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Abstract: Background: Treatment with the chemotherapy drug doxorubicin (DOX) may lead to
toxicities that affect non-cancer cells including the liver. Supplementing the diet with creatine (Cr)
has been suggested as a potential intervention to minimize DOX-induced side effects, but its effect
in alleviating DOX-induced hepatoxicity is currently unknown. Therefore, we aimed to examine
the effects of Cr supplementation on DOX-induced liver damage. Methods: Male Sprague-Dawley
rats were fed a diet supplemented with 2% Cr for four weeks, 4% Cr for one week followed by 2%
Cr for three more weeks, or control diet for four weeks. Animals then received either a bolus i.p.
injection of DOX (15 mg/kg) or saline as a placebo. Animals were then sacrificed five days-post
injection and markers of hepatoxicity were analyzed using the liver-to-body weight ratio, aspartate
transaminase (AST)-to- alanine aminotransferase (ALT) ratio, alkaline phosphatase (ALP), lipemia,
and T-Bilirubin. In addition, hematoxylin and eosin (H&E) staining, Picro-Sirius Red staining, and
immunofluorescence staining for CD45, 8-OHdG, and β-galactosidase were performed to evaluate
liver morphology, fibrosis, inflammation, oxidative stress, and cellular senescence, respectively.
The mRNA levels for biomarkers of liver fibrosis, inflammation, oxidative stress, and senescence-
related genes were measured in liver tissues. Chromosomal stability was evaluated using global
DNA methylation ELISA. Results: The ALT/AST ratio and liver to body weight ratio tended to
increase in the DOX group, and Cr supplementation tended to attenuate this increase. Furthermore,
elevated levels of liver fibrosis, inflammation, oxidative stress, and senescence were observed with
DOX treatment, and Cr supplementation prior to DOX treatment ameliorated this hepatoxicity.
Moreover, DOX treatment resulted in chromosomal instability (i.e., altered DNA methylation profile),
and Cr supplementation showed a tendency to restore chromosomal stability with DOX treatment.
Conclusion: The data suggest that Cr protected against DOX-induced hepatotoxicity by attenuating
fibrosis, inflammation, oxidative stress, and senescence.

Keywords: liver damage; doxorubicin; creatine; oxidative stress; senescence; liver fibrosis;
inflammation

1. Introduction

Doxorubicin (Adriamycin, DOX) is an effective chemotherapeutic agent used to treat
various cancers such as breast cancer, bladder cancer, stomach cancer and leukemia [1];
however, severe side effects including nausea, vomiting, extravasation, severe cardiotox-
icity, and hepatoxicity have been reported. In addition, drug resistance has limited its
application in cancer patients [1–3]. The molecular mechanisms underlying the anti-cancer
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effects of DOX are multifaceted and are not completely understood, although it is well
known that DOX can enter the nucleus of the cell and interfere with DNA replication
by inhibiting topoisomerase II [4]. Furthermore, DOX undergoes redox cycling leading
to the generation of reactive oxygen species (ROS) [1,5] and damage to cellular lipids,
proteins, and DNA, which leads to cell death [6]. Doxorubicin treatment has also been
found to promote systemic inflammation by damaging the small intestine and releasing
microbial endotoxins into circulation, thus stimulating pro-inflammatory pathways and
enhancing hepatic inflammation [7]. It has also been suggested that DOX upregulates
genes involved in cell senescence, which may also contribute to DOX’s anticancer effect [8].
The multitude of cytotoxic effects makes DOX effective across various human cancers [9],
but DOX’s toxicity in healthy, non-cancer cells and tissues limits its use in combating cancer
in patients [10,11].

One such tissue negatively affected by DOX is the liver. Liver toxicity is a significant
clinical consideration with DOX treatment as elevated liver enzymes have been observed in
up to 40% of patients receiving DOX [12]. Moreover, DOX-induced ROS in the liver, specif-
ically superoxide anion, compromises mitochondrial function [13]. The exact mechanisms
behind DOX-induced hepatoxicity, however, are not completely understood. Therefore,
the first aim of this study was to explore mechanisms behind DOX-induced liver damage.

