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About This Curriculum
What Is This Curriculum?

This is Year 1 of a two-year math course designed to give students a firm 
mathematical foundation, both academically and spiritually. Not only does the 
curriculum build mathematical thinking and problem-solving skills, it also shows 
students how a biblical worldview affects our approach to math’s various concepts. 
Students learn to see math, not as an academic exercise, but as a way of exploring 
and describing consistencies God created and sustains. The worldview is not just 
an addition to the curriculum, but the starting point. Science, history, and real life 
are integrated throughout. 

How Does a Biblical Worldview Apply to Math… 
and Why Does It Matter?

Please see lessons 1.1–1.3 and 2.7 for a brief introduction to how a biblical 
worldview applies to math and why it matters. 

Who Is This Curriculum For? 

This curriculum is aimed at grades 6-8, fitting into most math approaches the year 
or two years prior to starting high school algebra. If following traditional grade 
levels, Year 1 should be completed in grade 6 or 7, and Year 2 in grade 7 or 8. 

The curriculum also works well for high school students looking to firm up 
math’s foundational concepts and grasp how a biblical worldview applies to math. 
High school students may want to follow the alternate accelerated schedule in the 
Student Workbook and complete each year of the program in a semester, or use the 
material alongside a high school course. 

Where Do I Go Upon Completion?

Upon completion of Year 1, students will be ready to move on to Year 2 (coming 
Spring 2016). Upon completion of both years, students should be prepared to 
begin or return to any high school algebra course. 

Are There Any Prerequisites?

Year 1: Students should have a basic knowledge of arithmetic (basic arithmetic 
will be reviewed, but at a fast pace and while teaching problem-solving skills and a 
biblical worldview of math) and sufficient mental development to think through 
the concepts and examples given. Typically, anyone in 6th grade or higher should 
be prepared to begin. Student Workbook
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Year 2: It is strongly recommended that students complete Year 1 before 
beginning Year 2 (coming Spring 2016), as math builds on itself.

What Are the Curriculum’s Components? 

The curriculum consists of the Student Text and the Student Workbook. The 
Student Text contains the lessons, and the Student Workbook contains all the 
worksheets, quizzes, and tests, along with an Answer Key and suggested schedule.

How Do I Use This Curriculum?

General Structure — This curriculum is designed to be self-taught, so students 
should be able to read the material and complete assignments on their own, with a 
parent or teacher available for questions. This student book is divided into chapters 
and then into lessons. The number system used to label the lessons expresses this 
order. The first lesson is labeled as 1.1 because it is Chapter 1, Lesson 1.

Worksheets, Quizzes, and Tests — The accompanying Student Workbook includes 
worksheets, quizzes, and tests to go along with the material in this book, along 
with a suggested schedule and answer key.

Answer Key — A complete answer key is located in the Student Workbook.

Schedule — A suggested schedule for completing the material in 1 year, along 
with an accelerated 1-semester schedule, is located in the Student Workbook.

General Notes to Students
Review — If at any point you hit a concept that does not make 
sense, back up and review the preceding concepts.

Showing Your Work — Except for mental arithmetic problems, you 
should show your work on all word problems — this means you 
should write down enough steps of what you did that someone 
can see how you solved the problem (what you added, subtracted, 
etc.). Unless otherwise specified, it does not matter how you 
show your work (it doesn’t have to be as in-depth as the answer 
key) — the important thing is that you can see how you obtained 
your answer. While showing your work may seem like busy work 
on simple problems, forming the habit of organizing your steps on 
paper from the beginning will greatly help you when you come to 
in-depth problems involving numerous steps.

Units of Measurement — If a unit is given in the problem (miles, 
feet, etc.), you should always include a unit in your answer.

Fractions — From 5.3 on, fractional answers should be denoted in 
simplest terms, unless otherwise specified. This includes rewriting 
mixed numbers as improper fractions. If a question is asked using 
only fractions, your answer should be listed as a fraction. 

Decimals — From 7.4 on, decimal answers should be rounded to 
the hundredth digit unless otherwise specified.
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[CHAPTER 1]

Introduction  
and Place Value
1.1 Math Misconceptions

Math — what does the word bring to mind? Numbers in a textbook? Lists of 
multiplication and division facts? Problems to solve?

That about sums up the typical view of math, doesn’t it? Yet while math does have 
numbers, facts, and problems, there’s much more to math than typically presented. 

But before we look at what math is, let’s start by examining what it is not. 
Specifically, let’s take a look at three common — but dangerous — misconceptions 
about math. 

Misconception 1: Math Is Neutral

Most math books approach math as a neutral 
subject. And at first glance, math certainly appears 
neutral. Neutral means “not engaged on either 
side; not aligned with a political or ideological 
grouping.”1  Christians and atheists all can agree 
that “1 + 1 = 2.” This makes math neutral, right?

To answer this, consider a tree. A tree seems pretty 
neutral too, doesn’t it? People of all religions can see 
a tree, touch a tree, smell a tree, and study a tree, 
agreeing on a tree’s basic features. But this does not mean a tree is neutral. A tree’s 
very existence begs for an explanation. Where did trees originate? Why does a tree 
have intricate parts that all work and grow together? 

Our underlying perspective regarding a tree is determined by what we would 
call a worldview. In Understanding the Times, David Noebel (founder of Summit 
Ministries) defines a worldview this way: “A worldview is like a pair of glasses — it 
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is something through which you view everything. And the fact is, everyone has a 
worldview, a way he or she looks at the world.”2  In other words, a worldview is a 
set of truths (or falsehoods we believe to be true) through which we interpret life.

Those with a biblical worldview — those looking at life in light of what the Bible 
teaches — would see a tree as part of God’s originally perfect but now fallen 
creation, while those with a naturalistic worldview might say a tree evolved from 
a cosmic bang. When we look at the essential questions of a tree — where it came 
from, how we should use it, etc. — we see a tree is not really neutral. 

In a similar way, math facts may seem neutral. People of all religions can use math 
and agree that “1 + 1 = 2.” But this does not mean math is neutral. Where did math 
originate? Why does math work the way it does? Why are we able to use math? 

Just as it does in the case of a tree, the Bible gives us a framework from which 
we can answer these questions and build our understanding of math. As we’ll 
discover, only the biblical explanation for math’s very existence makes sense out of 
math and transforms math from a dry list of facts to an exciting exploration. 

The point here is simply that math cannot be neutral. The Bible teaches Jesus is 
Lord of all — the Creator and Sustainer of all things (Colossians 1:16–17). He 
doesn’t exempt math from that. Math cannot be separated into a “neutral” box.

Misconception 2: A Biblical Math Curriculum Is the Same as Any 
Other, with a Bible Verse or Problem Thrown In Now and Then

If you’re wondering if we’re just going to add a Bible verse to the top of the page, 
mention God dividing the Red Sea when we discuss division, and have you solve 
Bible-based word problems, let me assure that this is not what this curriculum 
aims to do. Although thinking about how God divided the Red Sea might be 
helpful in turning our eyes to the Lord, it does nothing for helping us understand 
how to view division itself in light of biblical principles. In this course, we’re aiming 
to let the Bible’s principles transform our view of math itself.

Misconception 3: Math Is a Textbook Exercise

Quite often, math comes across as a textbook exercise. We memorize this and 
solve that. There are so many seemingly arbitrary rules to follow that it’s easy to 
scratch your head and wonder who invented this complex system in the first place.

If your view of math is confined to rules and problems — or even if you know there’s 
more to math but are not sure why it feels so dry — there is good news! Math is not 
a mere textbook exercise. Math helps us observe the design throughout creation, 
design instruments, draw, build boats, operate a business, work with computers, 
cook, sew, and more. In this course, we’ll incorporate history, science, and real-life 
applications as we go, exploring math both inside and outside of a textbook.
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1.2 What Is Math?

If you were to try to work in nearly any field of science — be it chemistry, 
engineering, or anatomy — you would need to study and use math. Why? Because 
math is the tool scientists use to explore creation. 

Not only do scientists use math, but artists, pilots, musicians, business managers, 
clerks, sailors, and homemakers do too. All occupations use math to one extent or 
another!

Math also shows up in everyday life. Every time you go shopping, you use math — 
math helps you know how much an item costs (price tags use numbers!), find the 
unit price of an item, estimate your total, etc. You use math in the kitchen when 
you measure ingredients. You use math to count the number of silverware to put 
on the table, to balance a checkbook and track your finances, to understand loans 
and car payments, to figure out how many bags of bark you need to landscape a 
flowerbed or how many square feet of carpet to cover a room — the list of math’s 
everyday uses goes on and on. 

