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Abstract: In this current review, research spanning the last decade (such as transcriptomic studies,
phenotypic observations, and confirmed comorbidities) has been synthesized into an updated eti-
ology of hair loss and applied to the new cosmeceutical paradigm of hair rejuvenation. The major
etiological components in scalps with hair loss are denoted as the ‘big eight strikes’, which include the
following: androgens, prostaglandins, overactive aerobic metabolism of glucose, bacterial or fungal
over-colonization, inflammation, fibrosis, metabolism or circulation problems, and malnutrition. The
relevance of the ‘big eight’ to nine categories of hair loss is explained. In cases of androgenetic alopecia
or female pattern hair loss, both elevated DHT and increased frequency of androgen receptors lead
to problems with the metabolism of glucose (sugar), redox imbalance, disruption to the electron
transport chain, and PPAR-γ overactivity (the latter is unique to androgenetic alopecia, where the
reverse occurs in other types of hair loss). These etiological factors and others from ‘the big eight’ are
the focal point of our hypothetical narrative of the attenuative mechanisms of commercial cosme-
ceutical hair serums. We conclude that cosmeceuticals with the potential to improve all eight strikes
(according to published in vitro or clinical data) utilize bioactive peptides and plant compounds
that are either flavonoids (isoflavones, procyanidins, flavanols, and flavonols) or sterols/triterpenes.
It is noteworthy that many therapeutic interventions are generic to the multiple types of hair loss.
Lastly, suggestions are made on how scalp and hair health can be improved by following the
cosmeceutical approach.

Keywords: androgenetic alopecia; cicatricial; dihydrotestosterone; prostaglandins; finasteride;
5α-reductase; inflammation; electron transport chain

1. Introduction

A normal healthy hair follicle grows for several years before it is replaced. This
process occurs in four major developmental phases, which are anagen, catagen, telogen,
and exogen [1]. The anagen phase is when the hair follicle is actively growing. If a person
experiences short periods of stress or illness, it is normal for their hair follicles to experience
temporary phases of non-growth. If the stress is not too severe, the anagen phase continues
for 3–5 years until the club hair is completely formed.

On a healthy scalp, most hairs are in the anagen phase, leaving only 6–8% of hairs that
have completed the anagen phase and are undergoing the process of returning to anagen.
Immediately as the anagen phase ends, the catagen phase starts, which lasts approximately
10–13 days. During this phase, the hair follicle transforms into a dormant follicle, known
as a telogen follicle. The telogen phase can last for up to three months before the follicle
releases the hair strand (sheds the hair) and starts creating a new hair strand. The release
of the hair strand and reforming of the hair follicle is known as the exogen phase [2]. At
the end of the exogen phase, the anagen phase starts once again.
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Approximately 100 hairs are shed per day, but at the early stages of hair loss disorders,
this number is significantly higher due to the interruption of the normal hair growth
cycle. The most significant problem is an interruption to the anagen phase. There are
several types of hair loss that may involve premature entry into the telogen phase or
complete destruction of the hair follicle, either at the bulb or the bulge region of the
pilosebaceous unit.

In the classical view of hair loss, there are nine basic types that are named according
to the pattern and cause. These are presented in Table 1. It is noteworthy that many of
the symptoms overlap between the types of hair loss, specifically inflammation, scarring,
and bacterial/fungal overgrowth [3–6]. Most hair loss disorders that are chronic have
these symptoms.

Table 1. The nine major types of alopecia as recognized in the medical community.

Type and Variations Vernacular Description

Alopecia areata, and
phenotypic variations.

Patchy hair loss. Phenotypic
variations include alopecia totalis,
alopecia universalis, diffuse AA,
and ophiasis AA.

This is characterized by either patchy, diffuse, or
complete hair loss that is thought to relate to an

autoimmune disorder that attacks the base of the follicle
(the bulb). This does not have a distinct pattern; it can

occur anywhere on the scalp or the body [7].

Androgenetic alopecia (AGA) or
female pattern hair loss.

Pattern hair loss, male pattern
baldness, and hereditary baldness.

This is the most common cause of hair loss,
characterized by hair miniaturization and inactivity

triggered by over-expression of dihydrotestosterone in
scalp tissue [8] and an orchestration of other factors [6].
Female pattern hair loss can be diagnosed in males. It is
more diffuse than the male phenotype and tends to be

concentrated on the vertex or mid-scalp, rather than the
frontal region [9].

Primary cicatricial alopecia. Primary or general
scarring alopecia.

This is a group of hair follicle disorders in which the
bulge region is irreversibly destroyed, and follicles are

replaced by fibrous tissue. Three subgroups include
(1) the lymphocytic group (i.e., classic pseudopelade

(Brocq), lichen planopilaris, central centrifugal cicatricial
alopecia [10], frontal fibrosing alopecia [11], and chronic
discoid lupus erythematosus); (2) the neutrophilic group
(i.e., dissecting cellulitis and follicular decalvans,); and
(3) the lymphocytic/neutrophilic group (i.e., folliculitis

keloidalis) [4,12,13].

Secondary cicatricial alopecia. Injury alopecia.
This involves irreversible destruction of the hair follicle
by injuries, such as burns, deep skin infection, trauma,

metastatic cancer, or radiation [14,15].

Chemotherapy-induced
alopecia. Anagen effluvium.

Chemotherapy causes hair loss via P53-dependent
apoptosis of hair-matrix keratinocytes. This is reinforced

by the dystrophic anagen or dystrophic catagen
pathway leading to chemotherapy-induced

hair-cycle abnormalities [16].

Chronic telogen effluvium. Stress alopecia.

This occurs when chemical or mental stress causes hair
to stop growing and stay at rest, then shed. It is

commonly diffuse but can be restricted to specific
regions that correlate to an area of a comorbidity, such as
androgenetic alopecia. While generally characterized by

a lack of miniaturized hairs, it often occurs as a
comorbidity of androgenetic alopecia, both of which can

be difficult to recognize or diagnose. Sometimes, the
cause of telogen effluvium is not identified [17].
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Table 1. Cont.

Type and Variations Vernacular Description

Tinea capitis. Fungal alopecia.

Characterized by patches of hair loss caused by a fungal
infection wherein hair bulbs are sometimes inflamed

severely, sometimes not, yet hairs are frequently broken
rather than shed [18].

Traction alopecia. Injury alopecia.

Caused by strain against the hair follicles, typically via
tight hairstyles. This causes terminal hairs to be replaced
with vellus hairs, creating a marginal or non-marginal

patchy phenotype that may involve the development of
fibrotic tissue that replaces the capillary network if hair

styling practices persist without intervention
or treatment [19].

Trichotillomania. Hair pulling.

A psychosomatic disorder involving compulsive
plucking of hairs from one’s scalp, eyelashes, or

eyebrows often in relation to a psychological
comorbidity, such as obsessive–compulsive disorder,

post-traumatic stress disorder, or attention deficit
hyperactivity disorder [20].

The information provided in Table 1 is a simplified guideline for the types of hair loss
disorders, but scalps with hair loss are often afflicted by multiple types of hair loss. For
example, the most common cause of hair loss is androgenetic alopecia (AGA) or female
pattern hair loss, but fibrosis occurs at advanced stages, possibly due to a comorbidity, such
as a mild form of scarring alopecia.

Scarring alopecia is another major type of hair loss that results in the accumulation of
collagenous tissue in the place of hair follicles. It is classified according to its pattern and
the dominant type of white blood cell in the bulge region of the hair follicle. For example,
primary cicatricial alopecia has no distinct pattern of hair loss over the scalp, but central
centrifugal cicatricial alopecia is restricted to the vertex or areas where AGA occurs. In
another example, frontal fibrosing alopecia is when hair loss occurs in the frontal scalp
or eyebrows [21,22].

Aside from these patterns of hair loss, the types of white blood cells and other factors
determine what type of dermatological condition caused the hair follicles to die or enter
telogen. Some of the dermatological conditions include lichen planopilaris, follicular decal-
vans, lichen planus, discoid lupus erythematosus, pseudopelade (patchy scarring alopecia),
and pseudopelade of Brocq. As previously mentioned, these conditions sometimes occur
together with AGA or other types of hair loss. For example, traction alopecia can occur
with scarring alopecia [10] or AGA. Furthermore, AGA can occur with chronic telogen
effluvium [23] or with scarring alopecia [24]. Sometimes comorbidities of AGA are caused
by the misguided use of dangerous cosmeceuticals, such as oil-dominated serums. Un-
fortunately, without proper guidelines, people can increase the severity of hair loss and
promote scarring alopecia by experimenting with topical serums or oils that are not suited
to their pathophysiological status [25].

Aside from hair loss that was caused by external forces leading to injury (i.e., mental
stress, chemotherapy, tight hairstyles), most cases involve an autoimmune or inflammatory
aspect. But this aspect is less severe in cases of AGA or telogen effluvium, albeit present.

To determine the difference between AGA, telogen effluvium, alopecia areata, or
scarring alopecia, diagnostic features on the scalp surface can be used, as well as the
character of the epilated hairs. Scalp surface or epilated hairs are photographed (using
phototrichoscan or other methods), their features are observed, and the types of hair
strands are counted, then a ratio is calculated. Examples of diagnostic features include a
high number of vellus hairs (pronounced differences in hair diameter) with formed hair
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bulbs. This indicates AGA, whereas disfigurement of the hair bulb, or no hair bulb, can
indicate alopecia areata [26–28].

The closer the examination of hair and scalp, the more complex the diagnosis becomes.
However, for the sake of brevity and simplicity, the nine hair loss disorders in Table 1 can
be condensed into just the following five categories: (1) reversible autoimmune, (2) andro-
genetic, (3) autoimmune scarring, (4) fungal/bacterial, and (5) stress/trauma (chemical,
psychological, and physical).

1.1. Reversible Autoimmune: Alopecia Areata

Hair follicles that are affected by alopecia areata (AA) are inflamed due to the increased
expression of proinflammatory cytokines, especially inter-feron-c (IFN-c), resulting from
activated T cells [29]. The part of the follicle that is affected is the bulb (Figure 1), where
dermal papilla cells are differentiated. The reason for this autoimmune attack on hair
follicles has not been clarified via research or empirical observation. There are several
theories that have strong support from reproducible observations, but reproducibility is far
below 100%, creating confusion and controversy over the pathogenesis of AA. However,
this may be related to the occurrence of comorbidities, which makes observing the biological
aspect of the disease complicated.
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cell niche.