Because DOX-related side effects limit its use as an anticancer agent, interventions
to minimize its toxicity have received increased attention. Supplementing the diet with
creatine (Cr) is beginning to show promise. Creatine is a naturally produced compound
used primarily in the phosphocreatine system to provide energy in the brain, heart, and
skeletal muscle, and its use as a dietary supplement is generally considered safe [14]. Addi-
tionally, Cr may function as an antioxidant capable of reducing oxidative stress [15], and
consequently, it been suggested as a treatment for oxidative stress-induced cardiovascular
damage [16]. Previous studies have shown that Cr has protective effects against DOX in
skeletal myofibers and cardiomyocytes [17]. Supplementing the diet with Cr increases
intracellular reserves of phosphocreatine in skeletal myofibers and cardiomyocytes [18].
Moreover, Cr supplementation has been shown to reduce the skeletal myofibers dysfunc-
tion and fatigue that accompanies DOX treatment [19]. Although studies have shown Cr’s
ability to attenuate DOX toxicity in skeletal myofibers and cardiomyocytes, the role that Cr
plays in managing DOX hepatoxicity is currently unknown. Therefore, the present study
also aimed to evaluate the effects of dietary Cr supplementation on DOX-induced hepa-
totoxicity by evaluating several indices including liver fibrosis, inflammation, oxidative
stress, senescence, cellular damage, and chromosome stability.

2. Materials and Methods
2.1. Reagents, Chemicals, and Primers

All reagents were purchased from VWR (Radnor, PA, USA) and Thermo Fisher Sci-
entific (Waltham, MA, USA) unless otherwise indicated. Rats were obtained from Envigo
(Indianapolis, IN, USA). Doxorubicin hydrochloride was purchased from Wedgewood
Pharmacy (Swedesboro, NJ, USA), and all primers were purchased from Invitrogen (Carls-
bad, CA, USA).

2.2. Animals and Treatment

All procedures were approved by the Institutional Animal Care and Use Committee
at the University of Northern Colorado (protocol number 1711CE-DH-R-20 approved on
28 December 2018) and were in accordance with the Animal Welfare Act guidelines. Male
Sprague-Dawley rats (n = 60) were randomly assigned to one of three groups: standard
rodent chow feeding (control, CTRL, n = 20); chow supplemented with 2% Cr for 4 weeks
(2% Cr, n = 20); or chow supplemented with 4% Cr for 1 week followed by 2% Cr for 3
more weeks (4%/2% Cr, n = 20). After 4 weeks of feeding, rats were further subdivided
to receive either 15 mg/kg DOX i.p. (doxorubicin hydrochloride, Wedgewood Pharmacy,
CTRL/DOX, n = 10; 2% Cr/DOX, n = 10; 4%/2% Cr/DOX, n = 10) or 0.9% sterile saline
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i.p. as a placebo (CTRL/SAL, n = 10; 2% Cr/SAL, n = 10; 4%/2% Cr/SAL, n = 10). Five
days following the injections, the animals were euthanized with sodium pentobarbital.
Liver tissue was then collected immediately post sacrifice, weighed, embedded in Optimal
Cutting Temperature (O.C.T.) fluid, snap-frozen in liquid nitrogen and stored at −80 ◦C.
Liver tissue not embedded in O.C.T. was also collected and snap frozen in liquid nitrogen
for later analysis.

2.3. Blood Collection and Peripheral Serum Chemistry

Approximately 5 mL of peripheral blood was collected from each rat in the tubes, and
was centrifuged at 1000 rpm for 5 min to separate the blood. Serum was then collected
from the top fraction and stored at −80 ◦C. In order to assess the overall liver function,
serum samples were sent to the Colorado State University Veterinary Teaching Hospital
Diagnostic Laboratory to evaluate the levels of aspartate transaminase (AST), alanine
aminotransferase (ALT), and the AST to ALT ratio, alkaline phosphatase (ALP), lipemia,
and total bilirubin.