Math is clearly more than intellectual rules and techniques found in a textbook. 
Which brings us to the question: what is math? 

When we start with the Bible — God’s revealed Word to man — as our source 
of truth, it makes sense out of every area of life, including math. It gives us a 
framework for answering not only what math is, but also where it came from and 
why it works. Take a look at just a few truths with me.

■	All things were created and are sustained by the eternal, triune God of the 
Bible. 

In the beginning God created the heaven and the earth. And the 
earth was without form, and void; and darkness was upon the face 
of the deep. And the Spirit of God moved upon the face of the waters 
(Genesis 1:1–2).

In the beginning was the Word, and the Word was with God, and 
the Word was God. The same was in the beginning with God. All 
things were made by him; and without him was not any thing made 
that was made. . . . And the Word was made flesh, and dwelt among 
us (and we beheld his glory, the glory as of the only begotten of the 
Father,) full of grace and truth (John 1:1–3, 14).

Jesus answered them. . . . “I and my Father are one” (John 10:25, 30).

For by him [Jesus] were all things created, that are in heaven, and 
that are in earth, visible and invisible, whether they be thrones, or 
dominions, or principalities, or powers: all things were created by 
him, and for him: And he is before all things, and by him all things 
consist (Colossians 1:16–17).

Anatomy

Computer
Science Biology

Physics

Engineering

Math

Chemistry
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[referring to Jesus] . . . upholding all things by the word of his power  
. . . (Hebrews 1:3).

■	God is a consistent God who never changes — and who has appointed the 
ordinances of heaven and earth.

For I am the LORD, I change not; therefore ye sons of Jacob are not 
consumed (Malachi 3:6).

Thus saith the LORD; If my covenant be not with day and night, and 
if I have not appointed the ordinances of heaven and earth; Then will 
I cast away the seed of Jacob and David my servant, so that I will not 
take any of his seed to be rulers over the seed of Abraham, Isaac, and 
Jacob: for I will cause their captivity to return, and have mercy on 
them (Jeremiah 33:25–26).

■	God created man in His own image and gave him the task of subduing the 
earth.

So God created man in his own image, in the image of God created 
he him; male and female created he them. And God blessed them, 
and God said unto them, Be fruitful, and multiply, and replenish the 
earth, and subdue it: and have dominion over the fish of the sea, and 
over the fowl of the air, and over every living thing that moveth upon 
the earth (Genesis 1:27–28).

Let’s look at how these truths apply to math. A never-changing God is holding all 
things together and has appointed the ordinances — or the decrees — by which 
heaven and earth operate. God created and sustains a consistent universe. God 
also created man in His image, capable of subduing and ruling over the earth. 

We already established that math is the tool scientists use to describe creation. 
In other words, math is a way of describing the consistencies God created and 
sustains! Man is able to use math to, in a very limited way, think “God’s thoughts 
after Him” (Johannes Kepler) because God made us in His image and gave us the 
ability to subdue the earth. 

The Bible teaches that God created all things — and math is no exception. The 
symbols and techniques we think of as math describe on paper the ordinances 
by which God governs all things. Men might develop different symbols (people 
have used many different numerals and techniques throughout history, as we’ll see 
throughout this course), but men have no control over the principles. No matter 
what symbols we use to describe it, one plus one consistently equals two because 
God both decided it would and, day in and day out, keeps this ordinance in place!

Math, in essence, is a way of describing the consistent way this universe 
operates. It is the language, so to speak, we use to express the quantities and 
consistencies around us — quantities and consistencies God created and sustains. 
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Math works outside a textbook because God is faithful to uphold all things. 
Math facts never change because God never changes. We can rely on math because 
we can rely on God. Math is complex and complicated because God created a 
complex universe and it takes a lot of different rules and methods to even begin 
to describe it! Math applies universally because God’s rule is universal — He’s 
present everywhere. Math helps us see the incredible wisdom and care displayed 
throughout creation — an order, wisdom, and care that is there because we have 
a wise and caring Creator! At the same time, math reveals the effects of sin that 
mar God’s original design — effects that are there because of man’s sin, but which 
remind us of the mercy found in Jesus. 

Mathematics transfigures the fortuitous concourse of atoms into the 
tracery of the finger of God.  — Herbert Westren Turnbull3

Do you catch how this understanding could revolutionize our view of math? Math 
doesn’t have to be a dry subject of mere numbers and techniques. Numbers and 
techniques are tools to describe God’s creation and help us with the real-life tasks 
God’s given us to do. As Walter W. Sawyer points out, mathematics is like a chest 
of tools.

Mathematics is like a chest of tools.  — Walter W. Sawyer4

I love that imagery. Picture a chest of tools for a moment. Some tools — such as 
a screwdriver — are easy to use and apply in thousands of situations. Other tools 
— such as a router — take more time and dedication to master and serve a more 
limited, although just as necessary, purpose. 

In a similar fashion, some math concepts — such as addition — are fairly easy to 
grasp and frequent in their applications. Others — such as some aspects of algebra 
or calculus — require more dedication to grasp. These higher-level concepts, 
while they might not come in handy as often as addition, have very powerful 
applications.

From basic to advanced, all of math is a tool that points us to God and can be used 
to complete the tasks He gives us to do!

Ready to Begin?

Some of you reading this course probably dislike math or find it an incredibly 
challenging task. Others of you may love it and be gifted in it. 

Whatever your current view of math, I invite you to take a journey with me. While 
we’ll be seeking to approach concepts from a biblical worldview throughout the 
course, these first two chapters will be extra-intensive in that department, as we 
want to lay a firm foundation upon which to build the rest. So please bear with the 
extra amount of reading.

My prayer is that you’ll acquire a deeper appreciation for God’s greatness and 
faithfulness and be encouraged in your walk with Him as you delve into the world 
of mathematics.
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1.3 The Spiritual Battle in Math

The Bible gives us a solid foundation for why math works. Math is a tremendous 
testimony to God’s faithfulness and power. Yet math has been sadly twisted.

Let’s take a deeper look at the spiritual battle within math, at how men try to 
explain math apart from God, and at how ultimately only a biblical worldview 
makes sense out of math.

Naturalism in Math

Consider the following quote:

One cannot escape the feeling that these mathematical formulae  
have an independent existence and an intelligence of their own,  
that they are wiser than we are, wiser even than their discoverers, 
that we get more out of them than was originally put into them.   
— Heinrich Hertz (German physicist)5

Notice that Mr. Hertz is claiming that mathematical formulae themselves are wise 
and have an independent existence. Rather than acknowledging God, he is giving 
math itself the credit for math’s amazing ability to work. This is a very naturalistic 
view of math — an attempt to explain math from only natural causes, apart from 
God. 

Let’s think about this claim for a moment. Can math itself explain its own 
existence? Remember, math goes hand in hand with creation. Things don’t just 
“happen.” We live in a universe consistent enough that we can describe gravity 
using math and call it a law. If the universe were run by random processes, why 
would we see such order, design, and consistency? 

Besides this, viewing math as a self-existent truth still doesn’t answer the 
fundamental question of how we know it’s true in the first place. Is the foundation 
for truth our experience? Do we know that one plus one equals two because we 
experience that it does, and therefore assume that it always will? 

Our experience in itself is not a solid foundation for truth. For one, we can never 
experience everything, so therefore could never truly know anything for sure! 
Math is so useful because it helps us solve problems we have not experienced. It 
allows us to calculate the force needed to get a brand-new rocket into the air — 
and to predict how a bridge will hold weight before we build it. Much of math 
deals with things that we can never actually experience, but which help us solve 
a variety of real-life problems. In order to use math, we have to assume it works 
consistently in areas we have never — and never can — experience. 
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Humanism in Math

Now consider this quote:

The German mathematician Leopold Kronecker (1823–91) once said, 
“God made the integers, all else is the work of man.” First causes, this 
comment suggests, are divine, while the complexities, minutiae, and 
refinements of mathematics are a human creation. For Kronecker’s 
contemporary Dedekind, however, the integers too were the “free 
creations of the human mind.” . . . For him, as for many modern 
mathematicians and theorists, mathematics stood as an independent 
and secular discipline.  — Denis Guedj6

Who did Kronecker and Dedekind give credit for math? Man. Both these men 
viewed math as the product of the human mind. Rather than giving God the credit 
for math’s ability to work, they gave it to man. This is a humanistic view of math — 
a view that focuses on man and his achievements, ignoring his Creator.