To make things more complicated, AA has several different phenotypic presentations,
suggesting that it has different causes in different people [29]. Nevertheless, in all cases,
anti-inflammatory therapies (and dietary modification) have helped in resolving symptoms.
For example, in a study of 60 patients with AA, minoxidil and an anti-inflammatory
composition of piperine (from black pepper), capsaicin (from chili), and curcumin (from
turmeric) were nearly equally effective in the rejuvenation of hair [30].

While there are several hypotheses on the etiology of AA, most evidence suggests
there is a compromise of immune privilege of the hair follicle’s anagen antigens. This
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is called the ‘immune privilege collapse’ theory. Immune privilege collapse leads to the
reversible destruction of the hair follicle in the bulb region by active T cells [31].

The immune privilege collapse theory is supported by the observation of the behavior
of CD4 and cytotoxic CD8 T cells that were taken from the scalps of AA patients. These
cells attack epitopes from hair follicle keratinocytes and melanocytes. When the same types
of T cells are taken from non-AA patients, they are less likely to attack those epitopes [32].

In another study, scalp grafts were taken from AA patients and grafted to immuno-
suppressed mice. Hair returned to normal growth. T cells were then taken from the same
AA patients and activated using melanocyte-peptide epitopes from their scalps. They were
then injected into the mice with successful scalp grafts. The hair follicles stopped producing
hair strands on the backs of the mice [33].

This observation indicates that the epitopes from AA patients were like autoantigens.
In the same study, the authors identified that the HLA-A2-presenting protein is possibly
linked to this. While the HLA-A2-presenting protein is present in the hair follicles of half
the human population [33], it is believed that AA includes multiple etiological components,
with a strong lifestyle aspect. This is because dietary modification and anti-inflammatory
therapies have created a moderate to profound recovery in many case studies.

1.2. Androgenetic: Androgenetic Alopecia (AGA: Pattern Hair Loss)
1.2.1. Dihydrotestosterone (DHT)

The only hair loss disorder that can manifest all eight strikes, described in this current
commentary (Section 2), is AGA. This is because the first one of the eight strikes is an
androgen imbalance that is caused by excess dihydrotestosterone (DHT) in the scalp tissue.
While this is more common in males, AGA afflicts both males and females, but in the latter,
it is broadly called female pattern hair loss to be inclusive of both androgen-dependent
and -independent phenotypes. In both genders, a ‘pattern’ of hair loss manifests that
corresponds to the galea aponeurotica section of the scalp (Figure 2). Elevated levels
of DHT have been observed in both genders, but the exact etiological role of DHT is
poorly understood.

DHT is produced by removing a single double bond from the molecular structure
of testosterone in a process known as ‘reduction.’ The reason that there is too much
DHT in the balding scalp is because of the excessive reduction in testosterone by an
enzyme called 5α-reductase. The enzyme removes the double bond at position 5 of the
molecule (Figure 3).

In the new paradigm of AGA, it is recognized that elevated DHT is a significant
problem, but the disorder is characterized by multiple factors working together [6,25]. The
new theory recognizes and acknowledges that lowering DHT levels in the scalp will help to
stop or reverse hair loss because of the success of 5α-reductase blockers in halting hair loss
and even restoring hair to a balding scalp [34]. However, the new theory promotes the view
that adjuvant therapies can be used to create a multi-modal combination that reduces the
pathophysiological changes in the affected scalp as people age. The intended outcome is to
prevent the candidate from becoming increasingly dependent on 5α-reductase blockers.

1.2.2. Molecular Mechanisms of DHT

Most of the negative effects of excess DHT on the hair follicle start in the region of the
hair follicle dermal papilla cells, the bulb. Androgen-mediated paracrine signaling leads to
a regression of blood vessels in the hair follicle bulb region where dermal papilla cells are
located [35], making them vulnerable to hypoxia and reactive oxygen species accumulation.
Normally, dermal papilla cells are differentiated into cells that belong to the mesenchymal
lineage [36]. This differentiation process, and the regulation of hair follicle development,
are strongly dependent on crosstalk with other cells, such as keratinocytes and, to a lesser
extent, dermal fibroblasts [1,37]. Androgen receptor overactivity by DHT interferes with
this process, and as the vascular network diminishes, the effects of DHT are promoted.
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Dermal papilla cells that were exposed to a physiologically relevant dose range of
10–100 nM DHT were induced to express interleukin 6 (IL-6). By dosing cultured hair
follicles with IL-6, it was confirmed that hair shaft elongation was inhibited in a dose-
dependent way. The authors of this study followed this observation up with in vivo testing
in mice, and it was confirmed that the anagen phase was shortened with IL-6 treatment [38].

Another study demonstrated that DHT stimulates the expression of dickkopf 1 (DKK-1)
from dermal papilla cells. DKK-1 inhibited the growth of outer root sheath keratinocytes [39].
It was realized that DKK-1 is an inhibitor of canonical Wnt signaling by binding to and
inactivating low-density lipoprotein receptor-related protein co-receptors. This is detrimen-
tal to hair growth because the canonical Wnt (β-catenin) signaling pathway is responsible
for gene expression leading to cell proliferation [40]. This pathway is active in the anagen
growth of hair follicles, so suppression of this pathway will cause hair loss [41].

Another biochemical factor that was identified as problematic in AGA is transforming
growth factor beta (TGF-β) [42]. The isotype TGF-β1 is highly expressed in dermal papilla
cells in balding scalps [43]. It is noteworthy that both isotypes (TGF-β1 and TGF-β2)
antagonize the canonical Wnt signaling pathway in dermal papilla cells [44] (but not
fibroblasts [45]) when above the normal physiological concentration. Furthermore, TGF-β1
induces senescence in keratinocyte stem cells [46].

The cause of elevated TGF-β1 levels and how this relates to DHT is not known in full
detail, except that the induction of TGF-β1 by DHT requires reactive oxygen species [43].
In light of this, it is possible that powerful antioxidants can reduce the symptoms of AGA
by reducing the expression of TGF-β1 [47].

1.2.3. Finasteride as a 5α-Reductase Inhibitor

The most commonly used drug for AGA is finasteride, which is a selective inhibitor of
5α-reductase type 2. In a long-term study of Japanese patients, 1 mg of daily finasteride
was able to reverse hair loss gradually, creating the most noticeable changes in the first
year of treatment. During the next nine years, candidates with less severe hair loss experi-
enced a very gradual yearly improvement, but for others, the effects plateaued after their
first year [48].

A shortcoming of this 10-year study is that it focused on candidates who responded
to finasteride in the first year of use, experienced no side effects, and continued to use it
for 10 years. While the study reported no adverse events, this may be an artifact of the
selection criteria, i.e., candidates that continued to use finasteride for 10 years [48]. A more
balanced study reported that 48% of candidates experienced hair regrowth in the first year,
17% continued to lose hair, and 35% experienced no change [34].
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Indeed, finasteride is associated with adverse events, some of which are intolera-
ble. In long-term retrospective studies, side effects are not recorded. This is because
participants who stopped using finasteride in the first year are not included in the anal-
ysis. This creates the statistical challenge of not knowing the prevalence of side effects
in prospective finasteride users. Nevertheless, the formation of ‘The Post Finasteride
Syndrome Foundation’ [49] and the several publications describing post-finasteride syn-
drome [50,51] iterate the severity of the problem. Symptoms of post-finasteride syndrome
are commonly irreversible and include sexual dysfunction, brain fogginess, depression, and
suicidal ideation [51].

In cases where finasteride is used for benign prostate hyperplasia at the higher dose
of 5 mg, candidates are less likely to drop therapy due to side effects. This is possibly
because of the importance of continuing treatment, creating a stronger record of side
effects. A comprehensive review reported the following observation: at a dose of 5 mg
daily, finasteride is associated with moderate to severe erectile dysfunction in 4.9–15.8% of
documented cases, difficulty or inability to achieve ejaculation in 2.1–7.7% of cases, and
low libido in 3.1–5.4% of cases [52].

While these cases relate to a 5 mg dose of finasteride, only 1 mg is used to target hair
loss. Paradoxically, there are more records of adverse events for the 1 mg dose than for the
5 mg dose in the Food and Drug Administration Adverse Event Reporting System [53].
This may be an artifact of the higher numbers of people using finasteride for hair loss,
which gives a higher gross value. It also reiterates that the biological effects of finasteride
plateau above a 1 mg dose.

1.2.4. Beyond DHT

By targeting DHT, finasteride interrupts one of several potential triggers of alopecia.
While this is capable of creating a phenotypic improvement to hair loss, it is the contention
of the current narrative that DHT can be activated or exaggerated by other factors to
damage hair, factors that are not addressed by monotherapy drugs. These are referred
to as ‘potentiators’ of hair loss. They either worsen the effects of DHT, or in cases of
non-androgenic conditions, they are the sole drivers of hair loss.

Potentiators of hair loss are known in science, but their significance has been over-
shadowed by the single-target approach that has dominated the last 30 years of hair loss
science. These potentiators are collectively called ‘the big eight strikes’ against hair health.

As previously mentioned, a significant number of individuals who are living with AGA
are also experiencing another alopecia comorbidity, such as central centrifugal cicatricial
alopecia [24], other mild cases of scarring alopecia, or telogen effluvium. The current
narrative suggests that this is the reason why so many individuals fail to obtain satisfactory
results by targeting only the androgen in therapy. It is likely that such individuals will be
diagnosed with two or more of the eight strikes against hair health, wherein DHT is an
equal or lesser etiological component.

Thus, in the new paradigm of hair loss, DHT is part of a more complex orchestration
of cascading events that determine the severity and persistence of hair loss. In this new
paradigm, individuals who fail to achieve benefit from finasteride will benefit from lateral
approaches to hair health or hair health adjuvants, such as topical serums and nutraceutical
intervention. Furthermore, those individuals who benefit from finasteride may increase
their benefit by targeting some of the other strikes with adjuvant strategies.

1.3. Scarring: Cicatricial/Fibrosing Alopecia

Hair loss that results from perifollicular fibrosis in the dermis, i.e., the building of
collagen around hair follicles, is called scarring alopecia in vernacular language. Although
most scarring alopecia disease states are characterized by perifollicular scars, some include
organized collagen, known as “scleroderma”, not to be confused with the disorder sclero-
derma. In the context of fibrosing alopecia, the collagenous material is sometimes atypical
of scar tissue, so the term “scleroderma” is used loosely to make the distinction [15]. In cases
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of perifollicular scars, scar tissue infringes on the hair follicle. In cases of “scleroderma”,
the follicles themselves are destroyed and replaced by ‘linear circumscribed scleroderma.’
Under the microscope, it looks like a line of ivory- or porcelain-colored thickened skin with
elevated collagen. This involves a form of thickening without the destruction of connective
tissue (elastin fibers).