2.4. Tissue Preparation and Hepatic Histology

Hematoxylin and eosin (H&E) staining procedures were employed for the general
tissue morphology. Briefly, 8 µm frozen liver sections were fixed in 10% neutralized
buffered formalin (NBF) for 10 min, and then washed in 95% ethanol. Slides were then
washed three times in tap water and stained with hematoxylin for 40 s followed by three
tap water washes. Sectioned slides were then dipped four times in ammonia water and
rinsed four times with tap water followed by 20 dips in 95% ethanol. Then the sections
were stained in eosin for 10 s. Slides were dehydrated twice in 95% ethanol, three times
in 100% ethanol, treated twice with xylene and mounted using mounting media. Images
were then taken at 20×magnification.

To evaluate liver fibrosis, Picro-Sirius red stain was used. Briefly, 8 µm frozen liver
sections were air-dried for 3 min and placed in xylene for 10 min. Samples were then rehy-
drated in 100%, 90% and 70% ethanol, respectively. Nuclei were stained with hematoxylin
(VWR, CO) for 30 s, and then washed in running water for 10 min. Slides were then stained
in Picro-Sirius red stain for 60 min and washed two times in 0.5% acidified deionized
water. Slides were then dehydrated in 70%, 90% and 100% ethanol and dipped in xylene
twice and mounted with mounting media. Images were obtained at 4× magnification.
Three biological replicates from each group were used with fields randomly chosen for
quantification. The collagen deposition in selected samples was quantified using ImageJ
software [20].

Senescence was evaluated with a commercially available kit (OZ Biosciences, CA)
according to the manufacturer’s protocol. Tissues were fixed with fixing solution for 10 min
and then rinsed three times in phosphate-buffered saline (PBS). Slides were then immersed
in SA-beta-gal solution (pH 6.0) overnight at 37 ◦C in the dark and were then fixed in 4%
paraformaldehyde for 10 min followed by three washes in PBS, counterstained with nuclear
fast red for 20–30 s and rinsed in running water for 2 min. Slides were then dehydrated in
95% ethanol and 100% ethanol followed by three treatments of xylene and mounted using
mounting media. Images were then obtained at 10×magnification.

2.5. Gene Expression

Total RNA was extracted using a PureLink™ RNA Mini Kit (Invitrogen, Carlsbad,
MA, USA) and the manufacturer’s protocol. RNA was then treated with DNase I (Thermo
Scientific, Waltham, CO, USA) and converted to cDNA using an Applied Biosystem
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystem, Carlsbad, CA, USA).
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was then carried
out to obtain mRNA expression levels (Supplementary Materials, Table S1). All genes
were then normalized to β-Actin (ACTB), and all data presented have a sample sizes of
n = 4 unless otherwise indicated.
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2.6. Immunofluorescence Staining

Frozen tissue sections were fixed in 10% NBF, washed three times with PBS and
incubated in 10% goat serum blocking buffer for 20 min, which was followed by three PBS
washes. Samples were then incubated overnight in the primary antibodies (CD-45 from
Biolegend, CA, 8-hydroxy-2′-deoxyguanosine (8-OHdG) from Santa Cruz, Port Aransas,
TX, USA) at 4 ◦C and washed three times with PBS. Sections were then incubated in the
secondary antibody for 45 min and washed three times with PBS. Slides were mounted
with mounting media containing DAPI (Electron Microscopy Sciences, West Orange, PA,
USA), and the secondary antibody was also applied to slides without primary antibody
incubation as the negative control. All images were obtained at 20× magnification and
resolved using confocal microscopy.

