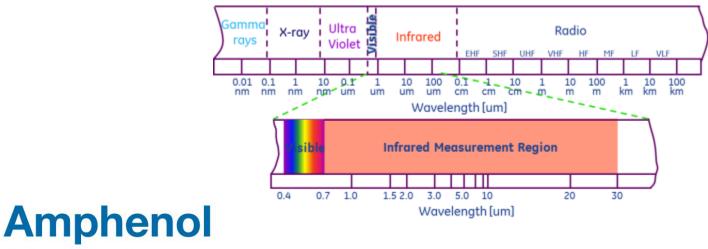
Amphenol Advanced Sensors

Thermometrics Infrared Thermopile Sensors

T H E R M O M E T R I C S A COMMITMENT TO EXCELLENCE

Amphenol

Advanced Sensors


Copyright © 2015 Amphenol. All rights reserved.

Infrared Thermopile Sensors Non-contact Temperature Measurement

Infrared Thermopile Sensors What is Infrared?

- Form of electromagnetic wave
- Extends from 0.7 μm -1000 μm
 - Near infrared: 0.7 μ m 2.5 μ m
 - Intermediate infrared: 2.50 μm 25.0 μm
 - Far infrared: over 25.0 μm
 - Most IR sensors based on two regions \ldots 3 5 μm and 8 12 μm

Infrared Thermopile Sensors Infrared Radiation

- Electromagnetic emission and absorption
- Occurs at the speed of light
- Travels in a straight line
- Takes place across a vacuum
- Passes through many crystalline, plastic, gaseous materials
- Does not penetrate metals

Infrared Thermopile Sensors Radiated Infrared Energy

The warmer the source, the more energy it emits

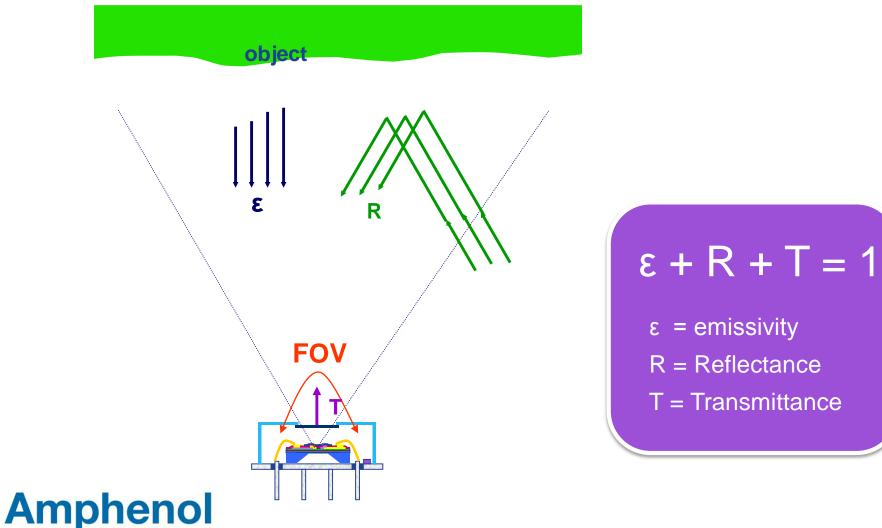
$W = \delta \epsilon T^4$

- W = Radiant flux emitted per unit area (W/cm²)
- δ = Stefan-Boltzmann constant
- ϵ = Emissivity
- T = Absolute temperature of target (K)

As the temperature of the source increases, the wavelength at which most of the energy is radiated decreases

 $\lambda_{max} = b/T$

b = Wien's displacement constant


Infrared Sensing

- Hot objects emit infrared (IR) and visible radiation as a function of surface temperature
- As an object gets hotter, not only does it radiate more, but the peak wavelengths it emits get shorter
- Objects have different wavelengths of radiation

Advanced Sensors

Amphenol

Radiation. Reflection. Transmission.

