

European Technical Assessment

ETA-09/0140 of 27/05/2024

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

This version replaces

Instytut Techniki Budowlanej

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

Bonded fasteners for use in concrete

BOSSONG S.p.A. Via Enrico Fermi, 49/51 IT-24050 Grassobbio (Bg), Italy www.bossong.com

BOSSONG S.p.A. Via Enrico Fermi, 49/51 IT-24050 Grassobbio (Bg), Italy

32 pages including 3 Annexes which form an integral part of this Assessment

European Assessment Document (EAD) 330499-02-0601 "Bonded fasteners for use in concrete"

ETA-09/0140 issued on 17/05/2019

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The BOSSONG BCR V PLUS, BOSSONG BCR V PLUS-W and BOSSONG BCR V PLUS-T are bonded fasteners (injection type) consisting of an injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and steel element: commercial threaded rod of the sizes M8 to M30 with hexagon nut and washer or reinforcing bar (rebar) from Ø8 to Ø32 mm.

The steel element is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The steel element is anchored by the bond between steel element, mortar and concrete.

An illustration and the description of the products are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in clause 3 are only valid if the fasteners are used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the fastener of 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load and shear load (static and quasi static loading), displacements	See Annex C1 to C7
Characteristic resistance for seismic performance category C1	See Annex C8
Characteristic resistance for seismic performance category C2	See Annex C9

3.1.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C10 to C12

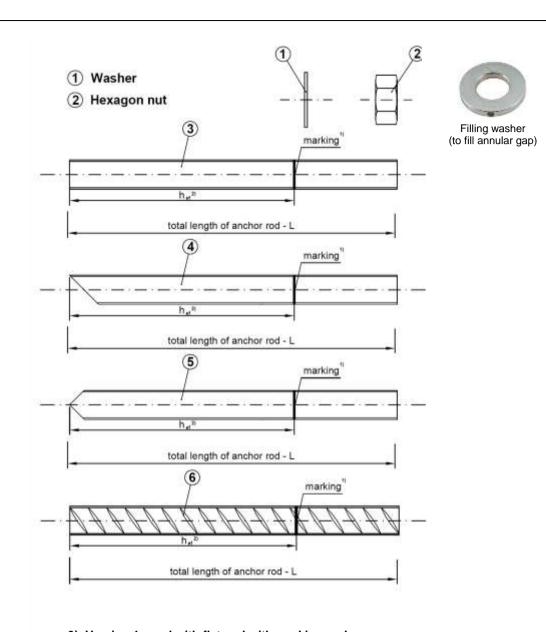
3.2 Methods used for the assessment

The assessment has been made in accordance with EAD 330499-02-0601.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system 1 of assessment and verification of constancy of performance applies (see Annex V to regulation (EU) No 305/2011).

5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document (EAD)


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited in Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 27/05/2024 by Instytut Techniki Budowlanej

Anna Panek, MSc Deputy Director of ITB

- 3) Version 1 rod with flat end with marking on $h_{\text{\scriptsize ef}}$
- 4) Version 2 rod with 45° cutted end with marking on hef
- 5) Version 3 rod with V shape end with marking on hef
- 6) Rebar ribbed reinforcing bar with marking on hef
- 1) Marking according to clause 1.1 of EAD 330499-02-0601
- 2) Effective anchorage depth according to Table B1 and B2 (Annex B2 and B3)

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

Product description Steel elements

Annex A1

Table A1: Threaded rods

Designation		Material									
Steel, zinc plated											
electroplated ≥ 5 μm acc. to EN	ISO 4042										
hot-dip galvanized ≥ 40 µm acc	to EN ISO	1461			T						
Threaded rod	Property class	Characteristic steel ultimate strength	Characteristic steel yield strength	Fracture elongation							
	4.8	f _{uk} ≥ 400 N/mm ²	f _{yk} ≥ 320 N/mm ²	$A_5 > 8\%^{1)}$	EN ISO 898-1						
	5.8	f _{uk} ≥ 500 N/mm ²	f _{yk} ≥ 400 N/mm ²	$A_5 > 8\%^{1)}$							
	8.8	f _{uk} ≥ 800 N/mm ²									
	10.9	f _{uk} ≥ 1000 N/mm ²	f _{yk} ≥ 900 N/mm ²	$A_5 > 9\%^{1)}$							
Hexagon nut	4		for class 4.8 rods								
	5		EN 898-2								
	8										
	10	1	for class 10.9 rods								
Washer	;	Steel according to EN	ISO 7089; correspor	nding to anchor rod	material						
Stainless steel A2		(Materials)	1.4301, 1.4307, 1.4	567, 1.4541							
Stainless steel A4		(Materials)	1.4401, 1.4404, 1.4	571, 1.4362, 1.4578	1						
High corrosion resistance stair	less steel (l	HCR) (Materials)	1.4529, 1.4565		T						
Threaded rod	Property class	Characteristic steel ultimate strength	Characteristic steel yield strength	Fracture elongation	EN 10088						
	50	f _{uk} ≥ 500 N/mm ²	f _{yk} ≥ 210 N/mm ²	$A_5 > 8\%^{1)}$	EN ISO 3506						
	70	f _{uk} ≥ 700 N/mm ²	f _{yk} ≥ 450 N/mm ²	$A_5 \ge 12\%^{1)}$							
	80	f _{uk} ≥ 800 N/mm ²	f _{yk} ≥ 600 N/mm ²	$A_5 \ge 12\%^{1)}$							
Hexagon nut	50		for class 50 rods		EN 40000						
	70		EN 10088 EN ISO 3506								
	80		for class 80 rods								
Washer		Steel according to EN	N 10088; correspond	ing to anchor rod m	aterial						

 $^{^{1)}\,\}text{For seismic performance category C1 and C2, }A_5>19\%$

Commercial standard threaded rods may be used, with:

- material and mechanical properties according to Table A1,
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004,
- marking of the threaded rod with the embedment depth.