Let’s think about the problem with basing truth on human reasoning. Time and 
again, math concepts men think up using mathematical reasoning end up applying 
in creation. Why is this? Why do men’s thoughts line up with reality? Why do we 
find such an orderly, mathematical world all around us? 

Albert Einstein expressed the problem this way — and admits there’s something 
miraculous in the world that can’t be explained by reasoning alone.

Even if the axioms of the theory are posited by man, the success of 
such a procedure supposes in the objective world a high degree of 
order which we are in no way entitled to expect a priori [based on 
man’s reasoning]. Therein lies the “miracle” which becomes more 
and more evident as our knowledge develops. . . . And here is the 
weak point of positivists and of professional atheists, who feel happy 
because they think that they have not only pre-empted the world of 
the divine, but also of the miraculous.7  

Also, why are there universal laws of logic we rely on to be true? Why can’t one 
person decide that 1 plus 1 will equal 2 and another that it will equal 3 and they 
both be right? This sort of thinking, if applied consistently, would completely make 
math, as well as logic itself, meaningless and useless! 

The Battle Defined

The spiritual battle over math is the same as the battle we find in other areas of life. 
Will we recognize our dependency on God, or claim independence from Him? 

Our view of any area of life — including math — is either going to stem from 
a dependent perspective on life (one that recognizes our dependency on God 
and His Word) or an independent one. When we get down to the fundamental 
level, there is no such thing as neutrality. Even a tree is not neutral — as we saw 
in the first lesson, the tree was either created by God or got here some other way. 

While it is true that 
man developed 
math symbols and 
techniques, it makes 
no sense why those 
symbols and techniques 
mean anything in real 
life if they truly are 
the “free creations of 
the human mind” as 
Dedekind stated.

For more information 
different worldviews on 
math and how the biblical 
worldview makes sense 
of math, see James D. 
Nickel, Mathematics: 
Is God Silent? rev. ed. 
(Vallecito, CA: Ross House 
Books, 2001). For more 
information on how logic 
itself can’t be explained 
apart from God, see Dr. 
Jason Lisle, The Ultimate 
Proof of Creation: 
Resolving the Origins 
Debate (Green Forest, AR: 
Master books, 2009).
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Likewise, math is either dependent on God or it is not. If God does not receive the 
glory for math’s ability to work, that glory goes somewhere else. As R.J. Rushdoony 
points out:

. . . mathematics is not the means of denying the idea of God’s pre-
established world in order to play god and create our own cosmos, but 
rather is a means whereby we can think God’s thoughts after Him. It 
is a means towards furthering our knowledge of God’s creation and 
towards establishing our dominion over it under God. The issue in 
mathematics today is root and branch a religious one.8 

The Bible is clear: we are to trust and worship God; He gives us our every breath, 
He controls each aspect of life, and He determines truth — apart from Him we are 
nothing. If man ignores this truth, he does so to his own demise.

For the wrath of God is revealed from heaven against all ungodliness 
and unrighteousness of men, who hold the truth in unrighteousness; 
Because that which may be known of God is manifest in them; for 
God hath shewed it unto them. For the invisible things of him from 
the creation of the world are clearly seen, being understood by the 
things that are made, even his eternal power and Godhead; so that 
they are without excuse: Because that, when they knew God, they 
glorified him not as God, neither were thankful; but became vain  
in their imaginations, and their foolish heart was darkened. 
Professing themselves to be wise, they became fools, And changed  
the glory of the uncorruptible God into an image made like to 
corruptible man, and to birds, and fourfooted beasts, and creeping 
things (Romans 1:18–23).

The Depth of the Battle

The battle over math is much more than a theological squabble over numbers. It 
ultimately affects our entire approach to truth.

If we look at math as something spiritually neutral — a self-existent or man-made 
fact — then math becomes an independent source of truth. We find ourselves 
viewing math as the ultimate standard rather than God’s Word.

Millions of people have embraced the lie of evolution because they believe it has 
been scientifically proven to be true. At the root of their belief is the false notion 
that deductive reasoning or mathematical principles are the ultimate standard 
ruling the universe. 

Yet, apart from God, it does not even make sense why we can reason or why 
the universe is consistent! Science and math would be impossible in a universe 
without God. The very tool skeptics try to use to disprove God cannot be 
explained apart from God. Even honest unbelievers acknowledge their inability to 
explain math in their worldview. Most simply ignore the why.



1. INTRODUCTION  
AND PLACE VALUE 21

In this article I shall not attempt any deep philosophical discussion of 
the reasons why mathematics supplies so much power to physics. . . . 
The vast majority of working scientists, myself included, find comfort 
in the words of the French mathematician Henri Lebesgue: “In my 
opinion a mathematician, in so far as he is a mathematician, need 
not preoccupy himself with philosophy — an opinion,  
moreover, which has been expressed by many philosophers.”  
— Freeman J. Dyson9

But when we look at math from a biblical perspective, we understand that math 
is not a source of truth; it is a description of the consistencies of God. God is the 
source of truth. We can only rely on math to work because we can trust God. Thus, 
as we study math in this course, we will not approach it as a means to determine 
truth or as the source of truth, but rather as a tool to help us understand the 
trustworthy principles our trustworthy God created and sustains.

Math and the Gospel
Although we might try our hardest, we cannot change math. We 
can change the symbols or names we use in math, but we cannot 
change what the names and symbols represent — 1 of something 
plus 1 of something else will consistently equal 2. Math is not 
relative. Why? 

Because God is God and we are not! He, not us, decides how 
things will be. He set and keeps certain principles in place, and if 
we want a math that will actually work, we have to conform to those 
principles. 

Math reminds us that God decides truth, not us. We need to be 
careful in every area that we take head to the truth He has revealed 
to us in His Word, the Bible, and that we don’t try to change those 
truths to fit what we think or want. For example, the Bible tells us 
that salvation is by faith in Jesus, and not by works or any other way 
(Ephesians 2:8; James 14:6), and that hell is real (Revelation 21:8). 

It’s tempting to try to change this truth, thinking there must be some 
good in ourselves or that God would not really send people to hell 
(especially those whom we love and think are nice), but God’s truth 
is not open to negotiation. He’s God, not us. If we want salvation, 
we have to conform to what God says will save us.

Over and over again, the Bible, God’s Word, urges us to trust in 
God’s way of salvation — Jesus. Only He could pay the penalty for 
sin. Only by believing upon Him — admitting our own helplessness 
— can we be saved. Just as God is faithful to hold this universe 
together consistently, He will be faithful to everything else He says 
in His Word. You can rely on what God says.

If you’ve not responded to God’s gift of salvation, today is the day 
to do so! He will keep His Word — both to save and to punish. 

If you’re not sure if you have trusted God’s way of salvation, don’t 
delay in making sure. If you are sure, then take tremendous comfort 
in the knowledge that God is faithful and will complete what He 
began in you.

For more information  
on God’s plan of  
salvation, please see  
www.biblicalperspective.net.
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Keeping Perspective
The battle we face in math is ultimately a battle to remember our complete 
dependency on God. Even our ability to count comes from Him! Each math 
concept works only because of His faithfulness. Apart from Him, we truly can 
do nothing.

Ever since the Garden of Eden, Satan has been trying to distort the truth and 
get men to trust themselves instead of God. He has done this very thing in 
math — turning what should be a testimony to God into a testimony to man 
and math.

We can all see that math works. Someone or something has to be responsible 
for math’s ability to work. If we’re not giving the glory for math to God, then 
we’re ending up giving it to man or to math. If math is not encouraging us 
that we can depend on our faithful, all-powerful God, then it is subtly telling 
us we can live independently from Him and determine our own truth.

Yes, indeed, there is a spiritual battle in math — and it’s the same battle we 
face in every area of life. 

1.4 Numbers, Place Value, and Comparisons

Now that we’ve seen the overall foundation the Bible gives us and explored a 
little about the spiritual battle in math, let’s begin applying what we’ve discussed 
to specific aspects of math. In order to build our understanding of math from 
the foundation up, we’ll be exploring simple review concepts for these first few 
chapters. As we do, though, we’ll be learning important principles that apply to 
more advanced concepts. 

An Overview of Mathematical Symbols and Terms

Math is filled with symbols and terms. Just as it is helpful if we use the same 
words to refer to objects (a book, sink, couch, etc.), it’s helpful to use standardized 
symbols and terms in math. 

Before we jump into looking at specific symbols and terms, though, let’s take a 
minute to look at the big picture. Much of math is a naming process — a way of 
describing quantities and consistencies God created. So let’s take a look at the first 
“naming” process the Bible describes: Adam naming the animals. 