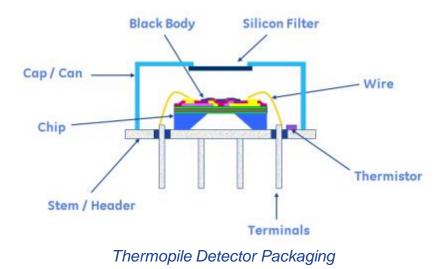
Infrared Thermopile Sensors Approximate Emissivity Figures

Material	Radiation	Material	Radiation	
Paper	0.92~0.94	Aluminum (luster)	0.095	
Plastic	0.95	Aluminum oxide	0.26~0.42	
Ceramic	0.90	Copper (luster)	0.05	
Water	0.95~0.963	Copper oxide	0.78	
Human skin	0.985	Cast Iron (luster)	0.21	
Paint (lusterless)	Paint (lusterless) 0.95		0.045	
Paint (luster)	Paint (luster) 0.9		0.37	
Epoxy/Glass	Epoxy/Glass 0.86		0.16~0.44	

Amphenol

Infrared Thermopile Sensors Thermopile Construction

□ Seebeck effect


$$T_{h} = T_{c} = T_{amb} + \Delta V = \alpha \Delta T = (\alpha_{A} - \alpha_{B})(T_{h} - T_{c})$$

$$= B$$

To increase the sensitivity (high Seebeck coefficient):

- Higher T_h, lower T
- More thermocouples
- Heavier inert gas filling
- Thin diaphragm with lower thermal conductance
- Highly transmitted IR filter
- High efficient IR absorber

Sensing Mechanism

Amphenol

Infrared Thermopile Sensors What is a Thermopile?

- Serially-interconnected array of thermocouples
- Each thermocouple formed by the junction of two dissimilar materials
- Thermocouple array placed across hot and cold regions of structure
- Hot junctions thermally isolated from the cold junctions
- Cold junctions placed on silicon substrate for effective heat sinking
- Hot junctions formed over thin diaphragm that thermally isolates hot and cold junctions
- In hot regions, a black body absorbs the infrared energy, raising temperature according to the intensity of incident energy

Infrared Thermopile Sensors Unique Features

Thermopile sensors have unique properties not offered by other detectors:

- Response to broad infrared spectrum
- No source of bias voltage or current needed
- Inherently stable response to DC radiation

Infrared Thermopile Sensors Features of Thermometrics Thermopile IR Sensors

PRODUCT COMPARISON TABLE OF ZTP SERIES

Part Number	Package type	Sensitivity(Vircal) @Tobj=40°C	Thermopile resistance(kΩ) @Tamb=25℃	Thermistor Resistance & B-Value @Tamb=25°C	Filter transmittance range(um)	Field of View	Lead length (mm)	Window size (mm)	Main Application	Mass Production
ZTP-101T	TO-39(TO-5)	1.0mV	200	30kΩ_3811	6~13	50 degree	6.7	Dia 2.5	Non-contact Temperature Measurement	
ZTP-115	- 10-39(10-5) -	0.6mV	50	10kΩ_3970	6~13	55 degree	5	Dia 2.5	Thermometry, Medical, General	Yes
ZTP-135SR	TO-46(TO-18)	1.3mV	60	100kΩ_3960	6~13	85 degree	13.5	Dia 2.4	Industrial, Occupancy Detection, HVAC, etc.	

