Tel: (905) 840-2014 • Fax: (905) 840-2847 • E-Mail: lab@can-best.com

LABORATORY TEST REPORT

Glass Guard Load Test, Side-mounted Concrete Substrate "12 mm thick tempered glass, 1850 mm x 1170 mm"

Report No. L24-1577-6999

Report Date: May 7, 2024

Prepared for:

RF Transparent 67 Westmore Dr. Unit 19-20, Etobicoke, ON

BC Transparent 1065 Rue Demers, Carignan, QC

Respectfully submitted by: CANADIAN BUILDING ENVELOPE Science and Technology (CAN-BEST)

Elie Alkhoury, M.Eng. (Building Science), P.Eng. *Director of Research & Testing*

• This report does not constitute certification of the test product. The reported test results refer only to the specimen tested. No representation is made that other samples of similar design will feature like performance.

- This report was prepared for the consideration of the addressee only. It shall not be used by any other party without the written consent of CAN-BEST.
- This report may not be reproduced or quoted in partial form without the approval of CAN-BEST.

CAN-BEST Building Envelope Performance

1. INTRODUCTION

Canadian Building Envelope Science and Technology (CAN-BEST) was retained by RF Transparent to carry out load testing on one 12 mm tempered glass guard system. Testing was carried out in accordance with the following Building Codes requirements:

- Ontario Building Code (OBC-2017), Section 9.8.8.2 "Loads on Guards"
- Code de construction du Québec, Section 4.1.5.14, Paragraph 1c).
- Code National du Bâtiment Canada 2015, Tableau 9.8.8.2 "Autres garde-corps"

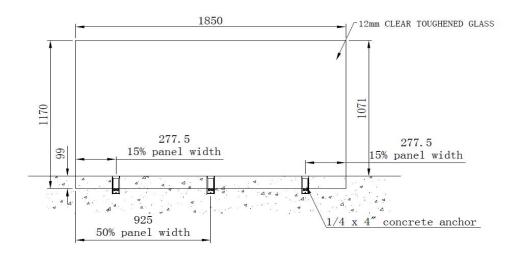
2. DISCLAIMERS

This report covers certain tests carried out on one glass guard specimen having specific properties, configuration and dimensions. Product performance is affected by variations in dimensions, assembly details and installation method. Consequently, the reader is advised to ensure product suitability for the intended application and conformity with all the details of the test sample described in the following section.

This report does not cover the guard's anticipated performance under service environmental conditions, nor the anchoring strength and stability of the substrate. No conclusions regarding anchor performance or glass performance may be drawn from the reported results.

3. SAMPLE DESCRIPTION

Type:


One glass panel, side mounted to a concrete substrate using three bottom spigot supports/anchors.

Glass Panel: 12 mm thick tempered glass panel, 1850 mm wide by 1170 mm.

Installation: As shown in Figure (1), the test glass panel was side mounted to a concrete substrate using three nylon-lined stainless steel spigots. Two were positioned 277 mm from each end, and one at the center.

The glass panel was fixed at its base into the spigot using two M10 x 1.57 screws. The spigot were anchored to a concrete substrate using two KH-EZ 1/4" x 4" anchor screws each and four Kwik-Con+3/16"x3-1/4" anchor screws each.

Concrets Surface installation

Figure (1): Test Guard Assembly

Sampling: The test guard system was selected and installed by the client.

Drawings: Detail drawings of the test sample, provided by the client, and stamped "Canadian Building Envelope Science and Technology", are attached to this report (6 pages).

4. TEST RESULTS

Test results and observations are provided in Table (1).

