starting address	Low CRC16	CRC16 High
0X01	0X06	0X00	0X30	0X00	0X02	0X08	0X04

If the sensor receives correctly, the data returns according to the original route.

Remarks: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead.

When using 0XFE, the host can only connect with one slave, and the return address is still the original address, which can be used as an address query method.

6. Query Data

Inquire the data of sensor (address 1) (soil temperature, soil moisture), master \rightarrow slave
--

Address	Function code	Start register address high	Start register address low	High register length	Low register length	Low CRC16	CRC16 High
0X01	0X03	0X00	0X00	0X00	0X02	0XC4	0X0B

If the sensor receives correctly, return the following data, slave \rightarrow host

Address	0X01	
Function code	0X03	

Data length	0X04		
Register 0 data high	0X00	Soil Temperature: hexadecimal to decimal and	
Register 0 data low	0X97	divide by 10, and use the complement algorithm for negative numbers	Soil temperature:15.1 °C
Register 1 data high	0X01	Soil Moisture: hexadecimal to decimal and divide	Soil moisture: 35.6%
Register 1 data low	0X64	by 10	3011 moisture: 35.0%
Low CRC16	0X4B		
High CRC16	0XA4		

7. Chang the baud rate

The default is 9600, if change into others, please send the following:

Inquiry frame

Change	Address	Function code	Register start	Change value	Low check	Check code
Baud rate	code		address		bit	high
2400	0X01	0X06	0X00 0X31	0X24 0X00	0XC3	0X05
4800	0X01	0X06	0X00 0X31	0X48 0X00	0XEE	0X05
9600	0X01	0X06	0X00 0X31	0X96 0X00	0XB7	0XA5
19200	0X01	0X06	0X00 0X31	0X19 0X20	0XD2	0X45

If success, it will feedback the same with the sending instruction.