Part Number	Sensor type	Main Application	Output type	Communication protocol	Pixel Q'ty	Range of Measuring Temperature(℃)	Temperature	Input supply voltage	Module Size (mm)	Mass production
ZTP-115M	Single module	General Industrial, Microwave Oven, Appliances, etc.	Analog	Voltage	Single	-40 ~ 145	-20 ~ 120	+5V	17 X 33	Yes

Amphenol Advanced Sensors

Infrared Thermopile Sensors Thermopile Characteristics

 $V = S.(T_O^B - T_A^B)$

- V = Output voltage from thermopile
- T_{O} = Object temperature in K
- T_A = Ambient temperature in K
- S = Sensitivity coefficient
- B = Coefficient (~4)

S and B are determined by measurement

Amphenol

Infrared Thermopile Sensors Temperature Compensation

- Output from thermopile varies with both ambient and object temperature
- Need to know the ambient temperature to calculate the object temperature
- Thermometrics standard thermopiles supplied with integrated thermistor for compensation
- Options include customer-specified thermistor or external temperature compensation (no internal thermistor)

Infrared Thermopile Sensors Various Filter Options

Filter	Material	Transmission Range	Application		
	Silicon		Appliances, Microwave Oven		
Ctondord		6 1200	Medical, Ear Thermometer		
Standard		6~13um	Automotive, Tire Temperature		
			HVAC, Human Body Detection		
F1	Silicon	8~14um	Occupancy Detection, Intruder alarms		
F2	Sapphire	2~5um	Eleme Detection Apolygic equipment		
F3	CaF2	1~10um	Flame Detection, Analysis equipment		
NDIR	Silicon	3.99±1%	reference		
		4.65±1%	CO gas detection		
		4.26±1%	CO ₂ gas detection		
		3.45±1%	HC gas detection		

Amphenol

Infrared Thermopile Sensors Standard ZTP Series

Cap / Can

ZTP-101T ZTP-115

ZTP-135SR

The ZTP series of IR thermopile sensors are used for non-contact surface temperature measurement. The product consist of thermoelements, flat IR filter, a thermistor for temperature compensation in a hermeticallysealed TO package. There are also a variety of filters available to help maximize performance in specific applications.

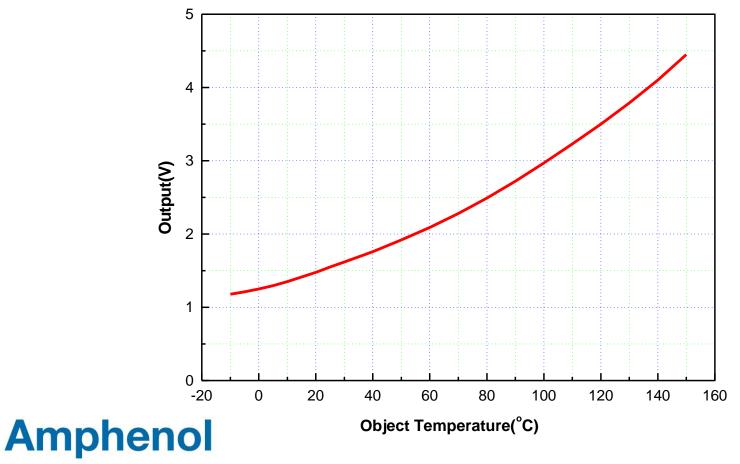
Filter

Amphenol

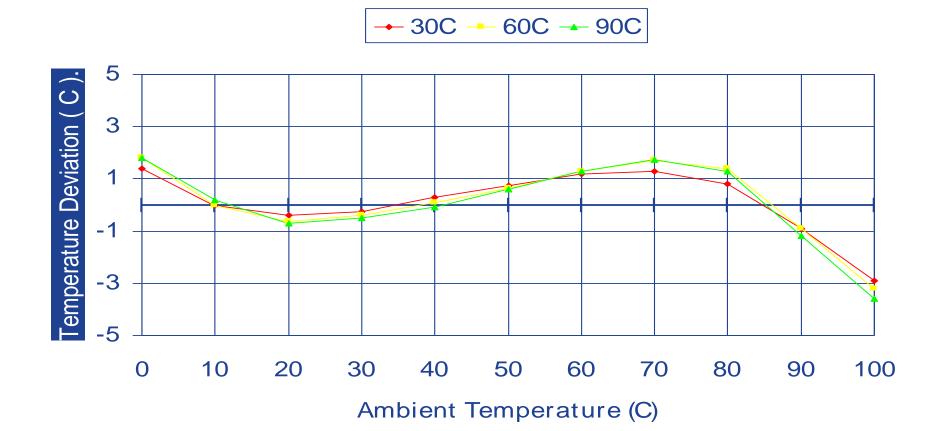
Infrared Thermopile Modules Standard ZTP Series