Table (1): Load Resistance Test Results

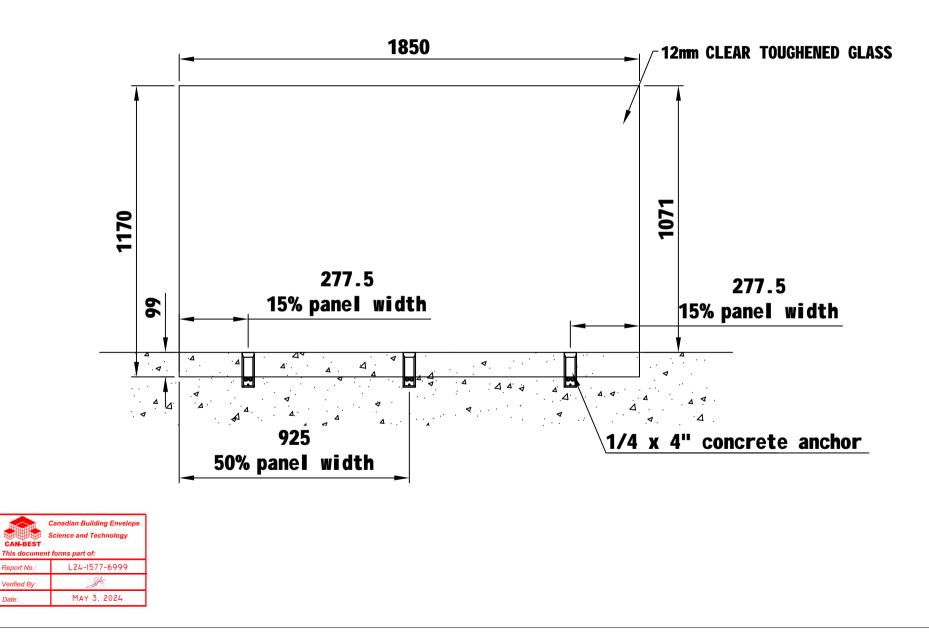
Test Date: May 2, 2024

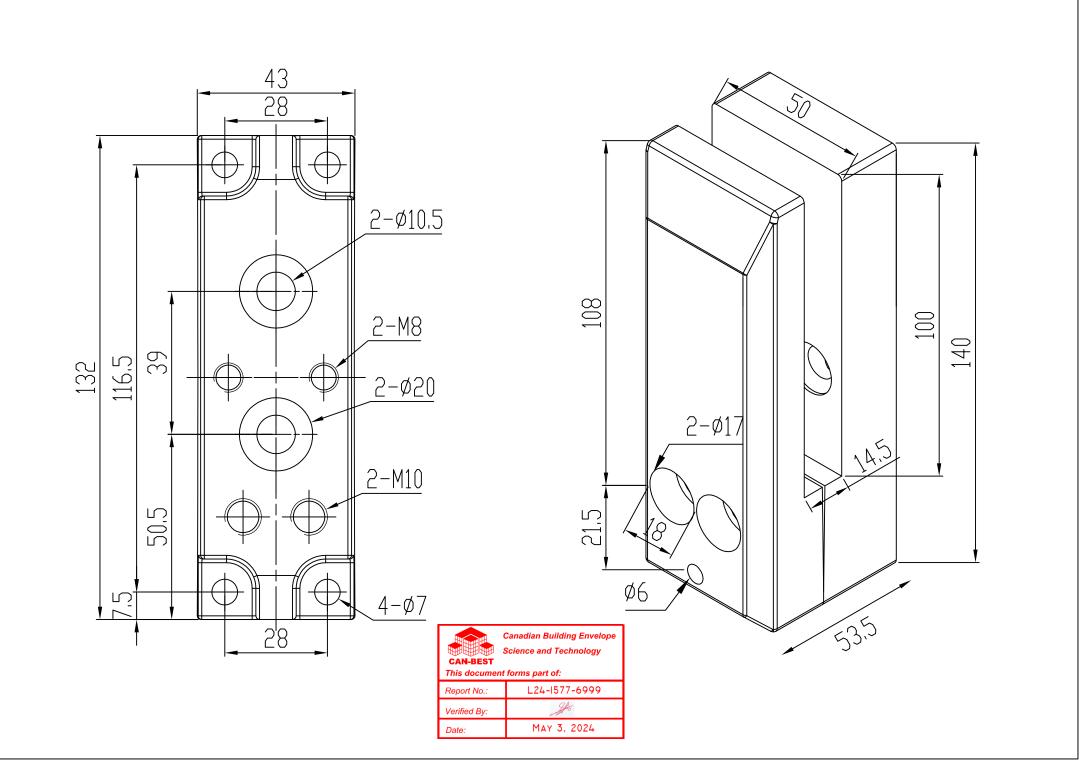
Test Requirement	Load Location	Results	Rating
Horizontal Point Load, top of panel at most critical location Test Load: 1.00 kN (225lb)	Top mid-span of panel	Measured deflections at top center of panel:Load (kN)Deflection (mm)1.0060 mm0.0010 mm (permanent)	PASS
No maximum criteria provided for deflection under load or for permanent deflection after loading.	Top right corner	Measured deflections top corner of panel:Load (kN)Deflection (mm)1.0095 mm0.0010 mm (permanent)	PASS
Horizontal Uniform load, top of panel Test Load: 0.75 kN/m (51 lb/ft) No maximum criteria provided for deflection under load, or for permanent deflection after loading.	Top mid-span of panel	Measured deflections at top center of panelLoad (kN/m)Deflection (mm)0.7550 mm0.008 mm (permanent)	PASS
Elements within the guard, Point LoadTest Load:0.50 kN (113 lb)	Glass panel at any location	Load (kN)Observations0.50No breakage	PASS
Vertical Uniform load, top of panel Test Load: 1.50 kN/m (100 lb/ft) No maximum criteria provided for deflection under load, or for permanent deflection after loading.	Panel's top edge	Load (kN/m) Observations 1.50 No breakage	PASS
Combination Load, Point Load + Wind Load 0.5 kPa (10 psf) Test Load: 2.04 kN (459 lb)	Centre of panel + uniform wind load	Load (kN)Observations2.04No breakage	PASS