2.7. Global DNA Methylation

A MethylFlash Methylated DNA 5-mC Quantification Kit (Epigentek) was used to
analyze global DNA methylation levels. Genomic DNA was isolated from snap-frozen
tissue using a DNAzol kit according to the manufacturer’s protocol (Thermo Scientific,
CO, USA). A standard curve, 2 µL of samples, positive controls, and negative controls
were plated in the kit’s 96-well plate. Solutions were then mixed and incubated at 37 ◦C
for 60 min followed by binding solution being removed from all wells. Wells were then
washed three times using diluted wash buffer. Next, 50 µL of 5-mC detection complex
solution was added to each well and incubated at room temperature for 50 min. The 5-mC
detection complex solution was decanted, and the wells were washed five times with
wash buffer. At this point, detection solution was added to induce a color change, and the
reaction was stopped when the 5% positive control turned dark blue. Absorbency was
then analyzed at 450 nm with the relative percentage of methylation calculated in reference
to the CTRL/SAL group.

2.8. Statistical Analyses

All data are reported as mean ± standard error (SE) unless otherwise indicated and
were checked for normality using the Shapiro-Wilk test. ANOVA and non-parametric
Kruskal-Wallis tests were performed using the R program to determine significance be-
tween group differences. When a significant difference between groups was observed,
the F-value was observed, Tukey’s and Dunn’s post hoc tests were performed to identify
where differences existed. Significance was set at p < 0.05.

3. Results
3.1. Creatine Supplementation Tended to Improve Doxorubicin-Induced Liver Damage

We proposed that Cr could alleviate liver damage caused by DOX (Figure 1A). To
determine this, we first assessed overall liver health by evaluating serum AST, ALT, ALP,
lipemia, and total bilirubin (Supplementary Materials, Table S2) as well as the liver-to-body
weight ratio and AST-to-ALT ratio. We found a trend in elevated liver-to-body weight
ratio in the CTRL/DOX group compared to CTRL/SAL, and a significant decrease in
liver-to-body weight ratio was observed in the 4%/2% Cr/SAL and 2% Cr/DOX groups
compared to the CTRL/DOX group (p < 0.001) (Figure 1B upper panel). Furthermore,
CTRL/DOX showed a trend toward a higher AST-to-ALT ratio than CTRL/SAL and a trend
toward a decreased AST-to-ALT ratio in 4%/2% Cr/DOX was observed (Figure 1B, lower
panel). We then evaluated liver histological changes using H&E staining, and interestingly,
white blood cell infiltration was noted in the periportal region of the liver when rats were
given Cr supplementation alone specifically in the 4%/2% Cr/SAL group; however, no
significant histological changes were observed in the CTRL/DOX group when compared
to CTRL/SAL (Figure 1C).
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Figure 1. Evaluation of the effect of doxorubicin (DOX) on the overall health of liver and the role of creatine (Cr) in reducing
the damage. Schematic illustration describing the hypothesis of the present study (A). There was a significant decrease in
the liver-to-body weight ratio when 2% Cr/DOX and 4%/2%Cr/SAL were compared toCTRL/DOX ((B), top row). The
AST-to-ALT ratio tended to be elevated in CTRL/DOX and showed a trend toward a reduction in 4%/2% Cr/DOX ((B),
bottom row). Immune cell infiltration was observed in the representative H&E images, but no major change was noted
among the groups. Pictures were taken under the magnification of 20×. (C). Data is reported as mean ± SE, *** p < 0.001.