In scarring alopecia, hair regrowth is permanently prevented due to damage around
the hair bulge (rather than the bulb), which is the site of attachment of the erector pili
muscle and the region of the epithelial stem cells [11]. Damaged follicles shed the hairs
before they reach the catagen/telogen phase [26]. Scarring alopecia diseases, also known
as primary cicatricial alopecia, are either lymphocytic [12], meaning they are caused by
adaptive immunity (autoimmunity), or neutrophilic, meaning they are caused by innate
immunity (first line of defense).

There are multiple classifications of scarring alopecia, but they generally fall into
two major groups: (1) primary and (2) secondary cicatricial alopecia [54]. Primary cica-
tricial alopecia is recognized in three subgroups: (1) a lymphocytic group (i.e., classic
pseudopelade (Brocq), lichen planopilaris, central centrifugal cicatricial alopecia, frontal
fibrosing alopecia, and chronic discoid lupus erythematosus); (2) a neutrophilic group (i.e.,
dissecting cellulitis and follicular decalvans,); and (3) a mixed lymphocytic/neutrophilic
group (i.e., folliculitis keloidalis) [4,12,13,55] (Table 1). Secondary scarring alopecia is gen-
erally a result of injury [14,15], such as coincident dermal infections, burns, skin trauma via
accidents, and exposure to chemical toxicants.

A common scarring alopecia in the African American community is central centrifugal
cicatricial alopecia (CCCA). Although the pathogenesis of this is not yet fully understood,
it tends to be associated with the use of different hair styling products, such as chemical
relaxers, hot combs, and various traction-inducing hairstyles [56,57].

The other types of scarring alopecia are caused by inflammatory dermatological
conditions with no known trigger, such as lichen planopilaris, follicular decalvans [58],
lichen planus, discoid lupus erythematosus, patchy scarring alopecia (pseudopelade),
and pseudopelade of Brocq. Lichen planopilaris and lichen planus are the most common
conditions that cause scarring alopecia [11].

Although it is not known what causes scarring alopecia, various theories have been put
forth. A popular theory is that the natural bacterial population of the follicular infundibu-
lum loses its immune-privileged status, leading to an immune response that damages the
bulge region of the hair follicle [59]. This may involve the migration of bacteria down from
the follicular infundibulum into the bulge region, or it may be that the proportion of species
is changed, known as species over-colonization. Bacterial overgrowth is not considered
a diagnostic criterion for most conditions leading to scarring alopecia. This is possibly
because the immune response reduces the number of bacteria.

It is possible that fibrosis is inversely correlated to the expression of peroxisome
proliferator-activated receptor gamma (PPAR-γ) in dermal fibroblasts. In contrast with
AGA, wherein activity from the PPAR-γ is upregulated in outer and inner root sheath
keratinocytes during the miniaturization phase of the follicles, fibrosing alopecia tends
to have low PPAR-γ activity, and this is why PPAR-γ agonists are being explored in
therapy [60,61]. Because PPAR-γ activity is reciprocal to the expression of TGF-β1 in
dermal fibroblasts, high PPAR-γ activity will depress the expression of TGF-β1 [62] (it is
not known if this is true for dermal papilla cells, as high PPAR-γ activity and high TGF-β1
are observed together in these cells in cases of AGA).

1.4. Fungal/Bacterial Alopecia: Follicular Decalvans and Tinea Capitis

The only type of alopecia that is known to be entirely a consequence of microbial
infection is tinea capitis. This fungal infection is more common in children and occurs
via transmission and overgrowth of Trichophyton tonsurans [18]. In early cases, hair loss is
reversible, but in chronic infections, it becomes a scarring condition, and the hair follicles
are replaced with collagenous tissue. Tinea capitis is treated with antimicrobial therapy.
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Follicular decalvans is a type of scarring alopecia that is characterized by an over-
growth of Staphylococcus aureus [58]. Follicular decalvans is classed as the neutrophil form of
scarring alopecia (not lymphocytic) with a phenotypic presentation that involves pustules
and honey-colored crusting at the periphery of the zone of infection [11]. Antimicrobial
therapies are an important strategy to intercept the disease to avoid further damage to hair
follicles, but on occasion, a resistant strain is the cause of infection. In such cases, antibiotics
are less effective than a plant-based antimicrobial treatment with broad-spectrum activity.

Abnormal bacterial growth is also associated with miniaturized hair follicles from
the scalps of candidates with AGA. A recent study demonstrated that the bulge region
of miniaturized hair follicles is dominated by Propionibacterium acnes, whereas normal
hair follicles are dominated by species from the genus Burkholderia [63]. Even before
the publication of this recent study, theories were formed on the potential pathological
contribution of P. acnes in the development of AGA. Antimicrobial therapies, either natural
or pharmaceutical, may be useful to candidates with AGA in the form of an adjuvant to
other lines of treatment.

1.5. Stress/Trauma (Chemical, Psychological, and Physical)

The most common symptom of hair loss disorders caused by psychological stress/
trauma is telogen effluvium (TE), which occurs when the hair follicle terminates growth
before the life of the follicle has been completed, i.e., premature telogen. Although stress or
pre-AGA can trigger short periods of non-growth of the anagen follicle, these are not the
same as telogen because, with only minor stress, normal growth continues when the stress
period has concluded. While TE is known to occur as a comorbidity of AGA, chronic and
acute TE are distinguished from AGA because they are not characterized by miniaturized
colorless hairs [23], like those seen in AGA.

TE is more commonly reported in women [64]; however, it also afflicts males, and it
is possible that it is misdiagnosed or not recognized as a comorbidity with another hair
loss pathology. Premature telogen is theoretically a symptom of most of the cases of hair
loss listed in Table 1, but it is dominant in TE or chronic TE [65]. Hair shedding usually
occurs 2–3 months after the stress event has passed, sometimes making it difficult for the
candidate to identify the cause retrospectively.

TE can be categorized into five types [66]. The first and most common form is im-
mediate anagen release. This is triggered by high cortisol levels from stress [67] or when
high fever conditions (i.e., malaria, chronic systemic inflammation) cause systemic cytokine
levels to rise, which initiates apoptosis of hair follicle keratinocytes. The second type is
delayed anagen release, usually after childbirth, because during gestation, high estrogen
levels prevent the normal cycling of anagen hairs into catagen. Then, after childbirth, the
sudden lowering of estrogen causes the delayed anagen hairs from the past nine months to
enter catagen in synchrony. The third type is immediate telogen release, commonly called
the ‘dread shed’, when the three-month-long telogen phase is cut short and the hair strand
is released (exogen or teloptosis). This can occur when starting a hair rejuvenation therapy
(minoxidil). The fourth type is delayed telogen release, when hairs remain in telogen for
longer, and exogen is delayed, sometimes due to winter periods or a lack of light hours
in the day cycle. When several telogen hairs resume the cycle into exogen, it results in
sudden shedding. The last type is the short anagen phase, a chronic condition involving
the inability to grow long hair due to an idiopathic short anagen phase. Some authors agree
with these five types [64], but others desire to have it simplified [65].

Regarding the first type, ‘immediate anagen release’, the importance of proinflam-
matory cytokines in contributing to this condition is not accepted by some scientists [64].
However, a possible risk factor is chronic systemic micro-inflammation [68]. In cases of TE
that occur after the recovery of COVID-19 patients, plasma levels of interleukin 1β and
c-reactive protein were elevated [69]. In the current narrative, similar studies on chronic TE
patients are encouraged.
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2. The Big Eight Strikes, in Simple Terms

The big eight strikes define the alienable etiological components or comorbidities
of hair loss. They are (1) an imbalance of androgens (DHT, testosterone, and SHBG) in
cases of AGA; (2) an imbalance of prostaglandins (PGF2-α and PGD2); (3) overactive
sebum production and sugar metabolism; (4) bacterial and fungal overgrowth; (5) micro-
inflammation; (6) micro-scarring and collagen; (7) inefficient circulation and metabolism
(i.e., cholesterol and scalp tension); and (8) nutrient deficiency (or nutrient metabolism, i.e.,
vitamin D).

These eight strikes or etiological components may also be described as comorbidities
or potentiators of hair loss because the pathophysiological abnormalities often reinforce
the disorder. What this means is that when two or more of the strikes occur together,
they can create a vicious cycle that makes it harder to break the process of hair follicle
deterioration. An example of such a cycle is overactive sebum production that feeds
lipophilic bacteria and causes microbial overgrowth. Microbial overgrowth theoretically
interferes with the prostaglandin balance, which reinforces sebum production. However,
microbial overgrowth also triggers inflammation, which restricts circulation and prevents
the reactive oxygen species from being circulated away from the site of infection. Reactive
oxygen species work together with DHT to trigger the secretion of transforming growth
factor beta, a cytokine that puts the hair follicle into telogen [6]. Thus, the eight strikes are
more damaging when they are active simultaneously.

An explanation of the big eight strikes is given in the following subsections.

2.1. Imbalance of Androgens (DHT, Testosterone, and SHBG) in Cases of Androgenetic Alopecia

Androgen imbalance is one of the most important abnormalities contributing to AGA
(Figure 4). The specific androgen in question is DHT, which is produced from testosterone
when the enzyme 5α-reductase reduces it. People who live with AGA have an increased
expression of this enzyme in scalp tissue, as well as a higher number of androgen receptors,
also known as DHT receptors. DHT binds to the androgen receptor with a five-fold greater
affinity than testosterone, making it a more potent androgen. Thus, the androgen imbalance
in balding scalps (Figure 5) will cause the over-expression of androgen-responsive genes.
Some authors have coined this as ‘intrafollicular androgen overactivity’ [70].
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expression of TGF-β1 is dependent on the presence of reactive oxygen species.

While the cascade of events is complex, the eventual outcome is a shortened anagen
phase, an increased number of hairs in the telogen phase, and an increase in the phase
between exogen (teloptosis) and the new hair. This middle phase is called the kenogen
phase, which does not normally occur in healthy hair. A new theory of hair follicle silencing
is that the kenogen phase is dominant in the ‘balder’ regions of the scalp. The hair follicles
are not extinct but dormant per se [71]. Gradually fibrosing comorbidities destroy the
follicle and cause hair loss to become more permanent.