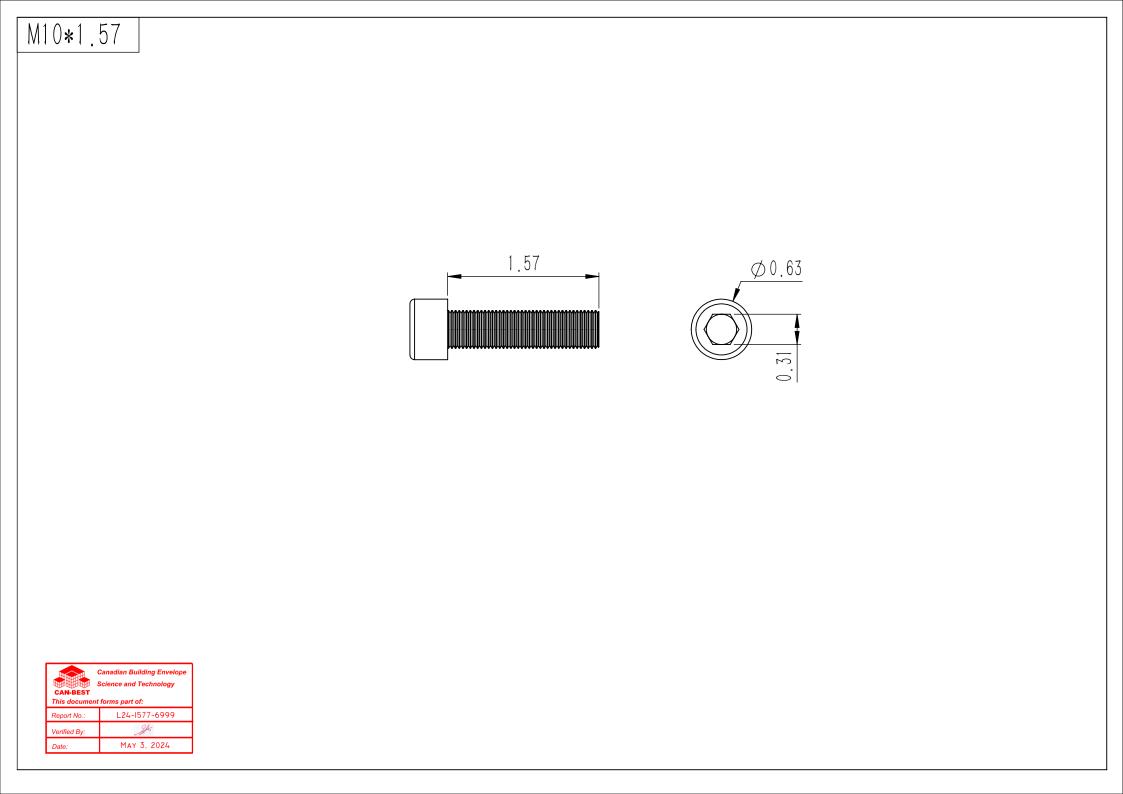
5. CONCLUSION

Based on the observations and obtained test results, the glass panel guard system described in this report **DID MEET** the load carrying capacity requirements specified in the following building codes:

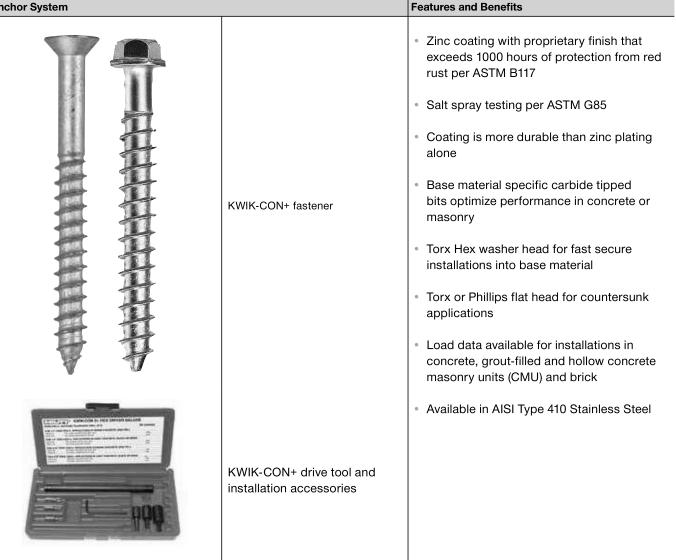
- Ontario Building Code (OBC-2017), Section 9.8.8.2 "Loads on Guards"
- Code de construction du Québec, Section 4.1.5.14, Paragraph 1c).
- Code National du Bâtiment Canada 2015, Tableau 9.8.8.2 "Autres garde-corps"


Y:\RPT\Rpt_24\1577-6999, Glass Guard 12 mm tempered glass, Concrete Substrate.doc


Report History


Revision No.	Change and Reason	Date	Approved by
	Original report issued	May 7, 2024	EA

Concrets Surface installation



3.3.20 KWIK-CON+ CONCRETE AND MASONRY SCREW

PRODUCT DESCRIPTION

KWIK-CON+ concrete and masonry screw anchors

Anchor System

Uncracked

concrete

Grout-filled concrete masonry

Brick

CAN-BEST This documer	Canadian Building Envelope Science and Technology It forms part of:
Report No.:	L24-I577-6999
Verified By:	Afe
Date:	May 3, 2024