Note: Commercial standard threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

> Product description Materials (1)

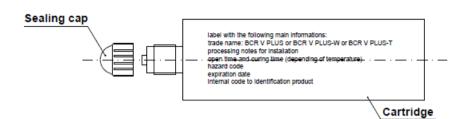
Annex A2

Table A2: Reinforcing bars (Rebar)

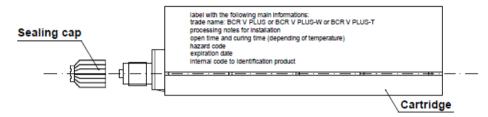
Designation	Material
Rebar according to EN 1992-1-1:2004+AC:2010	Bars and de-coiled rods Class B or C with f_{yk} and k according to EN 1992-1-1:2004+AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk}$ Rib height of the bar (h) in the range 0,05d \leq h \leq 0,07d

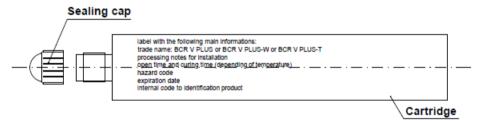
Table A3: Injection mortars

Product	Composition
BOSSONG BCR V PLUS BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T (two component injection mortars)	Additive: quartz Bonding agent: vinyl ester resin styrene free Hardener: dibenzoyl peroxide

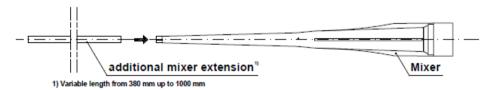

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

> Product description Materials (2)


Annex A3


coaxial cartridge - sizes from 75 ml to 420 ml

side by side cartridge - sizes from 345 ml to 825 ml


CIC foil cartridge - sizes from 165 ml to 300 ml

coaxial peeler cartridge - size of 280 ml

MIXER - the mixer is suitable for each type of cartridge

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

Product descriptionCartridge types and sizes

Annex A4

Specifications of intended use

Anchors subject to:

- Static and quasi-static loads: sizes from M8 to M30 and from Ø8 to Ø32.
- Seismic performance category C1: sizes from M12 to M20, rods with f_{uk} ≤ 800 N/mm² and fracture elongation A₅ ≥ 19%.
- Seismic performance category C2: sizes M12 and M16, rods with f_{uk} ≤ 800 N/mm² and fracture elongation A₅ ≥ 19%.
- Fire exposure: sizes from M10 to M20, steel class 5.8 to 8.8 and stainless steel A4.

Working life:

Working life of the bonded fasteners of 50 and/or 100 years.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206.
- Uncracked concrete: sizes from M8 to M30 and from Ø8 to Ø32.
- Cracked concrete: sizes from M10 to M20.

Temperature range:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).
- -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C).

Use conditions (environmental conditions):

- Structures subject to dry internal conditions: all materials according to Table A1 and A2.
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - stainless steel A2 according to Annex A2, Table A1 CRC II,
 - stainless steel A4 according to Annex A2, Table A1 CRC III,
 - high corrosion resistance steel (HCR) according to Annex A2, Table A1 CRC V.

Installation:

- Dry or wet concrete (use category I1): sizes from M8 to M30 and from Ø8 to Ø32.
- Flooded holes with the exception of seawater (use category I2): sizes from M8 to M30 and from Ø8 to Ø32.
- Installation direction D3 (downward and horizontal and upwards installation): sizes from M8 to M30 and from Ø8 to Ø32.
- The anchors are suitable for hammer drilled holes (HD), for hollow drill bit (HDB) and for compressed air drill (CA): sizes from M8 to M30 and from Ø8 to Ø32.

Design methods:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor
 is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static loads are designed according to EN 1992-4 and EOTA Technical Report TR 055.
- Anchorages under seismic actions are designed according to EN 1992-4.
- Anchorages under fire exposure are designed according to EOTA Technical Report TR 082.

BOSSONG BCR V PLUS BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

> **Intended use** Specifications

Annex B1

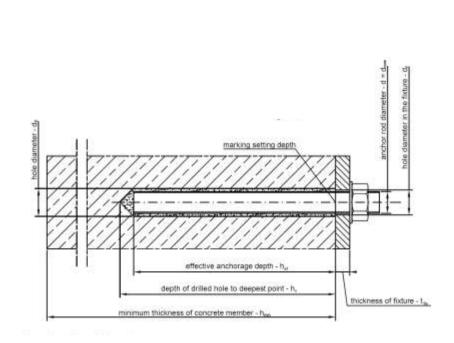


Table B1: Installation data for threaded rods

Size	Size			M12	M16	M20	M24	M27	M30	
Nominal drilling diameter	d ₀ [mm]	10	12	14	18	22 ¹⁾ 24 ¹⁾	28	30	35	
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	18	22	26	30	33	
Effective embedment	h _{ef,min} [mm]	60	70	80	100	120	145	145	145	
depth	h _{ef,max} [mm]	160	200	240	320	400	480	540	600	
Depth of the drilling hole	h ₁ [mm]				h _{ef} +	5 mm				
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 3	0 mm; ≥ 1	00 mm	h _{ef} + 2d ₀					
Maximum setting torque moment	T _{fix} [N·m]	10	20	40	80	130	200	250	280	
Thickness to be fixed	t _{fix,min} [mm]				>	0				
Thickness to be liked	t _{fix,max} [mm]				< 1	500				
Minimum spacing	s _{min} [mm]	40	50	60	75	90	115	120	140	
Minimum edge distance	c _{min} [mm]	35	40	45	50	55	60	75	80	
1) Each of two given value	es can be used									

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

Intended use
Installation data for threaded rods

Annex B2

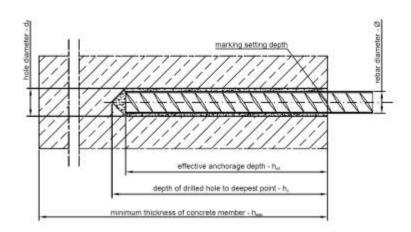


Table B2: Installation data for rebars

Size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	
Nominal drilling diameter	d ₀ [mm]	10 ¹⁾ 12 ¹⁾	12 ¹⁾ 14 ¹⁾	14 ¹⁾ 16 ¹⁾	18	20	25	30	35	40	
Effective	h _{ef,min} [mm]	60	70	80	80	100	120	150	180	200	
embedment depth	h _{ef,max} [mm]	160	200	240	280	320	400	500	560	640	
Depth of the drilling hole	h ₁ [mm]			h _{ef} + 5 mm							
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 3 ≥ 100					h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	40	50	60	75	75	90	115	120	140	
Minimum edge distance	c _{min} [mm]	35	40	45	50	50	55	60	75	80	
1) Each of two given value	es can be used										

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

Intended use Installation data for rebars

Annex B3

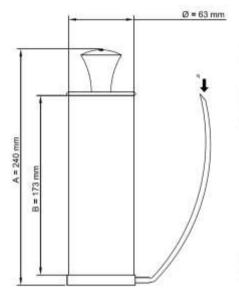
Table B3: Maximum processing time and minimum curing time

	BOSSONG BCR V PLUS	
Concrete temperature [C°]	Maximum processing time [min.]	Minimum curing time ^{1]} [min.]
-10	105	1440
-5	65	840
0	45	420
+5	25	90
+10	16	60
+15	11,5	45
+20	7,5	40
+25	5	35
+30	3	30
+35	2	25
+40	1	20
	BOSSONG BCR V PLUS-W	
Concrete temperature [C°]	Maximum processing time [min.]	Minimum curing time ¹ [min.]
-20	120	2880
-15	90	1500
-10	60	900
-5	40	210
0	25	100
+5	15	70
+10	10	50
+15	7	35
+20	5	30
	BOSSONG BCR V PLUS-T	
Concrete temperature [C°]	Maximum processing time [min.]	Minimum curing time ¹ [min.]
+20	14	60
+25	11	50
+30	8	40
+35	6	30

The minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). Cartridge temperature from +5°C to +30°C. Minimum cartridge temperature of +15°C for application where the concrete temperature is below 0°C.