And out of the ground the LORD God formed every beast of the 
field, and every fowl of the air; and brought them unto Adam to see 
what he would call them: and whatsoever Adam called every living 
creature, that was the name thereof (Genesis 2:19).
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In naming the animals, Adam 
1. observed God’s creation (the animals) and 
2. assigned names to describe the different animals.

In describing quantities, we 
1. observe God’s creation (the quantities around us) and
2. assign names (or symbols) to different quantities.

So what can we learn from Adam naming the animals? Well, notice that God 
brought the animals to Adam for naming — Adam was in God’s presence while 
observing and naming. While sin separated man from his Creator, through Jesus 
we can again know God and worship Him while using math to describe His 
creation. This holds true not just for basic math, but for every area of math we’ll 
explore. In fact, the Bible urges us to do “whatsoever” we do “as to the Lord”!

And whatsoever ye do, do it heartily, as to the Lord, and not unto 
men; (Colossians 3:23).

Number Systems: Beyond Quantities
Number systems prove useful in other ways besides recording 
quantities too. For example, house numbers and telephone 
numbers don’t record quantities — instead, they give us a way 
of “naming” homes and telephone lines. As another example, 
numbers and math are used in cryptography (“the art of writing or 
solving codes”)11 to help code messages. And before you picture 
coding as only wartime messages across enemy lines, did you 
realize that computers use a code to translate the letters or symbols 
you type on a keyboard? There’s a number assigned to every letter 
or symbol that can be typed on a keyboard! 

Reviewing Numerals and Place Value

Undoubtedly, you already know how to count (use words — like “one” — to 
describe quantities) and write numerals (use symbols — like “1” — to describe 
quantities). Below is just a quick review.

“Zero” is the name we mainly use in English to describe having nothing (you may 
also sometimes hear other names, such as “nought,” “oh,” or “nil,” used to mean 
nothing). “One” is the name for a single unit — a single pen, dollar, CD, etc. “Two” 
is the name for a group of 2 units of anything. 

Rather than words, we commonly use symbols. It’s a lot easier to write “1” than 
to spell out “one” all the time! At the same time, though, it would be impossible 
to have a different symbol for every number. Instead, we use a concept known as 
place value. 
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Different Words for Quantities —  
The Tower of Babel
Different cultures use different words to describe quantities. For 
example, a single quantity is called one in English, uno in Spanish, 
eine in German, and один in Russian. Once again, the Bible tells us 
why. 

Genesis 11:1–9 tell us about an event that changed the world — the 
Tower of Babel. Prior to the Tower of Babel, “the whole earth was of 
one language, and of one speech” (Genesis 11:1). Thus, men would 
have used the same words to describe quantities.

At the Tower of Babel, men misused the ability God had given them 
to communicate and sought to unite against God and make a name 
for themselves. The project stopped abruptly when God came down 
and confused their languages. The Tower of Babel accounts for the 
many different language systems we find, including the different 
words used to describe numbers. 

In place value, the place, or location, of a number determines its value. So we use 
the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to represent up to nine. Once we reach ten, we 
move to the next “place” over, using the same digits, but knowing that each one 
represents a set, or group, of ten. So “10” represents 1 set of ten, and 0 sets of one, 
“20,” represents 2 sets of ten, and 0 sets of one, and “21” represents 2 sets of ten, 
and 1 set of one.

This place-value concept can be extended as far as necessary to represent numbers. 
Once we have ten tens, we move on to hundreds, then thousands, then ten 
thousands, then hundred thousands, and so forth.
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Using our place-value system, we would represent the approximate world 
population in 2011 as 6,946,043,989 (or six billion, nine hundred forty-six million, 
forty-three thousand, nine hundred eighty-nine).10  
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Notice how the commas every three places help our eyes count the places and 
determine the value. 

4444444 4,444,444

In other countries, decimal points (4.444.444) or other separators are used instead 
of commas. (An important thing to keep in mind if ordering something online 
from another country!) Spaces (4 444 444) are also a recognized way of separating 
the places.

Reading Numbers

Notice how when reading numbers, we recycle terms. We start with ones (our 
basic units), tens, and hundreds. Then we have thousands (our new unit), followed 
by ten thousands and hundred thousands. We repeat this for millions, billions, etc. 

H
un

dr
ed

 tr
ill

io
n

Te
n 

tr
ill

io
n

O
ne

 tr
ill

io
n

H
un

dr
ed

 b
ill

io
n

Te
n 

bi
lli

on

O
ne

 b
ill

io
n

H
un

dr
ed

 m
ill

io
n

Te
n 

m
ill

io
n

O
ne

 m
ill

io
n

H
un

dr
ed

 th
ou

sa
nd

Te
n 

th
ou

sa
nd

O
ne

 th
ou

sa
nd

H
un

dr
ed

Te
n

O
ne

, , , ,

Notice also that in writing, we use commas every three digits, thereby separating 
the “thousands,” “millions,” etc.

To read a number, we read the number from left to right. If a digit has a zero, 
we don’t read that place, as there’s nothing to “report” there (as in the 0 in the 
hundred’s place in 123,456,567,087).

123,456,567,087 would be read “one hundred twenty-three billion, four hundred 
fifty-six million, five hundred sixty-seven thousand, eighty-seven.”

Now, I am sure you already know how to read numbers in English, but did you 
realize that there are variations in how to read numbers? The British often add 
an “and” (example: “one hundred and twenty-one” instead of “one hundred 
twenty-one”). 1,325 could also be read as “thirteen twenty-five” instead of as 
“one thousand three hundred twenty-five.” This might make sense for dates (“the 
year thirteen twenty-five”) or even house numbers (“I live at thirteen twenty-
five Pleasant Lane”). When reading a street address over the phone, you might 
even just read each digit by itself, as in “one, three, two, five Pleasant Lane” to 
avoid confusion. These variations remind us that names are a tool to help us 
communicate, so clearly communicating is the most important thing.

When asked to write the word you would use to read a number in this course, use 
the traditional American method ( “one thousand, three hundred twenty-five” for 
1,325).
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Reviewing Basic Comparison Terms and Symbols

If a number is larger, or has more, than another number, we say it is greater than 
the other number. If it is smaller/has less, we say it is less than the other number. If 
two quantities are the same, we say they are equal. If they are not the same and we 
do not want to make a specific comparison as to which one is greater, we say they 
are not equal. (Any number that is greater than or less than another number is 
also not equal to it — it’s just a matter of what point we want to make.)

The symbols <, >, =, and ≠ are merely “shortcuts” for describing how numbers 
compare. They save our fingers from having to write the word out every time. It’s a 
lot easier to write < than “less than.” It also makes equations easier to read. 

5 is less than or  
does not equal 6. 5 equals 5

5 < or ≠ 6 5 = 5
6 is greater than or 

does not equal 5 6 equals 6

6 > or ≠ 5 6 = 6

Would it surprise you to learn that >, <, =, and ≠ are algebraic symbols? Any time 
we use a non-numerical symbol in math, we are actually using algebra. So >, <, 
=, and ≠ are actually part of algebra! Algebra is nothing to fear — it’s just a way of 
using symbols to describe God’s creation. In the case of >, <, =, and ≠ , we’re using 
symbols to describe how numbers compare.

Different Ways to Compare Numbers
Much as symbols for writing numbers have varied, so have symbols 
for comparing them. While we’re used to using the “=” sign to 
mean “equal to,” other symbols have been used throughout history 
— the box shows just a few. Instead of symbols, many cultures also 
used words or contractions to describe equality (pha, equantur, 
aequales, gleich, etc.).12 Once again, history helps us see that 
the symbols we study in math are just an agreed-upon language 
system we use today to describe the quantities and consistencies 
God created and sustains. 

Notice that the “less 
than” and “greater than” 
signs are the same, but 
pointing the opposite 
directions. You can 
remember which direction 
to put the symbol by 
remembering that the 
larger side goes with the 
larger number.
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Keeping Perspective
We looked today at a few names (one, two, three, etc.) and symbols (1, 2, 3, 
=, >, <, etc.) used in math. As we continue our study of math, we’re going 
to learn various names and symbols men have adopted to describe different 
consistencies or operations. Keep in mind that terms and symbols are like a 
language — agreed-upon ways of communicating about the quantities and 
consistencies around us.

1.5 Different Number Systems

It’s all too easy to start viewing the terms, symbols, and methods we learn in math 
as math itself, thereby subtly thinking of math as a man-made system. A look at 
history, however, reveals many other approaches to representing quantities. Let’s 
take a look at a few of them and at how they compare with our place-value system.