3.2. 2% Creatine Treatment Reduced Doxorubin-Induced Liver Fibrosis

Liver fibrosis usually occurs when chronic injury or inflammation leads to a build-
up of scar tissue, which can be indicated by increased collagen deposition [21]. After
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serum chemistry revealed liver damage, we assessed collagen deposition in frozen liver
tissues using Picro-Sirius red staining. A significant difference in fibrosis was noticed
between groups (Figure 2A,B) [20] with an increasing trend in fibrosis in CTRL/DOX
when compared to CTRL/SAL. The 2% Cr/DOX group showed the lowest level of fibrosis
(less than 5%) (Figure 2B), and a significant decrease in fibrosis was observed in both
2% Cr/DOX and 4%/2% Cr/DOX groups when compared to CTRL/DOX (p < 0.01).
We further investigated fibrotic-related biomarkers, fibronectin-1 (FN-1), which shows
enhanced expression during fibrogenesis [22]. The expression of FN-1 was enhanced in all
three DOX treatment groups, the expression of FN-1 in the 4/2%Cr/Dox group tends to
decrease when compared to the CTRL/DOX group (Figure 2C).
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Figure 2. Liver fibrosis was measured by Picro-Sirius Red staining and mRNA expression of the fibro-
sis biomarker FN-1. Representative Sirius Red staining showing mild fibrosis in CTRL/SAL group
(A). When images were quantified, a tendency of higher fibrosis was observed in CTRL/DOX when
compared to the CTRL/SAL. Further, there was a significant decrease in 2% Cr/DOX and 4%/2%
Cr/DOX when compared to CTRL/DOX (B). mRNA expression of FN-1 was elevated in CTRL/DOX
and tend to reduce when DOX was combined with 4%/2% Cr (C). Three biological samples were
imaged at 10×magnification and quantified using image J software. Four biological replicates are
used, and mRNA expression is relative to β-Actin (ACTB). Data is reported as mean ± SE. * p < 0.05,
** p < 0.01, *** p < 0.001.
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3.3. Pro-Inflammation Markers Induced by Doxorubicin Are Attenuated by Creatine Supplementation

Hepatic inflammation is part of the hepatic repair process that is triggered by liver
injury caused by different etiology such as fat accumulation, drug induction and viral
infection. After observing potential white blood cell infiltration in the liver with H&E
staining (Figure 1C), we investigated the likelihood of DOX inducing inflammation and
whether Cr supplementation could alleviate it. An increase in CD45 positive cells was
observed in the CTRL/DOX group. CD45 Expression decreased in the 2% Cr/DOX and
4%/2% Cr/DOX groups when compared with CTRL/DOX group (Figure 3A). However,
there was no evidence of CD45 positive cells in the 2% Cr/SAL and 4%/2% Cr/SAL
groups. The positive staining of CD45 prompted us to investigate which inflammatory
factors might play a role. Previous reports have shown that the nuclear transcription factor
NF-κB plays a central role in this process [23], and IL-1β has previously been shown to
act as a pro-inflammatory cytokine in chronic liver injury [24]. Consistent with the CD45
staining, NF-κB expression was elevated in the CTRL/DOX group (p < 0.05); however, no
significant decrease in mRNA level was detected in the 2% Cr/DOX or 4%/2% Cr/DOX
groups (Figure 3B). Further, CTRL/DOX showed elevation at the transcription level of
pro-inflammatory cytokine, IL-1β, when compared to CTRL/SAL, with a trend towards
reduced levels of gene expression in both 2% Cr/DOX and 4%/2% Cr/DOX (Figure 3C).
Besides, we noticed the mRNA expression of NF-κB and IL-1β increased in 4%/2% Cr/SAL
compared with CTRL/SAL, which is not consistent with CD-45 staining, suggesting the
potential inflammatory stress when supplementing with a higher dosage of Cr per se.