For wet condition and flooded holes, the curing time must be double.

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W


Intended use

Maximum processing time and minimum curing time

Annex B4

Manual Blower pump: nominal dimensions

It is possible to use the mixer extensior with the manual blower pump.

However it is possible to blow the hole using the mechanical air system (compressed air) also with the mixer estension

Suitable min pressure 6 bar at 6 m³/h Oil-free compressed air Recommended air gun with an orifice opening of minimum 3.5 mm in diameter

1) Position to Insert the mixer extension

Mixer extension (from 380 mm to 1000 mm) with nominal diameter 10 mm

BOSSONG BCR V PLUS BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

> Intended use Cleaning tools (1)

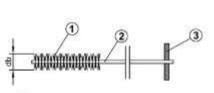
Annex B5

Table B4: Standard brush diameter for threaded rods

Threaded rod diameter		M8	M10	M12	M16	M20	M24	M27	M30
d ₀	Nominal drill hole [mm]	10	12	14	18	24	28	30	35
d _b	Brush diameter [mm]	12	14	16	20	26	30	35	37

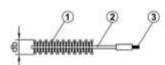
Table B5: Standard brush diameter for rebar

Rebar diameter		Ø8		Ø10		Ø.	12	Ø14		
d ₀	Nominal drill hole [mm]	10 ¹⁾	12 ¹⁾	12 ¹⁾	14 ¹⁾	14 ¹⁾	16 ¹⁾	18		
d _b	Brush diameter [mm]	12	14	14	16	16	18	20		
1) Each of	1) Each of two given values can be used									


Table B6: Special brush diameter (mechanical brush) for threaded rods

Т	hreaded rod diameter	M16	M20	M24	M27	M30	
d_0	Nominal drill hole [mm]	18	24	28	30	35	
d _b	Brush diameter [mm]	20	26	30	32	37	

Table B7: Special brush diameter (mechanical brush) for rebar


TI	hreaded rod diameter	Ø	18	Ø.	10	Ø.	12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
d ₀	Nominal drill hole [mm]	10 ¹⁾	12 ¹⁾	12 ¹⁾	14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	30	35	40
d _b	Brush diameter [mm]	12	14	14	16	16	18	20	22	27	32	37	42

1) Each of two given values can be used

- 1 Steel bristles
- 2 Steel stem
- 3 Wood handle

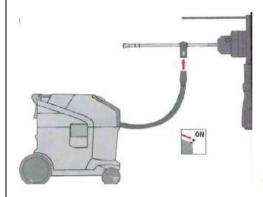
- 1 Steel bristles
- 2 Steel stem
- 3 Threaded connection for drilling tool extension
- 4 Extension special brush
- (5) Drilling tool connection (SDS connection)

Special (mechanical) brush

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

> Intended use Cleaning tools (2)

Annex B6



Hollow Drill Bit (HDB)

This drilling method is a hammer drilling method.

This drilling system removes the dust and cleans the bore hole during the drilling operation when used in accordance with the user's manual.

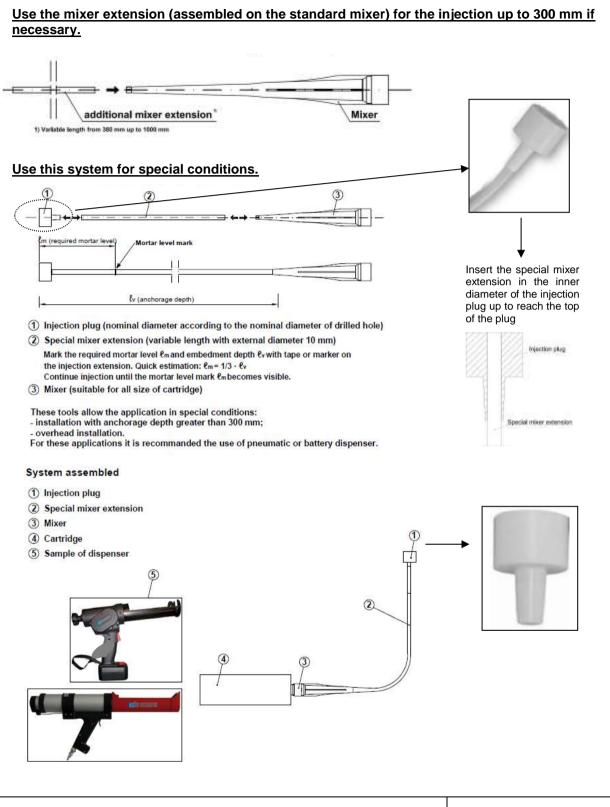
This drilling system include a vacuum cleaner. A suitable dust extraction system must be used. e.g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data.

Switch-on the vacuum cleaner before to drill

Table B8: HDB perforation diameter for threaded rods

1	Threaded rod diameter	М8	M10	M12	M16	M20	M24	M27	M30
d_0	Nominal drill hole [mm]	10	12	14	18	24	28	30	35

Table B9: HDB perforation diameter for rebar


	Rebar diameter	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28
d ₀	Nominal drill hole [mm]	10 ¹⁾ 12 ¹⁾	12 ¹⁾ 14 ¹⁾	14 ¹⁾ 16 ¹⁾	18	20	25	30	35

¹⁾ Each of two given values can be used

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

Intended use Hollow drill bit (HDB) specification **Annex B7**

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

Intended use Tools for installation (1)

Annex B8

Table B10: Mortar injection pumps

Pumps (injection dispensers)	Cartridges	Types
Manual	420 ml 400 ml 380 ml	Manual (up to 300 mm anchorage depth)
Manual	345 ml 300 ml 280 ml 165 ml	Manual (up to 300 mm anchorage depth)
Manual	300 ml 280 ml 165 ml	Manual (up to 300 mm anchorage depth)
Pneumatic	825 ml	Pneumatic (up to 640 mm anchorage depth)
Pneumatic	420 ml 400 ml 380 ml	Pneumatic (up to 640 mm anchorage depth)
Battery	420 ml 400 ml 380 ml 345 ml 300 ml	Battery (up to 640 mm anchorage depth)