2.2. Imbalance of Prostaglandins (PGF2-α, PGD2)

Inconsistencies across histopathological studies have interfered with the value of
biochemical observations of prostaglandin dysregulation in balding scalps [72]. It was
proposed that inconsistencies in reporting occurred because researchers either did not take
into consideration the level of hair follicle miniaturization or provided limited details of
their methodological selection of hair units or cell types for their studies.

As the hair follicles start to miniaturize in balding scalps, the bulb cells (dermal papilla
cells) express higher amounts of prostaglandin D2 (PGD2) [73] relative to prostaglandin F2-α
(PGF2-α) (Figure 6). This theoretically occurs prior to the development of fibrosis, a process
that becomes more active when TGF-β1 activity from the dermal fibroblasts increases [62].

PGD2 is an agonist of its cognate receptor PPAR-γ, which causes an increase in the
expression of androgen receptors and protein kinase B (Akt) signaling [74]. Another co-
activator of PPAR-γ, namely the protein PPARGC1α, is also upregulated in the outer
and inner root sheath keratinocytes of the pilosebaceous unit [75], where it plays a role
in energy metabolism [76]. Aside from their role in energy metabolism, both PGD2 and
PPARGC1α increase the number of androgen receptors, the activity of DHT, and Akt sig-
naling [77]. Furthermore, PGD2 is also an agonist of the G protein (heterotrimeric guanine
nucleotide)-coupled receptor 44 (GPR44), which inhibits hair growth when activated [73].
Lastly, PGD2 promotes the calcification of human osteoblast cells [78], which may be re-
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lated to the alleged calcification that occurs in balding scalps [79], but this needs to be
properly understood.
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causing the balance between PGD2 and prostaglandin F2-α (PGF2-α) to change. PGF2-α is a hair
growth enhancer, but excess PGD2 antagonizes hair growth.

In a study of the early stages of AGA in Hispanic men, it was observed that the
increased expression of PGD2 was accommodated with a compensatory increase in the
enzyme to make PGE2 [80], perhaps as a protective response. However, PGE2 was not
measured in that study. Both PGE2 and PGF2-α are known to promote hair growth [81].
During hair follicle miniaturization, there is also a phase when the amount of PGF2-α is
diminished [82]. Thus, the severity of hair loss in disorders correlates to the balance of
prostaglandins in the early stages; PGD2 is too high, and PGF2-α is too low.

Although it is not known what causes the prostaglandin imbalance to occur in scalps,
one theory is that the overgrowth of P. acnes (see Section 1.4) in the follicular infundibu-
lum is an etiological driver. An in vivo study of hamsters demonstrated that the mere
application of P. acnes culture supernatant to the skin caused the expression of 15-deoxy-
∆12,14-prostaglandin J2 (15d-PGJ2) to increase [83]. 15d-PGJ2 is an agonist for PPAR-γ [84].
Overactive PPAR-γ causes augmented lipogenesis [85], which is the start of the third strike
(see next section).

Because 15d-PGJ2 is produced spontaneously via the double dehydration of PGD2 [86],
promoted by the generation of reactive oxygen species [80], then it is clear that the culture
supernatant of P. acnes was driving an increase in the expression of PGD2 and 15d-PGJ2
was measured as an artifact. This is supported by a study that demonstrated the reciprocity
of 15d-PGJ2 to PGF2-α [87].

However, augmentation of PGD2 by P. acnes is not the only mechanism by which the
prostaglandin imbalance can be caused. This is because differences in the expression of
prostaglandins can occur in sugar metabolism, specifically the polyol pathway [88]. In a
previous study, it was postulated that the polyol pathway is active in the balding scalps of
candidates with insulin resistance or metabolic syndrome [6]. In the current narrative, we
present the theory that the polyol pathway changes the biosynthesis of prostaglandins to
favor PGD2.
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Prostaglandin biosynthesis is dependent upon aldo-keto reductase isotypes (AKR1B1,
AKR1B3, or AKR1C3) as synthases. Aldo-keto reductase isotypes catalyze the conversion of
PGH2 to PGF2-α in the presence of the reducing agent nicotinamide adenine dinucleotide
phosphate (Figure 7) (NADPH) [89,90]. In the absence of NADPH, PGD2 is produced
instead by using the same synthases [89].
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AKR1B1, also known as aldose reductase, is also used as a substrate in the polyol
pathway, which consumes NADPH via conversion to NADP+ [91]. In hyperglycemic
environments, AKR1B1 is prevented from participating in reactions leading to PGF2-α or
PGD2 via the physiologically relevant substrate glucose [92], so other aldo-keto reductases
are utilized (possibly AKR1C3), in which case the transient depletion of NADPH by the
active polyol pathway directs the synthesis of prostaglandins in favor of PGD2 production.

Alternatively, culture supernatants of P. acnes may be rich in reactive oxygen species,
which drives the conversion of PGD2 to 15d-PGJ2 [80]. If this is the case, then P. acnes may
also play a role in the depletion of NADPH, which persuades biosynthesis of PGD2 in
preference to PGF2-α [89]. It is possible that overgrowth of P. acnes complements the polyol
pathway in affected individuals, to exacerbate this problem.

Thus, together with P. acnes overgrowth, the polyol pathway should be considered as
a possible cause for the imbalance of prostaglandins in the balding scalp. Strategies that
seek to restore this balance should involve the inhibition of P. acnes, the use of a selective
AKR1B1 inhibitor, supplementation with magnesium to increase NADPH [93], or the use
of plant-based estrogenic compounds that reduce the size of sebaceous glands.

2.3. Overactive Sebum Production and Sugar Metabolism

Numerous observational studies have demonstrated a correlation between AGA
and abnormal glucose metabolism in the body, such as metabolic syndrome [94], insulin
resistance [95], or both [96]. Another study demonstrated a link between hyperglycemia,
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sex-hormone-binding globulin, and AGA [97]. Furthermore, a study of postmenopausal
women with female pattern alopecia demonstrated a link between the severity of hair loss
and body mass index [98], suggestive of metabolic syndrome. Although they were being
called comorbidities, there is strong evidence that high blood glucose is directly linked to
AGA [6]. This has received support from a study of >1000 participants in China, which
demonstrated a link between the severity of AGA and the consumption of sugar-sweetened
beverages [99].

The problems with hair follicle glucose metabolism may be due to the decreased ex-
pression of HIF-1α, activation of the polyol pathway, and the inability of the pilosebaceous
unit to generate glycogen stores and modulate between mitochondrial respiration and
anaerobic glycolysis.

Evidence that monosaccharide metabolism is dysregulated comes from transcriptome
profiling of a bald scalp. Changes to the expression of genes demonstrated that a redox
imbalance in the mitochondria of dermal papilla cells (NADPH < NADP+) [91] may be
linked to overactive aerobic respiration [100]. In the same study, it was realized that
antioxidant genes are also upregulated, which reinforces the finding that the metabolism of
glucose is generating reactive oxygen species (free radicals) at a rate that is damaging to
the hair follicle’s cells and cellular organelles.

Another transcriptomic analysis discovered that a co-activator of PPAR-γ (PPARGC1α
and syn. PGC1α) is upregulated in the bulge region of the miniaturizing hair follicle [75].
The process of glucose metabolism and lipogenesis is partly modulated by PPAR-γ. The
balding scalp is, therefore, a site of both dysregulated glucose metabolism and possibly
elevated lipogenesis (Figure 8).
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One of the main challenges with the utilization of glucose in aberrant respiration
and lipogenesis is that the anagen hair follicles depend on the modulation of energy
to support the active growth of the hair fiber. Because so much energy is required for
anagen growth, the hair follicle builds a reservoir of glycogen (stored sugar), some at
the base near the dermal papilla cells, but most of it is along the outer root sheath [101].
During active growth, the glycogen is gradually converted back to glucose and then to
pyruvate, which is either aerobically converted to CO2 and water or lactate, either to
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generate the ATP required to feed the growing follicle or the lactate required for stem cell
activation (Figure 9).
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lactate dehydrogenase, NADPH, and HIF-1α.

The glycogen store is continuously restocked during the years of anagen growth. It is
not clear how this works, but there is evidence that human hair has a circadian rhythm of
growth [102] that may correspond to periods of glycogen restoration or utilization. The pro-
cess of building glycogen stores in hair follicles probably uses lactate by following an internal
Cori cycle [103] first via conversion to a triose phosphate derivative (bypassing pyruvate)
and then by enacting glycogen synthesis, a process familiar to skeletal muscles [104].

Normally, the cells of the hair follicles preferentially synthesize lactate via glycolysis
of glucose to pyruvate, then conversion to lactate via lactate dehydrogenase A [105].
To maintain this process of anaerobic glycolysis, a transcription factor called ‘hypoxia-
inducible factor 1 (HIF-1α) is expressed, which normally occurs during hypoxia [106],
but is persistent, despite the presence of oxygen, in human scalp tissue [107,108]. The
production of lactate downstream of the activity of HIF-1α is required for normal gene
expression events in dermal papillae and stem cells [109]. The ability to produce lactate
enables the hair cells to modulate the intensity of mitochondrial respiration, creating periods
of rest and recovery in synchrony with the various stages of hair follicle growth. It is also
possible that the dominance of anaerobic glycolysis is an adaptive mechanism to reduce
dependence on oxygen supply, as the oxygen demands for rapid hair growth might not be
adequately met in the microvascular network of the scalp dermis, requiring non-synchrony
of hair follicle growth phases to distribute resources. In this latter hypothetical case, chronic
aerobic respiration will deplete oxygen, creating hypoxia, which is paradoxically prevented
by the expression of HIF-1α.

At times of high energy requirement, glycogen stores are accessed via the release of
glucose, which is converted to pyruvate and then either lactate, by lactate dehydrogenase
A, an enzyme that is associated with hair follicle stem cell activation [110], or the pyruvate
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is converted to acetyl-CoA via mitochondrial respiration, then either used in lipogenesis
or driven onward to produce CO2 + H2O in the course of ATP generation. Thus, lactate
dehydrogenase A modulates the conversion of lactate, timing the availability of pyruvate
for mitochondrial respiration in the stem cell niche. Thereafter, the pyruvate is not available
to be put through the citric acid cycle, as lactate dehydrogenase B is absent from this
location, making the conversion to lactate irreversible unless it circulates through the
unique internal Cori cycle [110].