Place-Value Systems

In the last lesson, we reviewed how the number system we’re mainly familiar with 
uses the place, or location, of a digit to determine its value. This is known as a 
place-value system. 

Perhaps place value is easiest to picture using a device used extensively throughout 
the Middle Ages: an abacus. Each bead on the bottom wire of an abacus represents 
one; on the next, ten; on the third, one hundred; and on the fourth, one thousand. 
To represent a quantity on an abacus, we move the appropriate number of beads 
from each wire to the right. In the abacus shown, the 1 bead to the right on the 
thousands wire represents 1 thousand, the 4 beads to the right on the hundreds 
wire represent 4 hundred, the 9 beads to the right on the tens wire  represent 9 
tens, and the 1 bead on the ones wire represent 1. Altogether, that makes 1,491.

Thousands
Hundreds

Tens
Ones

1,491

Just as the place, or line, of a bead changes its value, the place, or location, of a 
symbol in a place-value system changes its value. The number system commonly 
used today is called the Hindu-Arabic decimal system (or just the “decimal 
system” for short). This system came from the Hindu system, which the Arabs 
adopted and brought to Europe. 
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The Quipu — An Intriguing Approach
The Incas — an extensive empire in South America spanning more 
than 15,000 miles — had a fun approach to recording quantities. 
They tied knots on a device called a quipu (kē pōō).13  The quipu 
system was extremely complicated, and only special quipu makers, 
called quipucamayocs, were able to interpret them. Although we 
do not know a lot about quipus, we do know they used place value. 
The location of the knot, along with some other factors, determined 
its value.

Apparently, the Incas were very successful with this innovative 
approach. Not only did they operate a huge empire, but the Incas 
baffled the Spanish conquerors by their ability to record the tiniest 
details as well as the largest ones on their quipus.14  

Fixed-Value Systems

A different approach to recording quantities is to repeat symbols to represent other 
numbers. For example, here are some symbols in Egyptian numerals (hieroglyphic 
style).15

= 1 = 100

= 10 = 1,000

The next figure shows two different quantities represented using Egyptian 
numerals and our decimal place-value system. Notice how when writing twenty-
two, the Egyptians repeated their symbol for one and their symbol for ten twice. 
They put the smaller values on the left and the larger values on the right. Thus the 
symbol for ten ( ) is to the right of the symbol for one ( ). 

Decimal System 
a place-value system

Egyptian System 
a fixed-value system

22

1,491

We’ll refer to number systems that use repeated symbols like this as fixed-value 
systems. 
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A Deeper Look at the Egyptian System
Notice that in the Egyptian version of 1,491, the symbols representing 
“ninety” are stacked on top of each other. 

This: Rather than this:

While there were many variations within the Egyptian system over 
time, in general, when writing more than four of each symbol, the 
Egyptians spaced, stacked, or grouped the symbols in sets 
(groups) of four or less, with the larger set on top or first.16  This 
practice made it easier to count the symbols (and thus to read the 
number!) at a glance.

50

space

stacked

Let’s compare our decimal place-value system with the Egyptian system. To record 
forty-nine objects in the Egyptian system, we would repeat the symbol for “one” 
nine times to show we had nine ones, and then repeat our symbol for “ten” four 
times to show we had four sets of ten. In the decimal system, we would instead use 
our symbols for four and nine, putting the 4 in the tens column so it represents 
four sets of ten and 9 in the ones column, representing nine sets of one.

● ● ●

●●●●● 

●●●●●

●●●●● 

●●●●●

●●●●● 

●●●●●

●●●●● 

●●●●●
● ● ●

● ● ●

set of 10 set of 10 set of 10 set of 10 sets of 1
“Forty-nine” = four sets of ten and nine ones

Decimal System 
a place-value system

Egyptian System 
a fixed-value system

49
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When we compare forty-nine in both systems, we see it takes significantly fewer 
symbols to represent the number in the decimal system. Place value saves a lot of 
extra writing!

To represent a number like forty in the decimal system, we would again use 
a 4, adding a zero (0) to represent that we have no (0) sets of one. Notice the 
importance of a zero (0) in a place-value system; without it, we would have no way 
of showing that the 4 represents 4 sets of ten instead of 4 sets of one.

●●●●● 

●●●●●

●●●●● 

●●●●●

●●●●● 

●●●●●

●●●●● 

●●●●●

set of 10 set of 10 set of 10 set of 10
“Forty” = four sets of ten and no ones

Decimal System 
a place-value system

Egyptian System 
a fixed-value system

40

Ordered Fixed-Value Systems

Another approach to recording quantities is to again use a limited number of 
symbols and repeat those symbols, but to add rules regarding their order that 
change the symbols’ meaning. Roman numerals are an example of an ordered 
fixed-value system. 

Take a look at these symbols used for quantities in Roman numerals:

I 1
V 5
X 10
L 50
C 100
D 500
M 1,000

As with the Egyptians, quantities in Roman numerals are represented by repeating 
symbols, although this time with the larger quantities on the left. 

22 is written XXII in Roman numerals.

But unlike in the Egyptian system, the same symbol is generally not repeated more 
than three times. Instead, it is assumed that whenever a symbol representing a 
smaller quantity is to the left of a symbol representing a larger quantity, one should 
subtract the value of the smaller quantity from the value of larger quantity to get 
the value the two symbols represent. 
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I 1 XI 11
II 2 XII 12
III 3 XIII 13
IV 4 XIV 14
V 5 XV 15
VI 6 XVI 16
VII 7 XVII 17
VIII 8 XVIII 18
IX 9 XIX 19
X 10 XX 20

Now let’s take a look at the same number we looked at with the Egyptians: 1,491. 

Decimal System 
a place-value system

Roman Numeral System 
an ordered fixed-value system

1,491

MCDXCI

M =  
CD =  
XC =  

I = 

1,000 
500 – 100 = 400 
100 – 10 = 90 
1

1,000 + 400 + 90 + 1 = 1,491

Keeping Perspective
While you may use only our current decimal place-value system on a regular 
basis, being aware of other systems will help you learn to better see our place-
value system as just one system to help us describe quantities. 

1.6 Binary and Hexadecimal
1.6 Place-value Systems

Before we move on, we’re going to take one more look at the concept of place 
value, as it’s a pretty important concept. While I’m sure you’re quite familiar with 
our current place-value system, did you realize computers use place-value systems 
based on a value besides ten? 

Well, they do! They use what’s known as a binary place-value system. Exploring 
this system, along with the hexadecimal place-value system, is not only cool, but it 
can also help provide an even firmer grasp of the decimal place-value system. Let’s 
take a look.

Notice that Roman 
numerals would not 
lend themselves well 
to quickly adding or 
subtracting on paper! 
There is a reason we 
use the decimal place-
value system for most 
purposes.

There was a time when 
“four” was written IIII 
instead of IV. But IV is 
easier to read, as there 
are fewer symbols 
involved.

Notice that the smaller 
quantity is to the left of 
the larger—this means to 
subtract I from V, giving us 
5 – 1, or 4.

Notice that the smaller 
quantity is to the right of the 
larger—this means to add I 
to V, giving us 5 + 1, or 6.
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Unwrapping Place-Value Systems

The value we choose for each place in the system is called our base. You can 
picture a base like a container — the size of the container determines how much  
it can hold. In the decimal system, each place, or container, can hold ten digits  
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9); once we reach ten of a unit, we move to the next place 
over, using the same digits, but knowing that each one represents ten of the 
previous place’s value.

We write forty-two as “42” to represent 4 sets of ten (or 40) plus 2. 

4 2
0, 1, 2, 3, 
4, 5, 6, 7, 

8, 9

0, 1, 2, 3, 
4, 5, 6, 7, 

8, 9

Tens
(The digit in this place/container 
tells us how many sets of ten are 

part of the number.)

Ones

Binary System

Computers actually operate off a base-two place-value system called the binary 
system (bi means two). In a binary system, instead of allowing ten values  
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) in each place, we only allow two (0, 1). It’s as if each  
place, or container, can only hold the two digits: 0 and 1. Once we reach two, we 
move to the next place over. While in the decimal system, each place is worth ten 
times the previous place, each place in the binary system is worth two times the 
previous place. 

In binary, the number “10” represents 1 set of two and 0 sets of one, or two! 

1 0

0, 1 0, 1

Twos
(The digit in this place/container 
tells us how many sets of two are 

part of the number.)

Ones

To make things clearer, take a look at the first four places, or containers, for both 
systems. 