BOSSONG BCR V PLUS
BOSSONG BCR V PLUS-W
BOSSONG BCR V PLUS-T

Intended use Tools for installation (2)

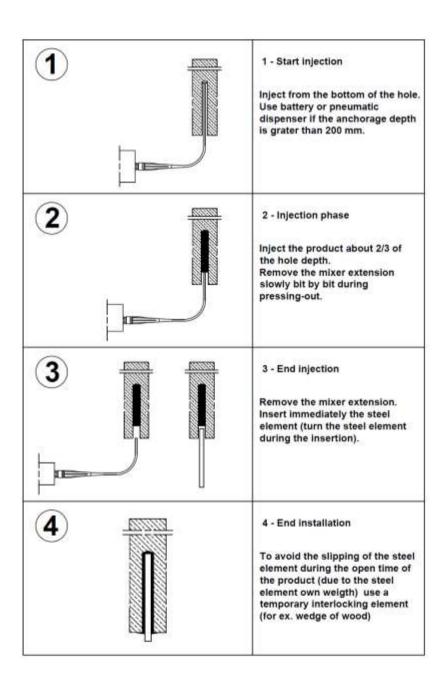
Annex B9

1	Drill the hole with the correct diameter and depth using a rotary percussive machine. Check the perpendicularity of the hole during the drilling operation. In case of use of hollow drill bit (Annex B7) proceed directly to the clause 3.
4x 4x 4x 4x blower manual pump brush pump if necessary use a mixer extension for the blower operation (see Annex B5)	Clean the hole from drilling dust: the hole shall be cleaned by at least 4 blowing operations, by at least 4 brushing operations followed again by at least 4 blowing operations; before brushing clean the brush and check (see Annex B6, standard brush) if the brush diameter is sufficient. For the blower tools see Annex B5.
3	For coaxial, peeler and side by side cartridges unscrew the front cup, screw on the mixer and insert the cartridge into the gun. For CIC sizes, unscrew the front cup, pull-out the steel closing clip according to the following operation: 1) Insert the mixer in the eye of the plastic extractor; 2) Pull the extractor to unhook the steel closing clip of the foil. In the version without the extractor cut the foil pack. After that screw on the mixer and insert the cartridge in the gun.
4 NO OK	Before starting to use the cartridge, eject a first part of the product, being sure that the two components are completely mixed. The complete mixing is reached only after that the product, obtained by mixing the two components, comes out from the mixer with a uniform colour.
if necessary, use a mixer extension for the injection (see Annex B8)	Fill the drilled hole uniformly starting from the drilled hole bottom, in order to avoid entrapment of the air; remove the mixer slowly bit by bit during pressing-out; filling the drill hole with a quantity of the injection mortar corresponding to 2/3 of the drill hole depth.
ATTENTION: Steel elements dry and free oil and other contaminants	Insert immediately the steel element (threaded rod or rebar), marked according to the proper anchorage depth, slowly and with a slight twisting motion, removing excess of injection mortar around the steel element. Observe the processing time according Annex B4. Wait the curing time according Annex B4.
BOSSONG BCR V PLUS BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T Intended use	Annex B10 of European Technical Assessment ETA-09/0140

Installation instruction up to 300 mm depth

1 See clause 1 Annex B10. In case of use of hollow drill bit (HDB) proceed directly to the clause 3. 2 Clean the hole from drilling dust: the hole shall be cleaned by at least 4 blowing operations (5 seconds for single operation) with compressed air, by at least 4 brushing operations with special brush followed again by at least 4 blowing operations (5 seconds for single operation) with compressed air. Before brushing clean the brush and check if the brush diameter is sufficient. 4 x 5 seconds 4x 4 x 5 seconds ATTENTION: compressed air free oil 3 See clause 3 Annex B10 4 See clause 4 Annex B10 5 Before starting the injection, assemble the system according to Annex B8. After that, fill the drilled hole uniformly from the drilled hole bottom, in order to avoid entrapment of the air; remove the special mixer extension with injection plug slowly bit by bit during pressing-out; filling the drill hole with a quantity of the injection mortar corresponding to 2/3 of the drill hole depth. Procedure for overhead installation are detailed in Annex B12. 6 See clause 6 Annex B10

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T


Intended use Installation instruction up to 640 mm depth

Annex B11

Overhead installation procedure

In addition to standard procedure, for overhead installation, following the below procedure

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

Intended useOverhead installation instruction

Annex B12

Table C1: Characteristic values for steel tension resistance and steel shear resistance - threaded rods

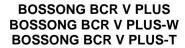
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure - characteristic tension res	istance				I	1		"	"	
Steel class 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	183	224
Steel class 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	229	280
Steel class 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Steel class 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353	459	561
Stainless steel A2, A4, HCR class 50	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	229	280
Stainless steel A2, A4, HCR class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	321	392
Stainless steel A4, HCR class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	367	449
Steel failure - characteristic tension res	istance – pa	rtial fac	tor				,			
Steel class 4.8	γ _{Ms,N} 1)	[-]				1,	50			
Steel class 5.8	γ _{Ms,N} 1)	[-]				1,	50			
Steel class 8.8	γ _{Ms,N} 1)	[-]				1,	50			
Steel class 10.9	γ _{Ms,N} 1)	[-]				1,	40			
Stainless steel A2, A4, HCR class 50	γ _{Ms,N} 1)	[-]				2,	86			
Stainless steel A2, A4, HCR class 70	γ _{Ms,N} 1)	[-]				1,	87			
Stainless steel A4, HCR class 80	γ _{Ms,N} 1)	[-]				1,	60			
Steel failure - characteristic shear resis		ut lever	arm							
Steel class 4.8	$V^0_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Steel class 5.8	V ⁰ _{Rk,s}	[kN]	9	14	21	39	61	88	115	140
Steel class 8.8	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel class 10.9	$V_{Rk,s}^0$	[kN]	18	29	42	78	122	176	230	280
Stainless steel A2, A4, HCR class 50	V ⁰ _{Rk,s}	[kN]	9	14	21	39	61	88	115	140
Stainless steel A2, A4, HCR class 70	$V^0_{Rk,s}$	[kN]	13	20	29	55	86	124	160	196
Stainless steel A4, HCR class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel failure - characteristic shear resis	tance with le	ever arm	1							
Steel class 4.8	$M^0_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
Steel class 5.8	$M^0_{Rk,s}$	[Nm]	19	37	65	166	324	561	832	1125
Steel class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1331	1799
Steel class 10.9	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	1123	1664	2249
Stainless steel A2, A4, HCR class 50	$M^0_{Rk,s}$	[Nm]	19	37	66	166	324	561	832	1124
Stainless steel A2, A4, HCR class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1165	1574
Stainless steel A4, HCR class 80	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	898	1331	1799
Steel failure - characteristic shear resis	tance – part	ial facto	r							
Steel class 4.8	γ _{Ms,V} 1)	[-]				1,	25			
Steel class 5.8	γ _{Ms,V} 1)	[-]				1,	25			
Steel class 8.8	γ _{Ms,V} 1)	[-]					25			
Steel class 10.9	γ _{Ms,V} 1)	[-]				1,	50			
Stainless steel A2, A4, HCR class 50	γ _{Ms,V} 1)	[-]				2,	38			
Stainless steel A2, A4, HCR class 70	γ _{Ms,V} 1)	[-]				1,	56			
Stainless steel A4, HCR class 80	γ _{Ms,V} 1)	[-]				1.	33			