Two processes are known to affect glucose metabolism in androgenetic alopecia. First,
the mechanism to maintain anaerobic glycolysis to lactate, even in the presence of oxygen,
is inhibited. In cases of AGA, enzymes that degrade HIF-1α are expressed, such as the
HIF-1α prolyl hydroxylase enzymes EGLN1 and EGLN3, in addition to a potent inhibitor of
HIF-1α, pigmentary epithelium-derived factor (PEDF) [107]. The differential expression of
these enzymes and factors may be due to the androgenetic abnormality, as DHT was shown
to blunt the expression of HIF-1α in hypoxic conditions [111]. Nevertheless, the inability
of the hair follicles to follow anaerobic glycolysis to lactate results in a chronic switch to
aerobic respiration, occurring in the mitochondria [108]. Thus, with the degradation of
HIF-1α, the modulation of mitochondrial respiration is prevented, causing it to persist
continuously, eventually creating mitochondrial fatigue and a lack of glycogen stores
(Figure 10). In individuals with insulin resistance or metabolic syndrome, the high glucose
load is fed into a chronic respiratory chain, creating a destructive hypothetical.
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Figure 10. In the scalp that is afflicted with AGA, depletion of NADPH and HIF-1α interferes
with the anaerobic metabolism of glucose to lactate, thereby interrupting the internal Cor cycle and
siphoning pyruvate via aerobic metabolism, generating high levels of ROS and causing mitochondrial
fatigue. The red X corresponds to where the expression levels or availability of a specific substrate is
significantly reduced.

A study of ex situ dermal papilla cells that compared balding and non-balding can-
didates determined that the electron transport chain is severely interrupted in the former,
and the authors speculated that this was due to an increased number of mitochondria in
cells from the balding candidates [112]. This theory is in alignment with the observation of
increased expression of the PPAR-γ co-activator PPARGC1α [75], which is known to be a
promotor of mitochondrial biogenesis [113]. It was also noted that the electron transport
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chain was failing at complexes 1, 3, and 4 [112]. Complex 1 is an NADH-dependent step,
suggesting that NADH is exhausted.

While this higher rate of mitochondrial respiration explains why mitochondrial stress
has been observed in miniaturized hair follicles, the cause of the redox imbalance is not
entirely explained. In the first instance, lipogenesis in parallel with the pentose phosphate
pathway is in a balance regarding NADPH [114] (as previously stated, the expression
of genes from PPAR-γ [75] is indicative of increased lipogenesis during the stage of hair
follicle miniaturization).

Another hypothetical strain on NADPH levels was proposed recently [6], i.e., when ab-
normally high amounts of sugar are circulated into scalp tissue, the expression of AKR1B1
increases, hexokinases are saturated, and sugar metabolism spills over to the polyol path-
way, which consumes ATP, NAD+, and NADPH and nurtures conditions for lipogene-
sis [91], creating a redox imbalance [115] (Figure 11). Evidence was found that supports this
theory, which is that the same aldo-keto reductase, AKR1B1, which is normally responsible
for the synthesis of PGF2-α [92,116], is also responsible for the synthesis of PGD2 in the
absence of NADPH [89]. PGD2 is the prostaglandin that is upregulated in balding scalp
according to some studies [73].
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While NADPH is normally restored via the pentose phosphate pathway (from lactate),
the overwhelming deficiency of Mg2+ in the community of AGA phenotypes [117] antago-
nizes this process due to the dependence of Mg2+ to the pentose phosphate pathway [118]
and NADPH rejuvenation [119]. While disruption to the redox balance dysregulates
prostaglandin synthesis (as previously stated), it also interferes with the activity of type
3 3α-hydroxysteroid dehydrogenase, the enzyme that metabolizes DHT, since it is an
NADPH-dependent reaction [120].

The hair follicle’s internal Cori cycle is unlikely to follow the path of returning lactate to
pyruvate, as lactose dehydrogenase B is not present in the hair follicle stem cell niche [110].
The pathway is, therefore, likely to bypass pyruvate and go direct to a triose phosphate
intermediate, which is a process that is also dependent on NAD+. However, due to the
reduced availability of NAD+, the mechanism of gluconeogenesis (from lactate) is interfered
with, interrupting the Cori cycle. Hair follicles become deficient in the energy required for
growth, and a high flux of reactive oxygen species damages mitochondria.

A poorly understood anomaly in hair loss disorders is the under-expression of insulin-
like growth factor 1 (IGF-1) [121]. While this hormone is involved in the utilization of
sugar, like insulin, it is also a growth factor, so it has other significant functions. Research
is starting to demonstrate a role for IGF-1 in the building of glycogen stores, either via
gluconeogenesis or glucose transport to the cellular machinery for glycogen formation in
astrocytes (cells that store glycogen) [122]. It is feasible that the downregulation of IGF-1
in balding dermal papilla cells is another etiological component related to the diminished
glycogen stores in this region, and a similar anomaly should also be investigated in the
epidermal stem-cell niche of the bulge region. Furthermore, the expression of TGF-β1 may
be reciprocal to IGF-1 expression [123], but this requires empirical corroboration in the
context of hair follicle cells.

Thus, the expression of IGF-1 can be used as a biomarker of normal activity in the hair
follicle. Therapies that are associated with an increase in the expression of IGF-1 in the
short term can be expected to lead to hair rejuvenation in the long term, but since this is an
early area of research, further studies should go into this anomaly. Nevertheless, the link to
sugar metabolism of the hair follicle, particularly the formation of glycogen deposits, has
not been properly elucidated.

2.4. Bacterial and Fungal Overgrowth

As previously mentioned, P. acnes overgrowth in the follicular infundibulum is associ-
ated with AGA pathogenesis (Section 1.4). However, an unexplained role for the fungus
Malassezia furfur has also been identified; this organism is implicated in dandruff [124]. The
association of M. furfur with AGA is not widely accepted, but a reliable source identified
benefits from the use of ketoconazole shampoo in AGA [125], which is an antifungal drug
used in the treatment of dandruff. The benefit may possibly derive from resolving an
anti-inflammatory state induced in individuals who respond negatively to the fungi or
bacterial overgrowth (Figure 12).

2.5. Micro-Inflammation

As AGA progresses dermatologists frequently observe a reddening of the skin on
scalps with baldness (pers. comm). Inflammation is a common feature in hair loss
at the stage of hair follicle miniaturization, but as the phenotypic presentation of hair
loss becomes more advanced, the inflammatory state is alleviated, and fibrosis becomes
more dominant.

The administration of topical hair loss therapies may facilitate a return of the dermis to
a normal healthy color if the chosen therapy is effective. Evidence of inflammation during
hair follicle miniaturization is corroborated by the observation of perifollicular inflamma-
tory infiltrates, as either lymphocytes or histiocytes, and upregulation of the inflammatory
genes, CASP7 and TNF [126]. The occurrence of inflammation in androgenetic alopecia is
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less perceptible in comparison with other forms of injury or scarring alopecias. For this
reason, it is being termed ‘micro-inflammation’ [25] (Figure 13).
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Figure 13. Inflammation in scalps afflicted with hair loss pathologies often appears slightly tinged
red, which is resolved with anti-inflammatory therapy. Inflammation is a significant etiological
component of this type of hair loss.

Studies of inflammation in AGA are diverse, giving a broad spectrum of incidences
of inflammation in AGA ranging from 36 to 70% [25,126]. Because the data demonstrate
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that lymphocytic infiltration is in the bulge region of the hair follicle, it may be rationalized
as a mild form of scarring alopecia, or it could represent the presence of comorbidity.
It is the contention of the current narrative that micro-inflammation in AGA is due to
the androgenetic effect, which makes the scalp dermis vulnerable to a mild autoimmune
disorder in areas of the scalp afflicted by the androgenic problem. This may explain why
candidates with AGA demonstrate fibrosis at advanced stages of AGA, at which time the
inflammation is less obvious or absent.

2.6. Micro-Scarring and Collagen

In cases of scarring alopecia, and in the mature stages of AGA, perifollicular fibrosis or
“scleroderma” become a pathophysiological character. This creates issues of diminishing
vasculature (see next section), and the fibrotic tissue goes on to diminish and replace hair
follicles via interferences with stem cell niches [127].

Fibrosis development is potentially a consequence of the increased expression of
transforming growth factor beta (TGF-β). The isotype over-expressed in AGA is TGF-β1,
and in retinoids-induced hair loss, it is TGF-β2 [42]. Not only do the TGF-β isotypes silence
the canonical Wnt signaling cascade, but they stimulate the expression of collagen from
dermal fibroblasts. In AGA, DHT induces expression of TGF-β1 from hair follicle dermal
papilla cells and the fibroblasts, which are the origin of procollagen. Thereafter, TGF-β1
elicits procollagen from fibroblasts [128] and possibly also from dermal papilla cells [129]. In
the latter, the bulb region of the hair follicle is encased in collagen, substantially interfering
with the normal differentiation process required for hair growth.

In the scalp dermis with active collagen synthesis, amino acids that are normally
utilized in the formation of hair strands are utilized elsewhere. This is the hypothetical case
that is put forth in Figure 14.
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2.7. Inefficient Circulation and Metabolism

Challenges to circulation create a two-fold problem, first by limiting the circulation
of nutrients and oxygen to the scalp and second by limiting the circulation of waste away
from the scalp. Removal of wastes, such as reactive oxygen species, quenched reactive
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oxygen species, cholesterol, and purine by-products of glucose metabolism, is a significant
part of homeostasis. Metabolism of xenobiotics, such as cholesterol, by cytochrome P450s,
is listed in this category because this is also an essential part of the waste removal process.

2.7.1. Circulation

Reduced circulation in hair loss disorders can have several negative effects, including
the restriction of nutrient and oxygen supply, the inadequate removal of cellular waste
products, and issues with the removal of DHT, causing it to become concentrated locally.
Because testosterone is 10 times more soluble than DHT [130], there is a risk that DHT will
accumulate locally if the circulation of plasma proteins is restricted.