Approvals/Listings	
Metro-Dade County	NOA 19-1113.04

Anchor Fastening Technical Guide, Edition 21

78° - 82°

Table 1 — Material Properties

	Carbo	n Steel	Stainles	ss Steel		
Property	Fastener Diameter (inches)		Fastener Dian	\leftarrow	$ \longrightarrow $	
	3/16	1/4	3/16	1/4		
Minimum Tensile Strength (ksi)	150		130			\neg
Minimum Yield Strength (ksi)	120		105			
Coating	Zinc with org	anic top coat	N/	/A	1	
					Figure 1 — Flath	ead KWIK CON+ Head Angle

Table 2 — Physical Dimensions

		Nominal anchor diameter (inches)											
Characteristic		3/16				1/4							
Head Style	Tapered Flat Head	Tapered Flat Head	5/16-in. Hex Washer		· · · ·				· · · · · · · · · · · · · · · · · · ·		,		5/16-in. Hex Washer
Internal recess	#3 Phillips	T-25 TORX	T-25 TORX		#3 Phillips	T-27 TORX	T-25 TORX						
Maximum Head Diameter (inches)	0.507	0.507 0.385			0.507	0.507	0.433						
Major Thread Diameter (inches)		0.217				0.283							
Minor Diameter (inches)		0.145		Canadian Building Envelope									
Shank Diameter (inches)		0.170		Science a	nd Technology	0.224							
			CAN-BEST This document	forms pa	art of:								
			Report No.:	L24	4-1577-6999	1							
INSTALLATION			Verified By:		Sto]							
			Date:	М	ay 3, 2024	1							

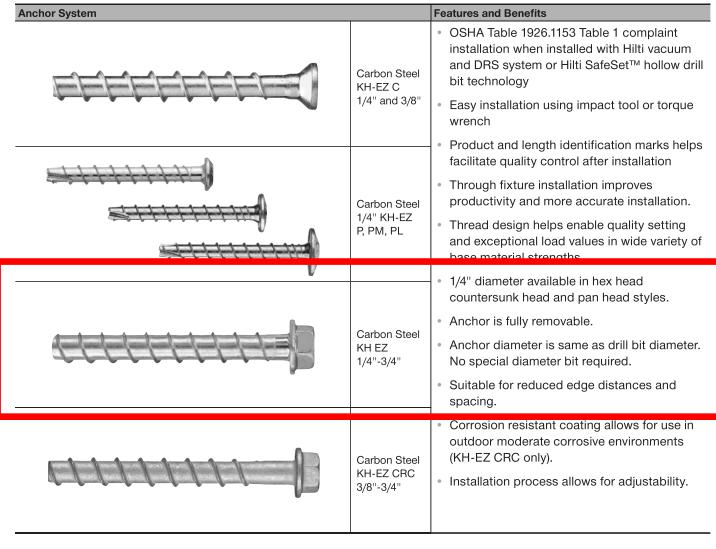
Table 3 — KWIK CON+ Installation Specifications

		Nominal anchor diameter (inches)						
Setting information	Symbol	3	3/16	1/4				
Embedment (inches)	h _{nom}	1	1-3/4	1	1-3/4			
Nominal drill bit diameter (inches) ¹	d _{bit}	3	3/16	1/4				
Minimum fixture hole diameter (inches)	d _h		1/4	5/16				
Minimum hole depth (inches)	h	1-1/4	2	1-1/4	2			
Minimum member thickness (inches)	h _{min}	2-1/2	3-1/4	2-1/2	3-1/4			
Minimum anchor spacing (inches)	S _{min}	2-	2-1/4		1/2			
Critical anchor spacing (inches)	S _{cr}	3	4	3	4			
Minimum edge distance (inches)	C _{min}	1-1/8		1-	1-1/2			
Critical edge distance (inches)	C _{cr}	2-1/2	3-1/2	2-1/2	3-1/2			