 $^{^{\}rm 1)}\, {\rm In}$ the absence of other national regulation

Fracture elongation threaded rod for seismic category C1 and C2 must be $A_5 \ge 19\%$. Steel classes 10.9 are not covered for seismic application.

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

Performances

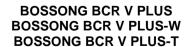

Characteristic values for steel: tension and shear resistance - threaded rods

Annex C1

Table C2: Characteristic values for tension resistance in uncracked concrete under static and quasi-static loads – threaded rods. Working life of 50 and 100 years.

Size			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]			See	Annex C1	– Table C	:1		
Partial factor	γ _{Ms,N} 1)	[-]			See	Annex C1	– Table C	:1		
Combined pull-out and concrete co	ne failure in	uncracked	concrete	e C20/25						
Characteristic bond resistance temperature range -40°C / +40°C	τ _{Rk,ucr,50} τ _{Rk,ucr,100}	[N/mm ²]	16,0	12,0	12,0	12,0	9,5	9,5	8,0	8,0
Characteristic bond resistance temperature range -40°C / +80°C	τ _{Rk,ucr,50} τ _{Rk,ucr,100}	[N/mm ²]	11,0	8,5	8,5	8,5	7,0	7,0	6,0	6,0
Characteristic bond resistance temperature range -40°C / +120°C	τ _{Rk,ucr,50} τ _{Rk,ucr,100}	[N/mm ²]	6,0	4,5	4,5	4,5	4,0	4,0	3,0	3,0
Increasing factor	Ψc	[-]				$(\frac{f_{ck}}{20})$	0.3			
Sustained load factor for temperature range -40°C / +40°C Sustained load factor for	$\psi^0_{ ext{sus}}$					0,72				
temperature range -40°C / +80°C Sustained load factor for	Ψ sus Ψ ⁰ sus,100	[-]				0,74				
temperature range -40°C / +120°C						0,73	J			
Concrete cone failure	<u> </u>									
Factor for uncracked concrete	k _{ucr,N}	[-]				11,0				
Edge distance	C _{cr,N}	[mm]				1,5 h				
Spacing	S _{cr,N}	[mm]				3,0 h	1 ef			
Splitting failure						if h = l	h:			
			2.5	5 · h _{ef}	2.0	· h _{ef}		1,5 ·	h.,	
			2,0	, riei		f h _{min} < h <	2 · h _{min}	1,0	riei	
Edge distance	$\mathbf{C}_{ ext{cr,Nsp}}$	[mm]			2,1	interpolate if h ≥ 2	Na Garnage e values • h _{min}			
Specing	•	[mm]				C _{cr,N}				
Spacing Installation factor for combined pul	S _{cr,Nsp}	[mm]	d opliss	a failure		2 · C	er,sp			
Installation factor for combined pul	i-out, concre	ete cone an	u spiittin	ig railure		4.0				
Installation factor for category I1 1)	γinst	[-]				1,0				
Installation factor for category I2 1)						1,2				

Performances


Characteristic values for tension resistance in uncracked concrete under static and quasi-static loads – threaded rods

Annex C2

Table C3: Characteristic values for tension resistance in cracked concrete under static and quasi-static loads – threaded rods. Working life of 50 and 100 years.

Size			M10	M12	M16	M20
Steel failure					,	
Characteristic resistance	$N_{Rk,s}$	[kN]		See Annex C	1 – Table C1	
Partial factor	γ _{Ms,N} 1)	[-]		See Annex C	1 – Table C1	
Combined pull-out and concrete cone	failure in cracked	concrete C20	/25			
Characteristic bond resistance temperature range -40°C / +40°C	τ _{Rk,cr,50}	[N/mm ²]	9,0	9,0	9,0	6,5
Characteristic bond resistance temperature range -40°C / +80°C	τ _{Rk,cr,50}	[N/mm ²]	6,5	6,5	6,5	4,5
Characteristic bond resistance temperature range -40°C / +120°C	$ au_{\text{Rk,cr,50}}$	[N/mm ²]	3,5	3,5	3,5	2,5
Characteristic bond resistance temperature range -40°C / +40°C	τ _{Rk,cr,100}	[N/mm ²]	8,5	8,5	8,0	5,5
Characteristic bond resistance temperature range -40°C / +80°C	τ _{Rk,cr,100}	[N/mm ²]	6,0	6,0	5,5	4,0
Characteristic bond resistance temperature range -40°C / +120°C	τ _{Rk,cr,100}	[N/mm ²]	3,0	3,0	3,0	2,0
Increasing factor	ψ_c	[-]		$(\frac{f_{ck}}{20})$	$(\frac{5}{2})^{0.3}$	
Sustained load factor for temperature range -40°C / +40°C Sustained load factor for temperature range -40°C / +80°C	$\psi^0_{ extsf{sus}}$ $\psi^0_{ extsf{sus},100}$	[-]			72 74	
Sustained load factor for temperature range -40°C / +120°C				0,	75	
Concrete cone failure					_	
Factor for cracked concrete	k _{cr,N}	[-]			,7	
Edge distance	C _{cr,N}	[mm]			h _{ef}	
Spacing	S _{cr,N}	[mm]		3,0	h _{ef}	
Splitting failure				:£ la	h	
		-	2.E. b.		= h _{min}	1 E h
		-	2,5 · h _{ef}	2,0		1,5 · h _{ef}
Edna distance		[mm]		If h _{min} < h	Z · II _{min}	
Edge distance	$C_{cr,Nsp}$	[mm]			ons Consp	
					te values 2 · h _{min}	
					z · H _{min} r,Np	
Spacing	S _{cr,Nsp}	[mm]			r,Np Ccr,sp	
Installation factor for combined pull-or	· · ·		ailure	2 \	~ cı,əµ	
Installation factor for category I1 1)	, 551101010 00110	and opining i	anal 0	1	,0	
v ·	γinst	[-]			-	
Installation factor for category I2 1)				1,	,2	

Performances

Characteristic values for tension resistance in cracked concrete under static and quasi-static loads – threaded rods

Annex C3

Table C4: Characteristic values for shear resistance in uncracked and cracked concrete under static and quasi-static loads – threaded rods. Working life of 50 and 100 years.