In hair loss disorders, particularly TE and AGA, there are several mechanisms con-
tributing to the challenges in circulation. The symptom that is mentioned most in informal
discussions of hair loss is vasoconstriction, which occurs due to simultaneous inflammation
and oxidative stress [131]. Furthermore, androgen-mediated paracrine signaling restricts
angiogenesis and induces the regression of the vasculature in hair follicle dermal papilla
cells [35]. As mentioned previously, challenges to vasculature may interfere with the
removal of waste products. However, the hypothetical consequences of limited oxygen
circulation to the scalp are now rationalized by the discovery of the degradation of HIF-
1α [107]. In normal scalps, HIF-1α is expressed independently of the presence or absence
of oxygen due to the preference for pyruvate conversion to lactate [105]. Thus, healthy
hair follicles are not vulnerable to a fluctuating oxygen supply; however, since HIF-1α
is degraded in scalps with AGA [107], the utter dependence of cells on the citric acid
cycle makes dermal papilla cells vulnerable to hypoxia. Furthermore, the aberrant respira-
tion process promotes the depletion of oxygen, making the balding scalp an environment
of hypoxia.

There is also an area of discussion around the negative effects of scalp tension, which
are thought to be due to strain in the muscles that pull on the galea aponeurotica, the
section of the scalp that corresponds to the Norwood–Hamilton balding pattern. While
scalp tension remains an area of contention in the discussion by the scientific community,
preliminary evidence is in favor of a contributory role in AGA pathogenesis. This is due to
the positive outcome of the use of botulinum toxin to relax the muscles in the occipital and
temporal areas of the scalp and ease tension in the vertex [132]. In addition, 325 volunteers
who used standard scalp massages self-reported improvement in hair loss pathologies,
with greater anecdotal praise in cases of the phenotypic presentation of AGA [133].

A lesser-known contributor to vasoconstriction in the balding scalp is the plaque
build-up that reduces the internal diameter of blood vessels (Figure 15). However, there are
limited scientific studies that discuss this in the context of hair loss. Reference is made to a
letter written in 1942, but calcification of the skull’s sutures and foramens was the focus of
the authors’ observations rather than the vasculature in the soft tissue of the dermis [134].

Hence, the association of venereal calcification with AGA needs to be confirmed.
One view is that the polyol pathway generates uric acid [135], which has the capacity to
form microcrystals, creating a seed upon which calcium oxalate precipitates in arteries or
veins, familiar to atherosclerotic oxalosis in coronary arteries [135], but uniquely in scalp
dermis. Nevertheless, incidences of oxalosis in scalp tissue have not been confirmed in the
published literature. An alternative view is that venereal plaque build-up is a feature of
cholesterol-potentiated hair loss [136].

Circulation in scalp tissue is also strained by the degradation of capillaries during
fibrosis development. The process for fibrosis development is elucidated in Section 2.6, and
with dysmorphia of the scalp, it becomes necessary to consider angiogenesis as a significant
outcome of hair rejuvenation therapies. The normal process of angiogenesis is allegedly
interrupted due to the degradation of HIF-1α [107] and decreased expression of vascular
endothelial growth factor [137] in dermal papilla cells, the two of which normally synergize
to regulate angiogenesis [138].
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Figure 15. Arteries and veins in the scalp dermis of candidates with AGA are compressed and narrow,
and the complexity of vasculature is reduced as fibrotic tissue encroaches upon capillaries.

2.7.2. Metabolism

Transcriptome profiling of human scalps with AGA revealed that genes associated
with the expression of metabolism enzymes are dysregulated. One of those identified
was CYP1B1 [139], an under-expressed gene that codes for a monooxygenase enzyme
(CYP450) that performs cholesterol metabolism [140]. CYP1B1 also codes for the pro-
teins that bind and transport cholesterol, i.e., sterol regulatory element-binding pro-
teins (SREBPs). It is possible that cholesterol accumulates in the dermis of the scalp
afflicted by AGA. Because cholesterol has a direct antagonistic effect on cultured hair
follicles [141], inefficient metabolism and elimination of cholesterol may contribute to
cholesterol-potentiated AGA [136].

2.8. Nutrient Deficiency

There are several nutrients that become a barrier to recovery from hair loss disorders,
such as scarring alopecia, TE, and AGA. These deficiencies are regarded as ‘bottlenecks’ to
therapies (Figure 16). A prominent example is iron deficiency, which is a common point
of interest at the ‘Cleveland Clinic Foundation’ while addressing hair loss. Practitioners
believe that iron supplements should only be used in cases of deficiency, and they purport
that the efficacy of their treatment improves when the deficiency is corrected [142].

Another well-known bottleneck is zinc deficiency. In an analysis of a Korean popula-
tion, it was demonstrated that patients with TE or AA were deficient in zinc, suggesting
a possible metabolism barrier to homeostatic levels [143]. Another study of Turkish men
with AGA demonstrated that although serum levels of zinc and copper appeared normal,
concentrations of both metals were low in excised hair samples from the bald region of
the scalp. The authors speculate that local circulation deficiency or metabolism barriers
prevented the afflicted follicles from utilizing these elements in hair growth [144].

Studies that focus on B vitamins and amino acids have also corroborated the benefits
of supplementation. When medical yeast (for B vitamins), the amino acid cysteine and
pantothenic acid (vitamin B5) were supplemented as an adjuvant therapy to minoxidil,
results were greater than with minoxidil alone [145].
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It is becoming apparent that nutritional deficiencies associated with hair loss disorders
are not necessarily a consequence of low dietary intake. Several studies have recognized
that breakdown to the function of metabolizing enzymes is occurring in the hair loss
patient. For example, a transcriptional study recognized that the gene CYP27B1 is under-
expressed in balding hair follicles [146]. This gene codes for the monooxygenase enzyme
that metabolizes 25-OH vitamin D into its active form 1,25-OH. Because magnesium
supplementation was able to correct serum vitamin D concentrations without the need for
changes to vitamin D intake [147], it is feasible that magnesium deficiency is a bottleneck
to the function of metabolizing enzymes that rely on NADPH, which is renewed via a
magnesium-dependent system [93]. One study confirmed that magnesium deficiency was
common in candidates with AGA [117].

3. Clearing the Big Eight Strikes with Cosmeceuticals to Improve Hair

The ideal therapy for the balding scalp will target all eight strikes against hair health.
Because candidates have different strikes against their hair, either highly or moderately
active, then it is better to avoid designing highly specific single-target drugs to address
these problems. For example, by targeting a single enzyme with high specificity, therapy
can benefit some individuals who require rebalancing the activity of that enzyme, but when
applied to homeostatic individuals, the activity of the same enzyme will be dysregulated.
Thus, broad-spectrum natural cosmeceuticals represent a more appealing approach to
ensure applicability to a broad spectrum of hair-loss candidates.

The current narrative focuses on natural product interventions as cosmeceuticals,
not pharmaceutical drugs or procedures. We only briefly mention several alternative
procedures, such as microneedling, platelet-rich plasma, standardized scalp massages,
low-level laser light therapy, autologous hair follicle transplants, and botulinum toxin
injections [1,132,133]. These procedures and pharmaceutical drugs, such as finasteride,
minoxidil, dutasteride, latanoprost, bimatoprost (topical prostaglandin), or cetirizine (PGD2
blocker) have merit [1,34], but such interventions are comprehensively elucidated in
other reviews.

While procedural and pharmaceutical interventions have a clear path of success in
targeting the eight strikes, this can also be achieved via cosmeceuticals that are entirely
plant-based or are mimetic of a human peptide (or matrikine) metabolite. Such ingredients
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may be derived from sustainable plantations (farming), or they can be manufactured in a
green process (i.e., green synthesis). Regarding the ingredients that are identical to human
metabolites, such as the peptides [148], they are still natural and not drug-like, provided
they are secondary metabolites, not cytokines, enzymes, or hormones. For example, it is
possible to derive peptides from plant-based dietary sources, including the well-known
tripeptide GHK [149]. But GHK spontaneously chelates with copper (Cu) in human
metabolism to become Cu-GHK. Thus, topical application with Cu-GHK is considered
reasonably natural.

Lastly, the eight strikes are interdependent. For example, controlling any one of the
strikes can improve the other strikes. Thus, by improving each of the strikes, it becomes
easier to improve the others, i.e., controlling inflammation can improve prostaglandin
balance, controlling DHT can improve inflammation or fibrosis development, controlling
bacterial overgrowth can improve inflammation and prostaglandin balance, and so on.

3.1. Strike 1: Imbalance of Androgens

Strategies to correct the androgen imbalance include directly targeting the androgen
(DHT), directly targeting 5α-reductase, or blocking the androgen receptor. It is difficult or
unfeasible to target the androgen directly with exogenous substances (natural products),
but it is feasible to do this indirectly by promoting an increased expression of the enzyme
3α-hydroxysteroid dehydrogenase (3α-HSD) [150]. This enzyme degrades DHT (Figure 17).
By increasing the expression of 3α-HSD or enabling its activity by restoring the redox
balance, it is conceivable that levels of DHT would decrease [151].
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Unfortunately, in scalps afflicted with AGA, the redox balance is impaired, and the
activity of 3α-HSD is prevented due to its dependence on NADPH [120] (Figure 18).
Consequently, a higher concentration of DHT occurs in the scalp, and because the scalp
is one of the primary synthesizers of DHT, systemic DHT is elevated. DHT is circulated
to the liver, where it is metabolized to a more polar conjugate, to enable elimination via
kidneys or secretion into the colon for microbial deconjugation and elimination.
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Figure 18. Interrupted metabolism of DHT in scalp with androgenetic alopecia. Due to a redox
imbalance, the enzyme 3α-HSD is unable to perform a reduction on the keto group of DHT, then
with glucuronidation, it becomes systemic DHT-G. Thereafter, on its path to elimination, it circulates
back to scalp tissue. Inflammation hair follicle cells express β-glucuronidase, which returns DHT
back to its free form. The red X corresponds to a significant reduction of a known substrate.

One of the metabolic conjugates is DHT-glucuronide (Figure 19). Although glu-
curonides are eliminated from the body, they can also be deconjugated at various sites
around the body where β-glucuronidase is expressed, restoring DHT back to its free
form. For example, it is known that β-glucuronidase is expressed in the connective tis-
sue sheath of hair follicles that are in the telogen–catagen phase [152], indicating that
elevation of free DHT is mechanistically related to the cessation of the anagen phase. Un-
fortunately, β-glucuronidase is also expressed when macrophages and neutrophils are
stimulated [153,154], possibly a mechanism to modulate inflammation [155]. It has also
been demonstrated that TGF-β1 stimulates the expression of β-glucuronidase [156]. Thus,
a hypothetical schematic for the increase in DHT in the scalp is presented in Figure 20.