3.4. Creatine Supplementation Alleviated Doxorubicin-Induced Oxidative Stress

Oxidative stress is caused by the overproduction of ROS and/or the inability to
quench ROS. This has previously been observed in rats receiving DOX and has been
suggested to be part of the etiology for hepatotoxicity [13]. Studies have shown that
DOX induces oxidative stress, which leads to inflammation [25]; thus, it was vital to
investigate whether the inflammatory response observed could be due to oxidative stress.
The oxidative stress biomarker 8-OHdG was increased in the CTRL/DOX group when
compared to CTRL/SAL, and this was decreased in the 4%/2% Cr/DOX group but not in
the 2% Cr/DOX group (Figure 4A). Similarly, elevated levels of nuclear factor erythroid 2
(NRF-2) were observed in CTRL/DOX (p < 0.01) and 2% Cr/DOX when compared with
the CTRL/SAL group (p < 0.01), and decreased levels of NRF-2 were shown in 4%/2%
Cr/DOX when compared with the CTRL/DOX group (Figure 4B). Like pro-inflammation
biomarkers, we also observed enhanced expression of NRF-2 in 4%/2% Cr/SAL, which
was not consistent with protein levels of 8-OHdG when compared with CTRL/SAL,
indicating a higher dosage of Cr increases the risk of oxidative stress in healthy rats.
Taken together, our findings suggest that DOX does increase oxidative stress whereas
4%/2%Cr supplementation prior to DOX treatment alleviates oxidative stress.

3.5. Higher Dose of Creatine Showed More Alleviation in the Senescence Caused by Doxorubicin

Cellular senescence is defined as cell-cycle arrest and cells are incapable of prolifer-
ation. These phenomena mainly occur due to genetic changes, yet more recently, it was
found that they could be induced by external factors such as radiation and drug treat-
ment [26]. Furthermore, several studies have shown that cellular senescence increases
when cells are treated with DOX [27,28]. Thus, we assessed cellular senescence using β-
galactosidase (an enzyme only present in senescent cells) staining and qRT-PCR analysis for
monocyte chemoattractant protein-1 (MCP-1) expression (a chemokine known to be associ-
ated with inducing cellular senescence [29].). Our data suggest that when rats received no
DOX (i.e., SAL groups), there was no indication of cellular senescence whereas all groups
that received DOX showed cellular senescence (yellow arrows). Both 2%Cr/DOX and
4%/2%Cr/DOX showed decreased senescence when compared to CTRL/DOX (Figure 5A).
Additionally, MCP-1 mRNA expression was increased in CTRL/DOX when compared to
CTRL/SAL, and 2% Cr/DOX and 4%/2% Cr/DOX showed a decrease of MCP-1 mRNA
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expression when compared to CTRL/DOX (Figure 5B), which is consistent with senescence
staining. Collectively, these data indicate that DOX treatment promoted liver senescence
that were engaged in increased transcription of MCP-1, but Cr supplementation attenuated
this observed cell senescence.
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Figure 3. Immunofluorescence staining and mRNA expression of inflammation-related genes. Antibody against CD45 is
shown in red and nuclei stained with DAPI are shown in blue. Arrows illustrate positive staining of CD45. (A). Positive
immunofluorescence staining for CD45 in DOX treated group (bottom row) but not in the control groups (top row) (A).
mRNA expression of NF-κB were elevated in CTRL/DOX when compared to CTRL/SAL and no significant decrease was
detected in the 2% Cr/DOX or 4%/2% Cr/DOX groups when compared to CTRL/DOX (B). mRNA expression of IL-1β
was elevated in CTRL/DOX and 4%/2% Cr/SAL when compared to CTRL/SAL, and a trend toward a reduction in mRNA
level was detected in the 2% Cr/DOX or 4%/2% Cr/DOX groups when compared to CTRL/DOX (C). The image was
obtained under 20× magnification. Four biological replicates are used in Figure 3B and six biological replicates are used in
Figure 3C, and mRNA expression is relative to ACTB. Data is reported as mean ± SE. * p < 0.05.
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Figure 4. Immunofluorescence staining and mRNA expression of oxidative stress-related genes. Antibody against 8-OHdG
is shown in red and the nucleus stained with DAPI is shown in blue. The arrow shows the positive staining of 8-OHdG.
8-OHdG was expressed in DOX treated groups (bottom row), while there was no indication of 8-OHdG expression in
controls (top row). Pictures were taken under 20×magnification (A). Low mRNA expression of NRF-2 was observed in
CTRL/SAL and 2% Cr/SAL while elevated mRNA expression of NRF-2 was detected in 4%/2% Cr/SAL, CTRL/DOX
and 2% Cr/DOX (B). The image was obtained under 20×magnification. Four biological replicates are used, and mRNA
expression is relative to ACTB. Data is reported as mean ± SE. * p < 0.05, ** p < 0.01.
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3.6. Chromosomal Instability with Doxorubicin Treatment Which Was Rescued with Creatine Feeding