Size			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic resistance	$V^0_{Rk,s}$	[kN]			See	Annex C	1 – Table	C1		
Partial factor	γ _{Ms,V} 1)	[-]			See	Annex C	1 – Table	C1		
Ductility factor	k ₇	[-]				1	,0			
Steel failure with lever arm										
Characteristic resistance	M ⁰ _{Rk,s}	[kN]			See	Annex C	1 – Table	C1		
Partial factor	γ _{Ms,V} 1)	[-]			See	Annex C	1 – Table	e C1		
Concrete pry out failure										
Factor	k ₈	[-]				2	,0			
Installation factor	γinst	[-]				1	,0			
Concrete edge failure										
Effective length of anchor under shear loading	lf	[-]		ı	l _f = h _{ef} and	d ≤ 12 d _{no}	m		≤ r (8 c	ef and nax I _{nom;} ; mm)
Installation factor	γinst	[-]				1	,0			•
1) In the absence of other national regula	tion	•								

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

Performances

Characteristic values for shear resistance in uncracked and cracked concrete under static and quasi-static loads – threaded rods

Annex C4

Table C5: Characteristic values for tension resistance in uncracked concrete under static and quasistatic loads – rebar. Working life of 50 and 100 years.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Steel failure											
Characteristic resistance	$N_{Rk,s}$	[kN]				A	A _s x f _{uk} 2				
Cross section area	As	[mm ²]	50	79	113	154	201	314	491	616	80
Partial factor	γ _{Ms,N} 1)	[-]			1		1,4			1	
Combined pull-out and concrete cone fail		cked concr	ete C20/	25							
Characteristic bond resistance temperature range -40°C / +40°C	τ _{Rk,ucr,50} τ _{Rk,ucr,100}	[N/mm ²]	14,0	13,0	13,0	12,0	10,0	9,5	9,5	8,5	7,5
Characteristic bond resistance temperature range -40°C / +80°C	$ au_{ m Rk,ucr,50}$ $ au_{ m Rk,ucr,100}$	[N/mm ²]	10,0	9,5	9,0	9,0	7,5	7,0	7,0	6,0	5,
Characteristic bond resistance temperature range -40°C / +120°C	τ _{Rk,ucr,50} τ _{Rk,ucr,100}	[N/mm ²]	5,5	5,0	5,0	5,0	4,0	4,0	4,0	3,5	3,0
Increasing factor	Ψc	[-]					$(\frac{f_{ck}}{20})^{0.3}$				
Sustained load factor for temperature range -40°C / +40°C							0,72				
Sustained load factor for temperature range -40°C / +80°C	$\psi^0_{ m sus}$ $\psi^0_{ m sus,100}$	[-]					0,74				
Sustained load factor for temperature range -40°C / +120°C							0,75				
Concrete cone failure											
Factor for uncracked concrete	k _{ucr,N}	[-]					11,0				
Edge distance	C _{cr,N}	[mm]					1,5 h _{ef}				
Spacing	S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure						.,					
			2.5	L .	I		$h = h_{min}$	1	4.5		
			2,5	· N _{ef}		2,0 · h _e			1,5	· h _{ef}	
						If n _{min}	< h < 2	· n _{min}			
Edge distance	C _{cr,Nsp}	[mm]			3	h _{min}	C _{ct No}	C _{ct.Nap}			
							olate va				
			-			IT I	n≥2·h	min			
Spacing	S _{cr.Nsp}	[mm]					$\frac{C_{cr,Np}}{2\cdotC_{cr,sp}}$				
Installation factor for combined pull-out,		L	ting fails	ıre			- or,ap				
Installation factor for category I1 1)		ilo ana opiit	ig idili				1,0				
<u> </u>	γinst	[-]					-				
Installation factor for category I2 1)							1,2				

Performances

BOSSONG BCR V PLUS BOSSONG BCR V PLUS-W

BOSSONG BCR V PLUS-T

Characteristic values for tension resistance in uncracked concrete under static and quasi-static loads – rebar

Annex C5

Table C6: Characteristic values for shear resistance in uncracked concrete under static and quasi-static loads - rebar. Working life of 50 and 100 years.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Steel failure without lever arm											
Characteristic resistance	$V^0_{Rk,s}$	[kN]				0,5	x A _s x f	uk ²⁾			
Partial factor	γ _{Ms,V} 1)	[-]					1,5				
Cross section area	As	[mm ²]	50	79	113	154	201	314	491	616	804
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic resistance	$M^0_{Rk,s}$	[kN]				1,2	x W _{el} x f	2) uk			
Elastic section modulus	W_{el}	[mm ³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V} 1)	[-]					1,5				
Concrete pry out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of anchor under shear loading	l _f	[-]		l _f	= h _{ef} and	l ≤ 12 d _{no}	m		≤ m	= h _{ef} and nax (8 d _n 300 mm)	om;
Installation factor	γinst	[-]					1,0	·		•	

BOSSONG BCR V PLUS BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

Performances

Characteristic values for shear resistance in uncracked concrete under static and quasi-static loads - rebar

Annex C6

 $^{^{1)}}$ In the absence of other national regulation $^{2)}$ f_{uk} shall be taken from the specifications of reinforcing bars

Table C7. Displacement under tension loads for uncracked concrete under static and quasi-static loads – threaded rods

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic displacement in un	ncracked con	crete C2	0/25 to C5	60/60 und	er tensior	n loads				
Service load 1)	F	[kN]	9,6	10,8	14,3	23,8	29,6	42,4	40,4	44,4
Displacement	δ_{N0}	[mm]	0,30	0,30	0,35	0,35	0,35	0,40	0,40	0,45
ызрысеттет	$\delta_{N^{\infty}}$	[mm]	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85

Table C8: Displacement under tension loads for cracked concrete under static and quasi-static loads – threaded rods

Size			M10	M12	M16	M20			
Characteristic displacement in cracked concrete C20/25 to C50/60 under tension loads									
Service load 1)	F	[kN]	9,5	14,3	21,4	23,8			
Displacement	δ_{N0}	[mm]	0,50	0,50	0,70	0,60			
	$\delta_{N^{\infty}}$	[mm]	0,85	0,85	0,85	0,85			

Table C9: Displacement under shear loads for uncracked and cracked concrete under static and quasistatic loads – threaded rods