1 Requires matched tolerance drill bit from Hilti, TKC drill bits for concrete, TKB drill bits for other materials.

Table 4 — Load adjustment factors for Hilti KWIK CON+ screw anchors in concrete

Load	Load adjustment factors for anchor spacing f_{R} Load adjustment factors for edge distance f_{R}							Load adjustment factors for edge di							
	Tensio	Tension/Shear loads Tension						Tension					Sh	ear	
Embedme	nt (inches)	1	1-3/4	1	1-3/4	Embedment (inches)		1	1-3/4	1	1-3/4	1	1-3/4	1	1-3/4
Spaci	ing (s)		Anchor of	diameter	•	Edge Distance		ce Anchor Diameter			Anchor Diameter				
in.	(mm)	3	/16		1/4	in. (mm)		(mm) 3/16 1/4		3	/16	1	1/4		
2-1/4	(57)	0.80	0.80			1-1/8	(29)	0.80	0.80			0.30	0.30		
2-1/2	(64)	0.87	0.83	0.80	0.80	1-1/4	(32)	0.82	0.81			0.36	0.34		
2-3/4	(70)	0.93	0.86	0.90	0.86	1-1/2	(38)	0.85	0.83	0.80	0.80	0.49	0.41	0.30	0.30
3	(76)	1.00	0.89	1.00	0.89	1-3/4	(44)	0.89	0.85	0.85	0.83	0.62	0.48	0.48	0.39
3-1/4	(83)		0.91		0.91	2	(51)	0.93	0.87	0.90	0.85	0.75	0.56	0.65	0.48
3-1/2	(89)		0.94		0.94	2-1/4	(57)	0.96	0.89	0.95	0.88	0.87	0.63	0.83	0.56
3-3/4	(95)		0.97		0.97	2-1/2	(64)	1.00	0.92	1.00	0.90	1.00	0.71	1.00	0.65
4	(102)		1.00		1.00	3	(76)		0.96		0.95		0.85		0.83
						3-1/2	(89)		1.00		1.00		1.00		1.00


1 Reduction factors are multiplicative and linear interpolation between s_{cr} and s_{min} , c_{cr} and c_{min} is permitted.

Anchor Fastening Technical Guide Edition 21 | 3.0 ANCHORING SYSTEMS | 3.3.20 KWIK-CON+ CONCRETE AND MASONRY SCREW Hilti, Inc. 1-800-879-8000 | en español 1-800-879-5000 | www.hilti.com | Hilti (Canada) Corporation | www.hilti.ca | 1-800-363-4458

3.3.6 KWIK HUS-EZ SCREW ANCHOR

PRODUCT DESCRIPTION

KWIK HUS EZ carbon steel anchors

Uncracked

concrete

Cracked

concrete

Grout-filled concrete masonry

Seismic Design Categories A-F

SafeSet™ System

SAFE:ET

with Hollow Drill Bit

Profis Anchor design software

Approvals/Listings	
ICC-ES (International Code Council)	ESR-3027 in concrete per ACI 318 Ch. 17 / ACI 355.2/ ICC-ES AC193 ESR-3056 in grout-filled CMU per ICC-ES AC106
City of Los Angeles	City of Los Angeles 2020 LABC Supplement (within ESR-3027 and ESR-3056)
Florida Building Code	2020 FBC w/ HVHZ (within ESR-3027 and ESR-3056)
FM (Factory Mutual)	Pipe hanger components for automatic sprinkler systems for KH-EZ I and KH-EZ E
ANSI/MSS SP-58-2018	Anchors conform to ANSI/MSSP-58-2018. Contact Hilti for more information.

ELACODBS DEPARTMENT OF EVALUATE AND EAST TY	CAN-BEST This document	Canadian Building Envelope Science and Technology ht forms part of:	
Anchor Fastening Technical Guide Edition 22 3.0 ANCHORING SYSTEMS 3.3.6 KWIK HUS-EZ SCREW ANCHO	Report No.:	L24-I577-6999	331
Hilti, Inc. 1-800-879-8000 en español 1-800-879-5000 www.hilti.com Hilti (Canada) Corporation www.hilti.ca	Verified By:	Ho	
	Date:	MAY 3, 2024	