A previous study suggested that DOX can alter gene expression patterns by epigenetic
modification in the heart [30]. Further, global hypomethylation has been found to cause
chromosomal instability in various cancers [31,32]. Hence, it was important to explore the
effects of DOX treatment on global DNA methylation status in the liver and determine the
role Cr supplementation plays in this process. Significant hypomethylation was observed
in CTRL/DOX compared to the CTRL/SAL group (p < 0.01), and although not significant,
the 2% Cr/DOX and 4%/2% Cr/DOX groups showed a trend towards attenuation of
hypomethylation (p = 0.06 vs. CTRL/DOX) (Figure 6). Creatine supplementation could
potentially rescue the chromosomal instability caused by DOX by increasing genomic DNA
methylation; however, more work is needed in this area.
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** p < 0.01.
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Figure 6. Quantification of 5-methylcytosine (%5-mC) to determine the change in global methylation
and thus chromosomal stability using 5-mC ELISA. Higher levels of global methylation were found in
groups that did not receive DOX whereas lower levels of global methylation were detected in groups
that received DOX treatment. Additionally, when DOX was combined with Cr supplementation,
levels of global methylation tended to increase. Data are reported as mean ± SE. * p < 0.05.

4. Discussion

This study reports DOX-induced liver damage by observable increases in the ALT-
to-AST ratio. Furthermore, elevated liver fibrosis, inflammation, oxidative stress, and
senescence and decreased global methylation were observed following DOX treatment.
Rats fed with Cr before DOX administration, however, showed reduced liver damage
following DOX treatment as demonstrated by a decreased liver to body weight ratio, and
decreased levels of inflammation, fibrosis, senescence, and oxidative stress. The current
study demonstrates the potential therapeutic effect of Cr in alleviating DOX-induced
liver damage.

Many studies have shown the cytoprotective effects of Cr in cardiac myocytes and
skeletal myocytes in rat models [16,17,19,33]. The current study found similar benefits
of Cr in the liver. Cr reduced DOX-induced liver damage by alleviating the fibrosis,
inflammation, oxidative stress and senescence. Elevated serum AST-to-ALT is a commonly
used metric for detecting hepatotoxicity [34], and we found elevated AST-to-ALT levels in
both CTRL/DOX and 2% Cr/DOX groups, which indicates liver stress. 4%/2% Cr/Dox, on
the other hand, had AST-to-ALT ratios with values comparable to the SAL-treated groups.

This study applied two different Cr feeding regimens to investigate potential dose-
dependent effects. 4%/2% Cr/DOX showed decreased AST-to-ALT ratios, liver fibrosis
biomarker expression, liver inflammation, oxidative stress when compared with the 2%
Cr/DOX group, suggesting that a one-week Cr loading phase (i.e., high Cr intake) may be a
better treatment option for enhancing liver function and decreasing the liver inflammation
associated with DOX treatment. No differences, however, were observed in terms of
senescence or methylation between the two different Cr feeding regimens. Interestingly,
the 4%/2% Cr/SAL group presented a moderate increase in mRNA expression of the liver
oxidative stress biomarker NRF-2 and the inflammation biomarkers NF-κB and IL-1β along
with observable lymphocytic penetration. Taken together, the data indicate that the higher
dosage of Cr (4%/2%) was, more affective at alleviating DOX-induced liver damage than
the lower Cr dose (2% Cr). The higher dose of Cr, however, could potentially increase
inflammation and oxidative stress in the healthy rat liver.