Decimal (base 10)

0, 1, 2, 3, 
4, 5, 6, 7, 

8, 9

0, 1, 2, 3, 
4, 5, 6, 7, 

8, 9

0, 1, 2, 3, 
4, 5, 6, 7, 

8, 9

0, 1, 2, 3, 
4, 5, 6, 7, 

8, 9

Thousands
(Each digit represents sets of  
a thousand, or ten hundreds.)

Hundreds
(Each digit represents sets of  

a hundred, or ten tens.)

Tens
(Each digit represents  

sets of a ten, or ten ones.)

Ones
(Each digit represents  

sets of one.)
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Binary (base 2)

0, 1 0, 1 0, 1 0, 1

Eights
(Each digit represents sets of  

eight, or two fours.)

Fours
(Each digit represents sets of  

fours, or two twos.)

Twos
(Each digit represents  

sets of two, or two ones.)

Ones
(Each digit represents  

sets of one.)

Let’s take a look at how this plays out with a few numbers.

Example: Find the decimal value of the binary number 1010.

1 0 1 0

0, 1 0, 1 0, 1 0, 1

Eights
(Each digit represents sets of  

eight, or two fours.)

Fours
(Each digit represents sets of  

fours, or two twos.)

Twos
(Each digit represents  

sets of two, or two ones.)

Ones
(Each digit represents  

sets of one.)

1 set of 8 = 1 x 8 = 8
0 sets of 4 = 0 x 4 = 0
1 set of 2 = 1 x 2 = 2
0 sets of 1 = 0 x 1 = 0
8 + 0 + 2 + 0 = 10
1010 in binary is the same as the decimal number 10. 

Example: Find the decimal value of the binary number 1111.
1 1 1 1

0, 1 0, 1 0, 1 0, 1

Eights
(Each digit represents sets of  

eight, or two fours.)

Fours
(Each digit represents sets of  

fours, or two twos.)

Twos
(Each digit represents  

sets of two, or two ones.)

Ones
(Each digit represents  

sets of one.)

1 set of 8 = 1 x 8 = 8
1 set of 4 = 1 x 4 = 4
1 set of 2 = 1 x 2 = 2
1 set of 1 = 1 x 1 = 1
8 + 4 + 2 + 1 = 15
1111 in binary is the same as the decimal number 15. 
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Computer Circuits
Because computer circuits run on electricity, the 0 and 1 used in 
binary numbers can easily describe the “off” and “on” flows of 
electricity controlled by an open or closed switch. Whenever 
there’s electricity, the computer interprets it as a 1. When there’s no 
electricity, it interprets it as a 0.

1 0

Switch is closed;  
electricity can flow.

Switch is open;  
electricity cannot flow.

Making Computer Talk More Concise: Hexadecimal Numbers

Although binary numbers translate well to electrical pulses, they tend to get long 
quickly (eight is written 1000), making them difficult for us to read. To help make 
numbers more readable, computer programs often use hexadecimal numbers (a 
place-value system based on 16) to represent binary numbers. Because it has a 
larger base (i.e., a container that can hold more digits), the hexadecimal system 
can represent very large numbers with fewer digits. 

Decimal: 1,200  
Binary: 10010110000 
Hexadecimal: 4B0

Base 16-Hexadecimal System

16 Symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
A represents the decimal value of 10. 
B represents the decimal value of 11. 
C represents the decimal value of 12. 
D represents the decimal value of 13. 
E represents the decimal value of 14. 
F represents the decimal value of 15.

0, 1, 2, 3, 
4, 5, 6, 7, 
8, 9, A, B, 
C, D, E, F

0, 1, 2, 3, 
4, 5, 6, 7, 
8, 9, A, B, 
C, D, E, F

0, 1, 2, 3, 
4, 5, 6, 7, 
8, 9, A, B, 
C, D, E, F

0, 1, 2, 3, 
4, 5, 6, 7, 
8, 9, A, B, 
C, D, E, F

Four thousand ninety-sixes
(Each digit represents sets of four 

thousand ninety-six, or sixteen two 
hundred fifty-sixes.)

Two hundred fifty-sixes
(Each digit represents sets of 

two hundred fifty-six, or sixteen 
sixteens.)

Sixteens
(Each digit represents sets of 

sixteen, or sixteen ones.)

Ones
(Each digit represents sets 

of one.)
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Example: Find the decimal value of the hexadecimal number 4B0.
4 B 0

0, 1, 2, 3, 
4, 5, 6, 7, 
8, 9, A, B, 
C, D, E, F

0, 1, 2, 3, 
4, 5, 6, 7, 
8, 9, A, B, 
C, D, E, F

0, 1, 2, 3, 
4, 5, 6, 7, 
8, 9, A, B, 
C, D, E, F

Two hundred fifty-sixes
(Each digit represents sets of two 

hundred fifty-six, or sixteen sixteens.)

Sixteens
(Each digit represents sets of 

sixteen, or sixteen ones.)

Ones
(Each digit represents sets 

of one.)

4 sets of 256 = 4 x 256 = 1,024
11 sets of 16 = 11 x 16 = 176
0 sets of 1 = 0 x 1 = 0
1,024 + 176 = 1,200
4B0 in hexadecimal is the same as the decimal number 1,200. 

Keeping Perspective
Place-value systems can be based off any quantity — and other systems 
besides the decimal one are in common use today! Each system is a tool to 
help us describe quantities . . . and each works best in different situations.

While it’s not necessary for you to learn the binary or hexadecimal systems 
(unless you plan to go into computer programming), take some time to 
explore them a little. Thinking outside the box this way will help you develop 
your mathematical skills and grow in your ability to use math as a tool.
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[CHAPTER 7]

Decimals
7.1 Introducing Decimals

Throughout this course, we’ve been using the decimal system (i.e., our base-10 
place-value system) to represent whole numbers. It’s time now to look at extending 
this system to also represent partial quantities. (The word decimal actually comes 
from the Latin root decimus, which means “tenth.”1) 

Most of us were exposed to representing partial amounts in the decimal system 
since we were little, mainly because we use them to write parts of a dollar. But let’s 
take a closer look at this notation and at how to use it as an effective “tool” in our 
mathematical toolbox.

Decimals — Extending the Notation

To better understand how to use our decimal system to describe partial quantities, 
picture a grocery store without decimals. How would you describe the price of 
items less than $1? You could use fractions.

$ 4 $ 2 $ 1
10 5 2

Most likely, you would write all your fractions with the same denominator to make 
them easier to compare. Since there are 100 cents in $1, it would make sense to use 
100 as the denominator.

$ 40 $ 40 $ 50
100 100 100
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Now it is easier to compare the cost of each item. We could further simplify 
expressing these costs by writing these costs in our base-10 decimal system, letting 
the place, or location, of the number show its denominator. 

$ 0.40 $ 0.40 $ 0.50

Let’s take a look at what we just did. We basically added what we call a decimal 
point to the right of the ones digits and extended place value to represent partial 
quantities. 

Each place to the left in our decimal system is worth 10 times the previous place, 
and each place to the right is worth 1

10  of the previous place. The decimal point 
separates the whole numbers from the partial ones. 
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We’re going to begin using a dot (•) rather than the times sign (x) to 
represent multiplication in our presentations. Since an “x” has a different 
meaning in algebra, it’s important to become familiar with other ways to 
show multiplication. Just remember, 4 x 2, 4 • 2, and 4(2) all mean four 
times two!

Whether representing a partial quantity or a whole one in the decimal system, the 
place, or location, of each digit determines its value. Notice how the place of the 
digit “6” gives it radically different meanings!
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0.006 = 6 thousandths or 6
1,000

0.06 = 6 hundredths or 6
100

0.6 = 6 tenths or 6
10

6 = 6 ones or six
60 = 6 tens or sixty

600 = 6 hundreds or six hundred

From now on, we’ll refer to partial quantities written in the decimal system as 
decimals. 

Switching Between Fractions and Decimals

Example: Express 0.6 as a fraction.

What fraction does 0.6 represent? Well, the 6 is in the tenths place ( 1
10 ), 

so the 6 represents 6 tenths, or 6
10 .

Example: Express 0.61 as a fraction.

Again, the 6 is in the tenths place, so we have 6 tenths ( 6
10 ). However, 

we also have a 1 in the hundredths place, giving us 1
100 . So we have  

6
10  + 1

100 . Rewriting with the same denominator and adding gives us 
60

100  + 1
100 , or 61

100 .