Targeting 5α-reductase is feasible with both natural products and synthetic drugs,
as previously elucidated, and targeting the androgen receptor can be achieved either by
binding directly to it and inactivating it or by changing gene expression patterns to reduce
the expression of androgen receptors. The latter is referred to as the degradation of the
androgen receptor [157].

Some people who are living with AGA also demonstrate a decrease in sex-hormone-
binding globulin (SHBG) [6] (this does not relate to the polycystic ovarian syndrome
equivalent in males). This glycoprotein is produced by the liver, and it binds to androgens
and carries them around the body. Binding to the androgen changes its activity, which
can prevent it from performing its normal function. Interestingly, SHBG binds to DHT
with higher affinity than testosterone, like the androgen receptor. This means that higher
circulating levels of SHBG will cause a decrease in the amount of free DHT in the body.
There are various dietary substances that are associated with normalized SHBG expression
in the liver, by increasing levels if low or lowering levels if too high, such as fenugreek [158],
oleic acid [159], or equol [160].

Another area of interest is in reducing the damaging effects caused by excess DHT.
One group of researchers postulates that the activation of the PI3K/Akt pathway may
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cascade into the activation of the erythroid 2-related factor 2 (Nrf2) signaling pathway [161],
which antagonizes the activity of DHT [162]. This possibly occurs with the consumption of
sulforaphane [161]; however, a general improvement in the health of the scalp dermis may
also be associated with the control of DHT and its negative effects.

3.2. Strike 2: Imbalance of Prostaglandins

Strategies to correct the imbalance of prostaglandins may involve the use of potent
antioxidants to preserve NADPH by reducing reactive oxygen species generated from
polyol metabolism. Furthermore, the inhibition of P. acnes via the topical application of
antibacterial compounds may also be effective. Lastly, dietary intervention may support
the synthesis of hair-growth-promoting prostaglandins by inducing aldo-keto reductase
blockers (dihydroberberine) or by adopting a low glycemic index diet.

3.3. Strike 3: Sebum and Sugar Metabolism

In balding scalps, the sugar that circulates to the affected area is metabolized into lipids
in a process known as lipogenesis. This process is modulated by the prostaglandins, so the
first step to correcting this problem is to rebalance the prostaglandins. However, via inhi-
bition of the aldo-keto reductases responsible for the polyol pathway, both prostaglandin
balance and lipid metabolism may be corrected. The specific enzyme to target is AKR1B1,
which is the principal reductase responsible for the polyol pathway. There are several
plant-based ingredients that inhibit this enzyme, most notably berberine [163].

3.4. Strike 4: Bacterial and Fungal Overgrowth

Bacterial overgrowth can be controlled via plant-based metabolites that are antag-
onistic to Gram-positive organisms, such as P. acnes or S. aureus. There are many such
compounds available from the plant kingdom, such as taxifolin or resveratrol [164].
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Figure 20. A hypothetical schematic for the increase in scalp DHT, enacting a vicious cycle (positive
feedback loop). Depletion of NADPH and increased expression of β-glucuronidase in scalp tissue
interferes with DHT metabolism and deconjugates DHT g as it is circulated to the scalp on its path to
renal and colonic elimination.

For fungal overgrowth, there are also several anti-fungal compounds available; how-
ever, plant-based compounds that inhibit M. furfur are less common. While ketoconazole is
an effective drug, M. furfur can be controlled using a highly concentrated topical application
of a broad-spectrum antimicrobial compound from a plant to compensate for the lack of
specificity against this fungus (yeast). Some good candidates are the flavan-3-ols from
grape seeds, which have moderate activity against M. furfur [165]. To antagonize this
fungus, it would require combining a slightly higher amount into the composition.

3.5. Strike 5: Micro-Inflammation

Inflammation can be controlled by reducing microbes in the dermis, quenching
free radicals (antioxidants), and via the application of an anti-inflammatory composi-
tion. There are several known plant-based anti-inflammatory extracts, such as copaiba [166]
or Larix decidua (syn. L. europaea) (Larch) wood extract [167]. Because several plant ex-
tracts are antioxidants and confer antimicrobial effects, the anti-inflammatory extract is a
multi-modal remedy.

3.6. Strike 6: Micro-Scarring and Collagen

Once fibrosis has occurred in the scalp dermis, it is very difficult to reverse. Inter-
ventional therapies generally halt the progression of fibrosis, either via the inhibition of
pathogenic bacteria, such as S. aureus, or conferring anti-inflammatory effects. However,
the reversal of fibrosis is more difficult because it requires reactivation of the stem cell niche
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of the hair follicle, which reclaims the dermis and starts the slow process of returning a
functional keratinocyte population.

One strategy that may be effective is to trigger the expression of matrix metallo-
proteinases (MMPs), which degrade collagen and trigger a restructuring of the dermis.
Increasing expression of MMPs can be achieved via the use of peptides, particularly Cu-
GHK, which signals to the dermis that injury has occurred and that a restructuring process
needs to be started. The transdermal penetration of peptides will improve if they are
applied in conjunction with microneedling. In such strategies, it is of essence to avoid
excessive use of a derma roller to avoid having the opposite effect, which will increase
fibrosis rather than reduce it.

Another strategy to prevent scar formation is by antagonizing the differentiation
of fibroblasts into myofibroblasts. This modulates collagen formation to avoid fibrotic
overgrowth. There are plant extracts that are known to do this, such as the saponin
mixture called escin (or aescin) from the chestnut of Aesculus hippocastanum (horse chest-
nut tree) [168], which is a well-known therapy for skin diseases, controlling the mod-
ulation of dermal cells to facilitate normal tissue formation, especially in the context
of angiogenesis [169,170].

3.7. Strike 7: Inefficient Circulation and Metabolism

Three strategies to improve circulation are vasodilation, relaxation of muscles at the
occipital and temporal regions of the scalp, and angiogenesis. There are plant-based
compounds that dilate arteries and veins in a similar way to minoxidil. The most popular
example is caffeine, which is a phosphodiesterase inhibitor [171], that typically causes
vasodilation via the inhibition of cAMP and cGMP, leading to an increased intracellular
concentration of calcium [172]. However, caffeine may not necessarily be a good candidate
since it is also an agonist for PPAR-γ [173] and promotes mitochondrial biogenesis [174].
Nevertheless, it is important to know if the benefits outweigh the detriments.

To improve muscle relaxation in the areas at the base of the skull, people can use topical
liniments and supplement magnesium, or they can practice standardized scalp massages [133].
For angiogenesis, there are steroidal plant extracts that have been proven to modulate angio-
genesis. A good example of a proangiogenic compound is the phytosterol called sitosterol
(syn. β-sitosterol), which is found in Aloe vera [175] and Serenoa serrulata [176].

3.8. Strike 8: Nutrient Deficiency

Two primary methods to ameliorate nutrient deficiency are the supply of limited
nutrients and the improvement of metabolic processes that are responsible for nutrient
neogenesis. While it is of the essence to correct deficiencies caused by dietary insufficiency
(magnesium, iron, folic acid, etc.), people who suffer from hair loss disorders usually suffer
from comorbidities that prevent the proper utilization of nutrients or nutrient precursors.
Some of these deficiencies are localized to the scalp and are not otherwise a problem in the
other parts of the body. In such cases, topical application of limiting nutrients can help.

Thus, topical application of sulfur amino acids, glutamic acid, and other keratin
building blocks is conceded to be of benefit in hair rejuvenation strategies. Furthermore,
copper and zinc can be made into a bioavailable form by fermentation with Saccharomyces
cerevisiae, the same yeast used in the fermentation of bread and alcohol. These ferments are
commercially available.

The ingestion of collagenous material can increase the absorption of amino acids or
peptides after the enzymes in the human digestive tract have reduced them to sizes that
can cross the intestinal endothelium. However, if collagenous material is predigested into
peptides, they can be absorbed directly across the epidermis of the scalp, making topical
application feasible and convenient.

Correction of nutrient neogenesis can be achieved by the supplementation of minerals
or vitamins that act as substrates in metabolic processes leading to other types of nutrients.
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For example, vitamin B12 is necessary for melatonin synthesis [177], and melatonin is good
for hair growth [178].

4. Critical Examination of a Selection of Exemplary Cosmeceuticals in the Market

There is a plethora of unregulated claims in the market related to the success of topical
therapies that rarely enact the efficacy touted in advertising. The anecdotal success of a hair
rejuvenation initiative can persuade the public to expect the generic reproducibility of that
outcome. It is common to see such claims made in relation to hair-rejuvenating oils that are
manufactured from a mere ‘fixed’ oil, such as olive, coconut, rosehip, or grapeseed oil. On
the market, there are numerous topical hair oils that may create aesthetic improvement to
the hair strands and possibly improve the growth rate of hair in individuals who are not
suffering from a hair loss disorder but have no efficacy in diseased scalps.

Unfortunately, it is difficult to regulate these oil-based therapies in the market. While
oils can be used as a base to extract lipophilic components from plant biota, specifically
therapeutic phytochemicals, the industry is too focused on the minimization of manufactur-
ing costs. For this reason, there is often minimal presence of biologically active metabolites
in these market brands. As such, they almost entirely comprise triglycerides and free fatty
acids, giving minimal benefit to individuals who have a true hair loss disorder. When plain
oils are applied to scalps with hair loss disorders, they can exaggerate the disease state by
promoting the growth of lipophilic bacteria, such as P. acnes [25]. These effects can be coun-
tered if the composition includes potently antimicrobial and anti-inflammatory ingredients,
but without the proper regulatory control and testing of these oil-based compositions on
the market, efficacy is not predictable. Thus, individuals who experience hair loss should
be discouraged from using a topical therapy that is based on a ‘fixed’ oil, unless they can
verify that the concentration of biologically active phytochemicals is adequate to enact the
antimicrobial and anti-inflammatory effects.

Most of the non-oily hair rejuvenation therapies on the market that have clinical
backing in the context of AGA and other pathologies are water-based. These serums
might have lipophilic ingredients, but they are not dissolved into oils; they are made into
emulsions with surfactants or encapsulated with liposomal technology.

There are several ‘business-to-business’ (B2B) proprietary blends (cosmeceuticals) on
the market that are used as a base ingredient in water-based serums. These proprietary
blends tend to incorporate ethnobotanically significant species in the context of dermal
health, vasculature, and hair rejuvenation [179,180]. They often also integrate peptides
and/or growth factors to enrich the composition [181].