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic displacement in cracked and uncracked concrete C20/25 to C50/60 under shear loads										
Service load 1)	F	[kN]	3,7	5,8	8,4	15,7	24,5	35,3	45,5	55,6
Displacement	δ_{V0}	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
	$\delta_{V\infty}$	[mm]	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0

Table C10: Displacement under tension loads for uncracked concrete under static and quasi-static loads – rebar

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Characteristic displacement in uncracked concrete C20/25 to C50/60 under tension loads											
Service load 1)	F	[kN]	10,1	13,6	17,2	20,1	23,9	41,2	53,3	64,1	67,3
Displacement	δ_{N0}	[mm]	0,33	0,33	0,40	0,41	0,42	0,45	0,45	0,47	0,48
	$\delta_{N^{\infty}}$	[mm]	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85

Table C11: Displacement under shear loads for uncracked concrete under static and quasi-static loads – rebar

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Characteristic displacement in uncracked concrete C20/25 to C50/60 under shear loads											
Service load 1)	F	[kN]	13,2	20,6	29,6	40,3	52,7	82,3	128,6	161,3	210,6
Displacement	$\delta_{ m V0}$	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
	$\delta_{V^{\infty}}$	[mm]	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
1) These values are suitable for each temperature range and categories specified in Annex B1											

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

Performances

Displacement under service loads

Annex C7

Table C12: Characteristic values for tension resistance for seismic performance category C1 – threaded rods. Working life of 50 and 100 years.

		M12	M16	M20		
		<u>.</u>				
$N_{Rk,s,eq,C1}$	[kN]		1,0 x N _{Rk,s}			
γ _{Ms,N} 1)	[-]	See A	Annex C1 – Ta	ble C1		
τ _{Rk,C1}	[N/mm²]	4,2	3,7	3,7		
τ _{Rk,C1}	[N/mm²]	3,0	2,7	2,7		
TRK,C1	[N/mm²]	1,6	1,4	1,4		
Ψc	[-]		1,0			
			1,0			
γinst	[-]	1,2				
	γ _{Ms,N} 1) τ _{Rk,C1} τ _{Rk,C1} τ _{Rk,C1}	T _{Rk,C1} [N/mm²] τ _{Rk,C1} [N/mm²] τ _{Rk,C1} [N/mm²] ν _C [-]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Table C13: Characteristic values for shear resistance for seismic performance category C1 – threaded rods. Working life of 50 and 100 years.

Size	M12	M16	M20					
Steel failure								
Characteristic resistance	$V_{Rk,s,eq,C1}$	[kN]	0,7 x V ⁰ _{Rk,s}					
Partial factor 1)	γ _{Ms,V} 1)	[-]	See Annex C1 – Table C1					
1) In the absence of other national regulation			,					

Table C14: Reduction factor for annular gap. Working life of 50 and 100 years.

Reduction factor for annular gap								
Without annular gap filling	α_{gap}	[-]	0,5					
With annular gap filling	α_{gap}	[-]	1,0					

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

Performances

Characteristic resistance under tension and shear loads for seismic action category C1 – threaded rods

Annex C8

Table C15: Characteristic values for tension resistance for seismic performance category C2 – threaded rods. Working life of 50 and 100 years.

Size			M12	M16
Steel failure				
Characteristic resistance	$N_{Rk,s,eq,C2}$	[kN]	1,0 x	$N_{Rk,s}$
Partial factor 1)	γ _{Ms,N} 1)	[-]	See Annex C	1 – Table C1
Combined pull-out and concrete cone failure				
Characteristic bond resistance temperature range -40°C / +40°C	τ _{Rk,eq,C2}	[N/mm ²]	1,6	1,7
Characteristic bond resistance temperature range -40°C / +80°C	τ _{Rk,eq,C2}	[N/mm ²]	1,2	1,2
Characteristic bond resistance temperature range -40°C / +120°C	τ _{Rk,eq,C2}	[N/mm ²]	0,6	0,7
Increasing factor for C30/37				
Increasing factor for C40/50	Ψc	[-]	1,	0
Increasing factor for C50/60				
Installation factor for category I1 1)		r 1	1,0	
Installation factor for category I2 1)	γinst	[-]	1,	2
1) In the absence of other national regulation	·	- L		

Table C16: Characteristic values for shear resistance for seismic performance category C2 – threaded rods. Working life of 50 and 100 years.

Size			M12	M16		
Steel failure						
Characteristic shear resistance	$V_{Rk,s,eq,C2}$	[kN]	$0,53 \times V^{0}_{Rk,s}$	$0,46 \times V^{0}_{Rk,s}$		
Partial factor 1)	γ _{Ms,V} 1)	[-]	See Annex C1 – Table C1			
1) In the absence of other national regulation	•	•				

Table C17: Reduction factor for annular gap. Working life of 50 and 100 years.

Reduction factor for annular gap							
Without annular gap filling	α_{gap}	[-]	0,5				
With annular gap filling	$\alpha_{\sf gap}$	[-]	1,0				

Table C18: Displacements under tensile and shear loads for seismic performance category C2 – threaded rods

Size	M12	M16						
Displacements for tensile and shear load for seismic performance category C2								
Displacement in tensile at damage limitation state	$\delta_{\text{N,eq,C2 (DLS)}}$	[mm]	0,20	0,23				
Displacement in tensile at ultimate limit state	δ _{N,eq,C2} (ULS)	[mm]	0,33	1,04				
Displacement in shear at damage limitation state	δ _{V,eq,C2} (DLS)	[mm]	2,01	0,70				
Displacement in shear at ultimate limit state	$\delta_{\text{V,eq,C2 (ULS)}}$	[mm]	4,68	2,12				

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

Performances

Characteristic resistance and displacements under tension and shear loads for seismic performance category C2 – threaded rods

Annex C9

Characteristic bond resistance of a single bonded fastener $\tau_{Rk,fl,p}(\theta)$ for concrete strength classes C20/25 to C50/60 with all drilling methods under fire conditions for working life of 50 and 100 years.