Now, in the last example, we didn’t really need to do the addition. Because of how 
place value works, we could have looked at 0.61 as 61

100  to begin with. All we 
really needed to do was remove the decimal point and add the denominator from 
the right-most place value represented.

You can always look at the entire decimal part of a number as a fraction of 
the right-most decimal place represented. 

Example: Express 0.612 as a fraction.

We can view this as a fraction of the right-most decimal place 
represented. So we can think of it as 612

1,000 . 

We could also have found that via addition: 
6

10 + 1
100  + 2

1,000  = 600
1,000  + 10

1,000  + 2
1,000  = 612

1,000



156 PRINCIPLES OF  
MATHEMATICS

Note: We could then simplify the fraction if we need a simple answer.

 612
1,000  

÷ 4
4  = 153

250

Example: Express 4
5  as a decimal.

Remember, our decimal place-value system expresses partial quantities 
in terms of tenths or multiples of tenths. So to write this quantity as a 
decimal, we first need to make its denominator 10 or a multiple of 10. 

4
5  • 2

2  = 8
10

Now we can rewrite it in the decimal system.
0.8

Remember, the first place to the right of the decimal point represents 
fractions of 10, so 0.8 is another way of saying 8 tenths, or 8

10 .

Applying It: Writing Checks
When writing a check, we write the amount using our decimal 
system, and then rewrite it in words. Instead of using words, though, 
the cents are typically written as a fraction (notice that the fraction 
takes up less space than the words “twenty-seven hundredths” 
would). 

Twenty-three and 27/100
23.27

Adding Zeros

You can always add zeros to the right of a decimal point. 

0.6 = 0.60 = 0.600 = 0.6000 = 6
10  = 60

100  = 600
1,000  = 6,000

10,000

Adding (or removing) a zero to the right of the last number of a decimal does 
not change its value; adding (or removing) a 0 actually multiplies (or divides) the 
fraction by  10

10 , which is worth 1.

You may already know how 

to convert 4
5

 to a decimal 

by dividing. We’ll get to 

that later in this chapter, 

but for now, practice the 

way shown in the example.
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0.6 = 6
10

6 • 10 = 60 = 0.6010 10 100

For example, when working with money in America, we represent amounts 
in terms of dollars and cents. Since there are 100 cents in a dollar, we always 
represent the partial amount of a dollar in terms of hundredths.

For example, rather than writing $0.1, we would add a zero, making this $0.10 
(which is essentially just rewriting 1

10  as 10
100 ). Now it’s easy to see that this 

represents 10 cents. 

Reading Partial Quantities in the Decimal System

0.1 could be read “one tenth” just as you would read 1
10 ; 3.24 could be read “three 

and twenty-four hundredths” (notice the “and” used to break up the whole and 
partial portion of the number).

However, you’ll sometimes hear 0.1 read as “point one” and 3.24 as “three point 
two four” or “three point twenty-four” instead. 

Or, if we were dealing with money, we’d read 0.1 as “10 cents” and 3.24 “three 
dollars and twenty-four cents.”

A Look at History
While we’re quite used to seeing quantities written with a decimal 
point today, that hasn’t always been the case. Notice some of the 
different ways “2.16” has been expressed — one mathematician 
even used our current equal sign as a way of separating whole 
numbers from partial amounts!2 

Over the years, mathematicians have tried to standardize notation. 
After all, it is a lot easier not to have to learn a whole new set 
of symbols for every math book you read! In America, we use a 
decimal point. In some other countries, however, a comma is used 
instead of a decimal point. Our current notation is only one way 
to describe quantities on paper. God gave man the creativity to 
develop different ways to express quantities.
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Keeping Perspective
Decimals (i.e., partial quantities written in our base-10 decimal system) are 
another way of describing and working with quantities. We are only able to 
explore creation this way because God gave us this ability. Mice do not do 
math, but man can because God created man in His image. Isn’t it wonderful 
that God designed us differently than animals and gave us the ability to 
fellowship with Him?

The account of King Nebuchadnezzar (Daniel 4) really brings this point 
home. King Nebuchadnezzar boasted to himself about Babylon, taking credit 
for building such a great empire. God humbled him and made him like the 
beasts of the earth. God was showing him he could not even think or function 
apart from God’s enabling. We are utterly and completely dependent on God 
for everything, including the ability to think and name quantities!

7.2 Adding and Subtracting Decimals

One of the biggest advantages to expressing partial quantities using the decimal 
system is that, we can then use the same basic methods to work with them as we 
do with whole numbers! Again, although you probably already have used these 
methods with decimal numbers, we’re going to take a deeper look at why we’re able 
to apply these methods to decimals and what we’re really doing when we do.

Addition and Subtraction

Notice that each digit — including those to the right of the decimal point — in 
the decimal system is 10 times the previous one. 

Each place to the left is 10 times the previous place.
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Keep this in mind as we look at some simple additions. 

Say we need to add 0.9 + 0.1. Notice that if we rewrite this as fractions, we see that 
it equals 1. 

0.9 + 0.1 

9
10  + 1

10  = 10
10  = 1

Now say we want to add 0.09 + 0.01. Again, let’s do it with fractions.

0.09 + 0.01

9
100  + 1

100  = 10
100   

We could simplify the answer down to 1
10 , as 10

100  ÷ 10
10  = 1

10 .

Notice how we could have found both of these answers using the standard 
addition algorithm we use for whole numbers. We can rename partial quantities 
just as we can whole quantities because each place is still 10 times the previous 
one. Thus, we can add and subtract decimals (i.e., partial quantities written in the 
decimal system) using the same basic processes we do for whole numbers. 

Rename 10
10  as 1: Rename 10

100  as 1
10 :

1 1
0 . 9 0 . 0 9

+ 0 . 1 + 0 . 0 1
1 . 0 0 . 1 0

Now let's picture adding 0.26 + 0.17 on an abacus for a moment. Notice how we 
labeled the bottom three rows of our abacus as partial quantities, and that we 
exchanged 10 from one row for 1 from the row above. This is exactly what we do 
on paper when we add partial amounts using our traditional addition algorithm.

Example: Find 0.26 + 0.07 on an abacus.
Step 1: Form the starting 
quantity of 0.26.

Hundreds

Tens

Ones

Tenths

Hundredths

Thousandths
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Step 2: Add 0.07.

Notice how we run out of 
beads after adding 4 out 
of the 7 hundredths.

Hundreds

Tens

Ones

Tenths

Hundredths

Thousandths

We have to rename 10 
hundredths as 1 tenth.

Hundreds

Tens

Ones

Tenths

Hundredths

Thousandths

And then we can add the 
remaining 3 hundredths.

Answer: 0.33

Hundreds

Tens

Ones

Tenths

Hundredths

Thousandths

Example: Find 0.26 + 0.07 on paper.

Rename 10
100  as 1

10 :
1

0 . 2 6
+ 0 . 0 7

0 . 3 3

Likewise, the same process works for subtracting partial amounts written as 
decimals that we use for whole numbers.

Example: Find 0.26 – 0.07 on an abacus.
Step 1: Form the starting 
quantity of 0.26.

Step 2: Subtract 0.07.

Hundreds

Tens

Ones

Tenths

Hundredths

Thousandths

We only have 6 hundredths and we need to subtract 7. So we have to  
rename 1 tenth as 10 hundredths and mentally subtract 7 from that,  
leaving 3 additional hundredths.
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Another way of thinking 
about it is that renaming 
the 1 tenth to 10 
hundredths gives us a 
total of 16 hundredths, 
which minus 7 equals 9. 

Answer: 0.19

Hundreds

Tens

Ones

Tenths

Hundredths

Thousandths

Example: Find 0.26 – 0.07 on paper:

Rename 1
10  as 10

100 :
1 1

0 . 2 6
– 0 . 0 7

0 . 1 9

Expanding It Further

It doesn’t matter if the numbers we’re adding and subtracting contain whole 
numbers, partial quantities, or a combination — if they’re written using the 
decimal system, we can use our standard algorithm to keep track of place value.

1 1 1 0 11 12 13 1
4 . 1 5 7 1 2 . 3 4 2

+ 5 . 8 7 8 – 8 . 9 7 8
1 0 . 0 3 5 3 . 3 6 4

Adding 0s

Note that it’s important to keep our digits lined up so we subtract tenths from 
tenths, hundredths from hundredths, etc. Otherwise, we could end up with a 
totally incorrect answer! Adding zeros to the right of a number so it has the same 
number of total digits as the other numbers we’re working with can help guard 
against accidentally lining up digits incorrectly.