ZTP-115M

Amphenol

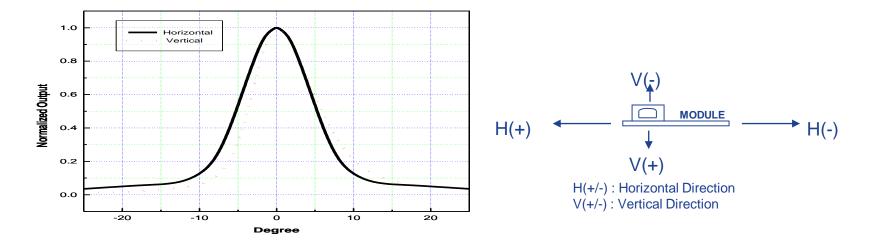

Advanced Sensors

The ZTP-115M is a single IR module. It consists of a thermopile, IR sensor, signal conditioning and voltage output.

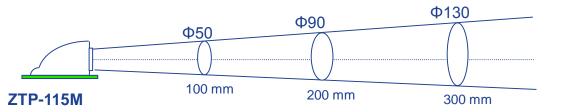

Window

Reflector **Conditioning electronics**

Infrared Thermopile Modules ZTP-115M Signal Conditioning & Amplification

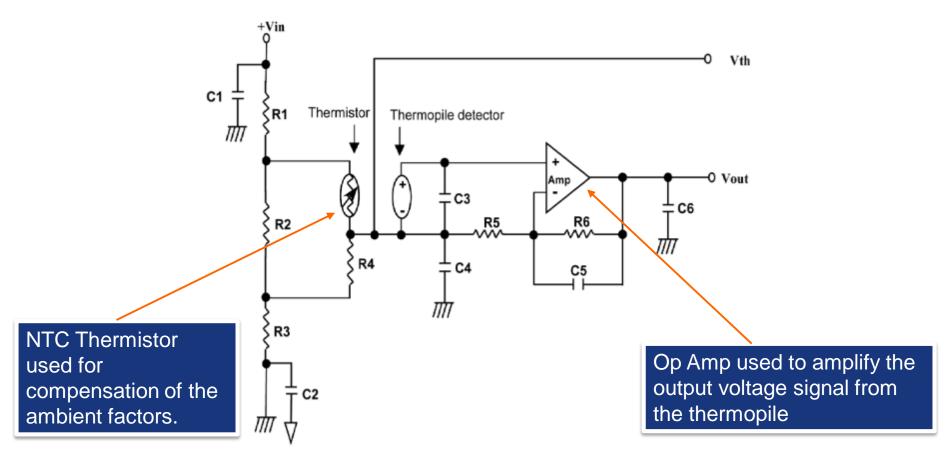


Infrared Thermopile Modules ZTP-115M Compensated Output



Amphenol

Infrared Thermopile Modules ZTP-115M Field of View

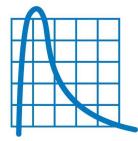


(3) Spot Size of Normalized Output(above 10%)

Amphenol

Infrared Thermopile Sensors Example Interface Circuit

Amphenol


Infrared Thermopile Sensors Typical Applications

- Ear, Forehead Thermometry
- Non-contact Temperature Measurement Thermometry
- Microwave Ovens
- Induction Heater Cookers
- Air Conditioners
- Occupancy Detection
- Lighting
- Underfloor Heating Control
- HVAC / Automotive

Amphenol

Amphenol Advanced Sensors

T H E R M O M E T R I C S A COMMITMENT TO EXCELLENCE