The characteristic bond resistance of a single bonded fastener under fire conditions $\tau_{Rk,fi,p}$ for a given temperature (θ) shall be calculated using the following equations:

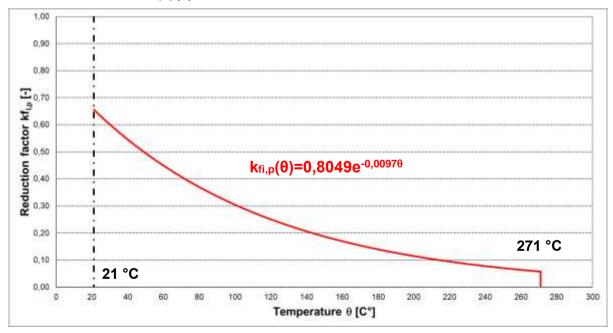
$$\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) * \tau_{Rk,cr,C20/25}$$

$$\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) * \tau_{Rk,cr,100,C20/25}$$

Where:

$$\begin{split} &if~\theta \leq \theta_{max} \quad k_{fi,p}(\theta) = \ k_{fi,p}(\theta) = 0.8049 \cdot e^{-0.0097 \cdot \theta} \leq 1.0 \\ &if~\theta > \theta_{max} \quad k_{fi,p}(\theta) = \ k_{fi,p}(\theta) = 0 \end{split}$$

 $\theta_{\text{max}} = 271^{\circ}\text{C}$


 $\tau_{Rk,fi,p}$ = characteristic bond resistance for cracked concrete under fire exposure for a given temperature (θ)

 $k_{fi,p(\theta)}$ = reduction factor for bond resistance under fire exposure

 $\tau_{Rk,cr,C20/25}$ = characteristic bond resistance for cracked concrete for concrete strength class C20/25 for a working life of 50 years given in Table C3.

 $\tau_{Rk,cr,100,C20/25}$ = characteristic bond resistance for cracked concrete for concrete strength class C20/25 for a working life of 100 years given in Table C3.

Figure C1: Reduction factor $k_{fi,p}(\theta)$

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-W

Performances

Reduction factor for pull-out failure of single fasteners under fire conditions – threaded rods

Annex C10

Table C19: Characteristic resistance under tension load in case of steel failure under fire conditions – threaded rods

Size			M10	M12	M16	M20
Steel failure						
Steel class 5.8 to 8.8	N _{Rk,s,fi (30)}	[kN]	0,87	1,70	3,14	4,90
	N _{Rk,s,fi (60)}	[kN]	0,75	1,28	2,36	3,68
	N _{Rk,s,fi} (90)	[kN]	0,58	1,11	2,04	3,19
	N _{Rk,s,fi (120)}	[kN]	0,46	0,85	1,57	2,45
	N _{Rk,s,fi (30)}	[kN]	1,45	2,55	4,71	7,35
Stainless steel A4	N _{Rk,s,fi (60)}	[kN]	1,16	2,13	3,93	6,13
Stainless steel A4	N _{Rk,s,fi (90)}	[kN]	0,93	1,70	3,14	4,90
	N _{Rk,s,fi (120)}	[kN]	0,81	1,36	2,51	3,92

Table C20: Characteristic resistance under shear load with and without lever arm in case of steel failure under fire conditions – threaded rods

Size			M10	M12	M16	M20	
Steel failure							
Steel class 5.8 to 8.8	V _{Rk,s,fi} (30)	[kN]	0,87	1,70	3,14	4,90	
	V _{Rk,s,fi} (60)	[kN]	0,75	1,28	2,36	3,68	
	V _{Rk,s,fi} (90)	[kN]	0,58	1,11	2,04	3,19	
	V _{Rk,s,fi (120)}	[kN]	0,46	0,85	1,57	2,45	
Stainless steel A4	V _{Rk,s,fi (30)}	[kN]	1,45	2,55	4,71	7,35	
	V _{Rk,s,fi (60)}	[kN]	1,16	2,13	3,93	6,13	
	V _{Rk,s,fi} (90)	[kN]	0,93	1,70	3,14	4,90	
	V _{Rk,s,fi (120)}	[kN]	0,81	1,36	2,51	3,92	
Steel class 5.8 to 8.8	M _{Rk,s,fi (30)}	[Nm]	1,1	2,7	6,7	13,0	
	M _{Rk,s,fi (60)}	[Nm]	1,0	2,0	5,0	9,7	
	M _{Rk,s,fi (90)}	[Nm]	0,7	1,7	4,3	8,4	
	M _{Rk,s,fi (120)}	[Nm]	0,6	1,3	3,3	6,5	
Stainless steel A4	M _{Rk,s,fi (30)}	[Nm]	1,9	4,0	10,0	19,5	
	M _{Rk,s,fi (60)}	[Nm]	1,5	3,3	8,3	16,2	
	M _{Rk,s,fi (90)}	[Nm]	1,2	2,7	6,7	13,0	
	M _{Rk,s,fi (120)}	[Nm]	1,0	2,1	5,3	10,4	

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

Performances

Characteristic resistance for steel under fire conditions – threaded rods

Annex C11

Table C21: Characteristic resistance under tension load in case of concrete cone and splitting failure under fire conditions – threaded rods

Size			M10	M12	M16	M20		
Concrete cone failure								
	N ⁰ _{Rk,c,fi} (30)	[kN]	$\frac{h_{ef}}{200} \cdot N_{Rk,c}^{0} \leq N_{Rk,c}^{0}$					
Steel class 5.8 to 8.8 Stainless steel A4	N ⁰ _{Rk,c,fi (60)}	[kN]						
	N ⁰ _{Rk,c,fi} (90)	[kN]	200					
	N ⁰ _{Rk,c,fi (120)}	[kN]	$0.8 \cdot \frac{h_{ef}}{200} \cdot N_{Rk,c}^{0} \leq N_{Rk,c}^{0}$					
Characteristic spacing	S _{cr,N,fi}	[mm]	4·h _{ef}					
Characteristic edge distance	C _{cr,N,fi}	[mm]	2·h _{ef}					

Table C22: Characteristic resistance under shear load in case of pry-out failure under fire conditions – threaded rods

Size			M10	M12	M16	M20	
Pryout failure							
	V _{Rk,cp,fi (30)}	[kN]		k ₈ ·N _{Rk,c,fi} (90)			
Steel class 5.8 to 8.8	V _{Rk,cp,fi (60)}	[kN]					
Stainless steel A4	V _{Rk,cp,fi (90)}	[kN]					
	V _{Rk,cp,fi (120)}	[kN]		k ₈ ·N _R	s,c,fi (120)		

Table C23: Characteristic resistance under shear load in case of concrete edge failure under fire conditions – threaded rods

Size			M10	M12	M16	M20	
Concrete edge failure							
	V _{Rk,c,fi} (30)	[Nm]					
Steel class 5.8 to 8.8	V _{Rk,c,fi (60)}	[Nm]		$0.25 \cdot V^0_{Rk,c}$			
Stainless steel A4	V _{Rk,c,fi} (90)	[Nm]					
	V _{Rk,c,fi} (120)	[Nm]		0,20	V ⁰ _{Rk,c}		

BOSSONG BCR V PLUS-W BOSSONG BCR V PLUS-T

Performances

Characteristic resistance for concrete failure under fire conditions – threaded rods

Annex C12