Examples of cosmeceuticals for hair health are RadensylTM, CapixylTM, Anasensyl®,
Procapil®, and AnaGainTM. No published clinical studies were found on these blends
that proved efficacy in human volunteers, although white papers are available from the
companies with associated claims. However, published data are available from the individ-
ual ingredients in these proprietary blends, albeit data obtained in vitro, with no clinical
backing in follow-up. There are also numerous studies that demonstrate faster hair shaft
elongation out of extracted hair follicles that are grown in a liquid medium (in vitro and
ex vivo). Furthermore, some studies focus on results from the treatment of the dorsal of
a rodent (in vivo). In such studies, the whole etiological aspect of hair loss disorders has
been ignored.

Most hair rejuvenating serums on the market include one or more of the five pro-
prietary blends listed above. Details of these proprietary blends and how they might
ameliorate the strikes against hair health are given in the following subsections.

4.1. RedensylTM Ingredients

The active ingredients in RedensylTM include dihydroquercetin-glucoside (taxifolin
from Larch wood pulp, <1% wood extract), epigallocatechin gallate glucoside (from Camellia
sinensis, the green tea plant, <0.1% leaf extract), and glycine (<1%, amino acid in keratin).
Active ingredients are in a base of glycerin (50–55%), water (45–50%), and the preservatives,
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sodium metabisulphite (<1%) and zinc chloride (<0.1%). The recommended use level is
1–3% in any serum [182].

The strikes cleared by RedensylTM include the following:

- Strike 1 (androgens)

� EGCG glucoside binds to 5α-reductase [183].

- Strike 2 (prostaglandins);

� The antimicrobial properties of taxifolin [184] may indirectly benefit
prostaglandin balance.

- Strike 3 (sebum and sugar);

� Taxifolin is an aldose reductase inhibitor [185].

- Strike 4 (bacteria/fungi);

� Taxifolin is antimicrobial against Gram-positive bacteria [184].

- Strike 5 (micro-inflammation);

� Taxifolin is anti-inflammatory [186,187].

- Strike 8 (nutrients).

� Zinc and glycine are nutritional.

4.2. CapixylTM Ingredients

The active ingredients in CapixylTM are acetyl tetrapeptide-3 (0.020–0.035%) and
Trifolium pratense (clover) flower extract (0.020–0.030%). The formulation ingredients include
butylene glycol (45–55%), water (45–55%), and dextran (0.090–0.150%). The composition is
recommended at 2.5–5.0% of a manufactured serum for ‘intensive treatment’ and 0.5–2.5%
for ‘preventative care’.

The strikes cleared by CapixylTM include the following:

- Strike 1 (androgens);

� T. pratense extract includes biochanin A, a 5α-reductase inhibitor [188].

- Strike 6 (collagen/fibrosis).

� Acetyl tetrapeptide-3 signals for restructuring of the dermis [189].

4.3. Anasenzyl® Ingredients

The active ingredients in Anasensyl® are ammonium glycyrrhizate, caffeine, zinc
gluconate, and Aesculus hippocastanum seed extract. Limited information on concentrations
or formulation ingredients was found. The recommended use level ranges from 0.5 to 1.5%
in any serum.

The strikes cleared by Anasensyl® include the following:

- Strike 5 (micro-inflammation);

� Ammonium glycyrrhizate is anti-inflammatory [190].

- Strike 6 (collagen/fibrosis);

� Aesculus hippocastanum seed extract controls the differentiation of fibroblasts,
reducing fibrosis development [170].

- Strike 7 (circulation/metabolism);

� Caffeine is a vasodilator [171].

- Strike 8 (nutrients).

� Zinc gluconate is a source of zinc.

4.4. Procapil® Ingredients

The active ingredients in Procapil® are apigenin, oleanolic acid, and biotinoyl tripeptide-1
(biotinoyl GHK) (concentrations not found). The formulation ingredients are butylene glycol,
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water, PPG-26-Buteth-26, and PEG-40 hydrogenated castor oil. The recommended use level is
3% of any serum.

The strikes cleared by Procapil® include the following:

- Strike 1 (androgens);

� Apigenin promotes the proliferation of dermal papilla cells and reduces the
expression of TGF-β [191];

� Oleanolic acid is an inhibitor of 5α-reductase [192].

- Strike 5 (micro-inflammation);

� Apigenin and oleanolic acid are anti-inflammatory [193,194].

- Strike 6 (collagen/fibrosis).

� Biotinoyl tripeptide-1 is a derivative of GHK for penetration improvement. It
signals a restructuring of the dermis, which reduces collagenous material and
reactivates stem cell niches [42].

4.5. AnaGainTM Ingredients

The active ingredient in AnaGainTM is an extract of Pisum sativum sprout (0.5% of non-
solvent extract), with formulation ingredients of phenoxyethanol (1%), sodium benzoate
(0.5%), and water. The recommended use level is 2–4% of any serum.

The strikes cleared by AnaGainTM include the following:

- Strike 6 (collagen/fibrosis).

� Pisum sativum sprout extract at 2% applied topically upregulates noggin [195],
which is antagonistic to bone morphogenetic growth factor 4, a member of the
transforming growth factor beta superfamily [196].

4.6. Concentration, Clinical Efficacy, and Combining the Proprietary Blends

While clinical or in vitro efficacy is demonstrated for most of the raw ingredients of the
five proprietary blends in the context of hair, the concentration of active ingredients must
be matched to those in clinical studies to replicate positive outcomes. For example, clinical
studies of the topical application of the P. sativum sprout extract used a 2% concentration to
achieve hair-rejuvenating effects greater than the placebo [195]. However, if manufacturers
of serums dilute AnaGainTM down to its highest recommended concentration of 4%, the
active extract is diluted 25 times down to 0.02%, a 100-fold difference compared to the
clinical study. This may be a consequence of a lack of market viability, requiring the costs
of manufacture to be lowered drastically to the inevitable loss of product efficacy.

There are a number of other ingredients that have high potency, permitting lower
concentrations that are inevitable in industry. For example, taxifolin is anti-inflammatory
at concentrations >75 µM [187], equivalent to 0.009%. If the concentration of taxifolin in the
wood extract of larch is at a minimum of 90% [197], then a 1% solution of RedensylTM gives
0.09% taxifolin, 10-fold higher than required for anti-inflammatory effects. The pharmacoki-
netics of taxifolin in the dermis determines the saturated tissue concentration. However,
>80% permeation was seen using a human skin model [198]. While the elimination half-life
of taxifolin is short in human plasma [199], saturation in human skin is expected to pre-
serve the molecule for longer, as it is renal elimination that dominates metabolic removal
from human plasma. Thus, RedensylTM may be able to enact the effects observed in vitro.
Unfortunately, no peer-reviewed published clinical study on human volunteers was found
to corroborate this.

The five most common proprietary blends on the market do not clear the big eight
strikes unless they are combined. The most comprehensive blend is RedensylTM, which
clears six of the eight strikes. Nevertheless, these proprietary blends are generally not
sold on their own in the ‘business to consumer’ market, as they are used to formulate
commercial brands. Only two serums (brands) were identified on the market (although
there may be more) that included enough diversity of ingredients to cater to all eight
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strikes. One of the two serums is REVIVV® from WETHRIVVTM, and the other serum is
RevivHair™ Max Hair Stimulating Serum. Generally, such compositions use three or four of
the above-mentioned proprietary blends and additional ingredients to improve transdermal
absorption or the various forms of GHK, including biotinoyl-GHK and palmitoyl-GHK.
Penetration enhancers are also often used, such as menthol and amino acids (bifunctional
ingredients). Lastly, proprietary blends may not include an adequate amount of a specific
metabolite, such as epigallocatechin gallate in RedensylTM, so manufacturers of serums
sometimes elect to raise their concentration.

5. Conclusions

Hair loss disorders are multifactorial, which requires multimodal initiatives to achieve
improvement. There are eight alienable etiological components in hair loss disorders, and
the higher number of strikes (one strike, two strikes, three strikes, . . . ) will correlate to the
severity of hair loss.

The eight strikes are as follows:

1. Imbalance of androgens (DHT, testosterone, and SHBG) in cases of androgenetic
alopecia: DHT triggers the expression of TGF-β1, which is reciprocal to the canonical
Wnt signaling pathway.

2. Imbalance of prostaglandins (PGF2-α, PGD2): Depletion of NADPH redirects the
biosynthesis of prostaglandins toward PGD2. This may be jointly caused by bacterial
overgrowth of P. acnes and the polyol pathway.

3. Overactive sebum production and sugar metabolism: Prostaglandins and the polyol
pathway change the metabolism of sugar so that lipid is produced in favor of glyco-
gen stores; this may be due to increased expression of AKR1B1, a substrate for
prostaglandin synthesis, and a trigger of the polyol pathway; insulin-like growth
factor 1 is under-expressed in the balding scalp, and this may be why the glycogen
stores are depleted.

4. Bacterial and fungal overgrowth: Scalps afflicted with hair loss generally have bacte-
rial overgrowth or inflammatory infiltrates as byproducts of clearing microbes. The
bacteria can be P. acnes or S. aureus (in cases of scarring alopecia). The fungus is
M. furfur.

5. Micro-inflammation: Inflammation in the balding scalp can be severe, such as in
scarring alopecia, or it can be low-grade chronic, such as in AGA. The term micro-
inflammation was coined because candidates are unaware of the inflammation in
AGA; it is subtle.

6. Micro-scarring and collagen: While therapies can halt the progression of fibrosis, it
is difficult to reverse it. The best approach is via the use of biomimetic peptides that
signal a restructuring of the dermis and promote a return of the stem cell niche.

7. Inefficient circulation and metabolism (i.e., cholesterol and scalp tension): Circulation
is two-fold. It involves the transport of nutrients to the scalp, and it is equally as
important to transport waste out. The elimination of waste can be antagonized by
the inactivity of metabolizing enzymes that are responsible for converting waste into
soluble forms, such as the metabolism of cholesterol.

8. Nutrient deficiency (or nutrient synthesis via metabolism, i.e., vitamin D): Nutrient
deficiencies can be corrected with supplementation, but the benefit can also be experi-
enced by supplementing an item in the absence of a deficiency of that item, such as by
the addition of amino acids to the diet. Furthermore, a deficiency can be caused by
a failure of local metabolic processes that create nutrients, such as vitamin D, which
can be adequate in terms of dietary intake but is not being utilized by hair follicles in
balding scalps.

Cosmeceuticals that target all eight of these etiological components are likely to be
more effective than therapies that target a small number of strikes. It is rare for a hair
rejuvenating serum that targets all eight strikes to be available in the market.
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