Our study showed that IL-1β is the primary pro-inflammatory factor upregulated in
DOX-induced liver inflammation, which was reduced with Cr feeding. Previous reports
have also shown that DOX-induced oxidative stress could cause inflammatory cells to
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release cytokines such as TNF-α, IL-1β and IL-6 [35,36]. Furthermore, NF-κB expression
was elevated with DOX treatment regardless of whether animals were fed Cr or not. This
suggests that Cr may alleviate DOX-induced inflammation independent of the NF-kB
pathway, which has also been shown in a model of skeletal muscle inflammation [37].

Cellular senescence is a protective mechanism to protect potentially damaged cells
against mutation; however, when cellular senescence becomes chronic, it causes the tissue
to be more susceptible to damage [38,39]. Senescent cells are usually arrested in the
G1/S phase and express P16 and P21 cell cycle inhibitors [40]. Indeed, our data suggest
enhanced senescence in DOX-induced liver damage and reduced senescence with Cr
supplemented groups receiving DOX, which was consistent with MCP-1 gene expression.
Cellular senescence plays a crucial role in chronic injury, and studies have shown senescence
of hepatocytes and cholangiocytes in chronic hepatitis B and C [41,42], alcoholic liver
damage [43], primary sclerosing cholangitis (PSC) [43,44], and non-alcoholic fatty liver
diseases [45]. The mechanism underlying hepatic senescence in chronic liver disease has
been found to be stress related, and previous studies have shown that oxidative stress
could cause DNA damage and subsequently induce cellular senescence [46–48]. Indeed,
we found oxidative stress-related gene expression showed a similar trend as the change in
senescence level; however, more work is needed to investigate whether the effects of Cr on
cellular senescence is directly or indirectly related to the reduction of oxidative stress.

The present study did not observe a dramatic change in liver fibrosis in DOX groups,
which seems paradoxical to other reports. This could be explained by the fact that studies
have used various treatment frequencies and concentrations. Another possibility is that
the one-time, bolus injection of DOX only causes acute liver damage, and fibrosis occurs
at a later stage of liver damage. Actually, DOX toxicity is dose-dependent with clinicians
limiting cumulative doses to 450 mg/m2 to prevent cardiotoxicity [49].

Furthermore, it has been observed that global DNA hypomethylation is associated
with liver damage. Studies have shown that DOX can cause global hypomethylation by
decreasing the level of methylation enzymes [50,51], and similarly, we have demonstrated
hypomethylation in DOX treated groups in the current study. Others have shown that
global hypomethylation could cause chromosomal instability and make chromosomes
more vulnerable to damage [32]. Hypomethylation is also present in an early-stage liver
fibrosis model [52], but it is unclear whether DNA methylation status is related to any
specific senescence, fibrosis, or inflammation genes.

In summary, this study reports the protective effects of Cr in alleviating DOX-induced
liver damage in rats. Supplementing the diet with Cr was effective in reducing the fibrosis,
inflammation, oxidative stress and senescence that accompany DOX treatment. The results
of this study suggest that Cr administration could be a potential adjuvant therapeutic
approach to attenuate DOX-induced liver damage. Investigating the long-term effects of
Cr is still needed to further assess its safety in cancer patients undergoing chemotherapy,
and further research is warranted to explore the safety and efficacy of Cr supplementation
as an intervention to protect against DOX-induced hepatotoxicity.

5. Conclusions

DOX administration caused the increase in liver to body weight ratio, liver fibrosis,
liver inflammation, oxidative stress, senescence and genomic instability. In contrast, sup-
plementation with Cr decreased DOX-induced liver damage as demonstrated by reduced
liver to body weight ratio, liver fibrosis, and liver inflammation. Furthermore, the higher
dosage of creatine induced a potential risk of inflammation stress in healthy rats.
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