4 8 . 2 3 4 8 . 2 3
– 4 . 1 – 4 . 1 0
Incorrect Correct

Keeping Perspective
Place value allows us to describe partial quantities in a way that makes it 
possible for us to use the same algorithms, or methods, to easily add or 
subtract them on paper. As a result, we’ll find decimals an invaluable tool in 
describing the quantities God has placed all around us and in serving Him 
wherever He calls us.
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7.3 Multiplying Decimals

What about multiplying numbers with decimals? While you probably already 
know this rule, let’s try to arrive at it step-by-step as if you didn’t.

Remember, in math we try to build on what we know to find simple methods 
for working with quantities. So we want to adapt our traditional multiplication 
method to work with decimals. If we could find a simple way to remove the 
decimal point temporarily and then add it back again when we were finished, we 
would be able to apply the method we already use to numbers with decimals.

Let’s take a look at a problem:

7.5 • 5

Since our place-value system is based on 10, multiplying by 10, 100, 1,000, etc., 
is just a matter of moving the decimal point to the right the appropriate number 
of times, which increases the value of each digit by 10, 100, 1,000, etc. So if we 
multiply 7.5 by 10, this would remove the decimal point, leaving us 75.

7.5 • 10 = 75.  Decimal point moved to the right.(

We can now find the answer to 75 • 5 using the method we have already learned. 
After we have finished, we can divide by 10 again to put the decimal point back in 
the correct place. Again, since our decimal system is based on 10, to divide by 10, 
we just move the decimal over one place to the left.

Since we are both multiplying and dividing by the same number (in this case, 10), 
the multiplication and division will cancel each other out and not affect the final 
result. 

Multiply to remove 
the decimal. Solve. Divide to add  

decimal back.
2 2

7 . 5 7 . 5 75 75(

x 5 x 5 x 5 x 5
375 37 . 5(

(7.5 x 10 = 75) (375 ÷ 10 = 37.5)

What if we have more than one digit to the right of the decimal? We would follow 
the same guideline, just multiplying by 100, 1,000, etc., as needed. Multiplying by 
100 would move the decimal two places to the right, by 1,000 three places, etc.
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Multiply to remove 

the decimal. Solve. Divide to add  
decimal back.

2
7 . 50 7 . 50 750 3750( (

x 5 x 100 x 5 ÷ 100
750 3750 37 . 50

2

( (

7 . 500 7 . 500 7500 37500( ( (

x 5 x 1000 x 5 ÷ 1000
7500 37500 37 . 500

2

( ( (

7 . 5000 7 . 5000 75000 375000( ( ( (

x 5 x 10000 x 5 ÷ 10000
75000 375000 37 . 5000( ( ( (

Now that we’ve found a way to multiply decimals, we want to find a way to 
simplify the process. Rather than actually writing out the multiplication and the 
division, we can just ignore the decimal point to start with and multiply as normal. 
After multiplying, we could then count the number of digits to the right of the 
decimal points in the numbers being multiplied, and add a decimal point in the 
answer so as to keep the same number of total digits to the right of the decimal 
point. This would reduce multiplying and dividing by 10, 100, 1,000, etc., to a 
mechanical process we do not even have to think about.

Example: Solve 7.51 • 5

7.51 Total of two digits to the 
right of the decimal.x 5

37.55 Total of two digits to the 
right of the decimal.

Example: Solve 7.51 • 6.45

7.51 Total of four digits to 
the right of the decimal.x 6.45

3 7 5 5
3 0 0 4 0

4 5 0 6 0 0 Total of four digits to 
the right of the decimal.48.4 3 9 5

Keeping Perspective
Once again, we’re building on what we know about place value to find an 
easy way of working with quantities. Don’t forget, though, that we can only 
do this because of the amazingly consistent way God governs all things. If 
10 times a number didn’t always equal the same thing, we couldn’t multiply 
decimals like this! Multiplication ultimately rests on God’s faithfulness.
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7.4 Dividing and Rounding with Decimals

It’s time now to explore division yet again. This time, we’re going to combine 
what we know about decimals and rounding to find yet another way to express 
remainders.

Division — From Remainder to Decimal

As we’ve seen before, when we divide two numbers, we don’t always end up with a 
whole number — sometimes we have a remainder. 

Let’s say you spent $46 for a package containing 5 DVDs. If you wanted to find out 
how much each DVD cost, you would need to divide $46 by 5.

9
5 ) 4 6
– 4 5

1

As you can see, we have a remainder of 1. In the past, we would have written this 
as r1 or 1

5 . However, sometimes it’s more helpful to represent these remainders 
using decimals. Because our place-value system is based on 10, we can use the 
same rules for dividing the remainder as we do for whole numbers. We simply add a 
decimal point to show we’re now dealing with tenths, add a zero to the dividend, 
and keep dividing!

9.2
5)46.0
– 45

1 0
–1 0

0

If we buy a package of 5 for $46, then each DVD costs $9.20. 

Note that we added a 0 after the 9.2 to make it 9.20; remember, adding zeros to 
the right of the decimal point does not change the meaning, as 2

10  is equivalent 
to 20

100 . It’s common to add a zero when working with dollars if we have 0 
hundredths so that it’s easier to quickly assess the cost. We know $9.20 means 9 
dollars and 20 cents.

Rounding

Let's say we spent $1,189 to make 42 quilt racks and want to find the price per quilt 
rack. How much did we spend per rack? 
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2 8 . 3 0 9

4 2 ) 1 , 1 8 9 . 0 0 0
– 8 4

3 4 9
– 3 3 6

1 3 0
– 1 2 6

4 0 0
– 3 7 8

2 2

Okay, we’ve divided a lot of digits, and we still have a remainder. Often when 
dividing numbers, the answer keeps going on, not expressing evenly as a fraction 
of 10, 100, 1,000, etc., for a long time, if at all. 

The good news is that we don’t typically need that exact of an answer. For most 
purposes, we can round our answers after a certain number of decimals. In this 
case, we’ll round to the nearest cent. $28.309 rounds to $28.31. So we spent $28.31 
per rack.

Remember, when rounding, you look at the digit to the right of the digit you’re 
rounding. If it is 5 or higher, you round up; if it is less than five, you round down.

1.25 rounds to 1 (if rounding to ones) or to 1.3 (if rounding to tenths). 
1.23 rounds to 1 (if rounding to ones) or to 1.2 (if rounding to tenths). 
1.527 rounds to 2 (if rounding to ones) or to 1.5 (if rounding to tenths)  
or to 1.53 (if rounding to hundredths). 

Unless otherwise specified in this course, you can round all answers to 
two decimal places (hundredths). Since we only go to hundredths in 
money (100 pennies equals $1), rounding to the hundredths makes sense 
whenever dealing with money. 

Note that in order to round to the hundredths place, you will need to keep 
dividing through the thousandths place. That way you will be able to look 
at the thousandths-place digit to determine if you should round up or 
round down.

We have to round to simplify problems. Our need to round is another reminder 
that we can’t keep track of everything. Unlike God, we are limited in what we can 
handle. 

Finding an Approximate Answer

In real life, if all we’re looking for is an approximate answer, we’ll frequently round 
to the nearest whole number. 

For example, if you were buying items at the store, you might want to know about 
how much you were committing to spend, but you might not need to know the 
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exact amount. Approximating your answer will typically be enough to let you 
know if you have enough cash for your purchase.  

$5.99 + $7.99 + $1.98 ≈ $6 + $8 + $2 = $16

However, we need to use our judgment with rounding. For instance, if you’re 
asked to find how many shirts a certain yardage of fabric can make and the answer 
comes back 4.75 shirts, you cannot round and assume the fabric will yield 5 shirts. 
Even though 4.75 rounds to 5, if you don’t have enough fabric to finish the fifth 
shirt, you’ll only be able to make 4 shirts. Always make sure your answer makes 
sense.

Keeping Perspective — 60,000 Blood Vessels
In this lesson, we used the decimal notation to help us record the answers to 
division . . . including divisions that have remainders. As we learn these skills, 
keep in mind that the skills we learn can help us in real life . . . including 
in exploring and better appreciating God’s creation. In the corresponding 
worksheet in your Student Workbook, you are going to use division and 
decimals to explore the blood vessels in your body. Have fun using math 
to get a fresh glimpse of how we truly are fearfully and wonderfully made 
(Psalm 139:14)!

7.5 Conversion and More with Decimals

It’s time to dig just a little deeper into decimals. While you may already know some 
of these techniques, take advantage of the opportunity to better understand why 
the techniques work.

Conversion

We’ve already seen how to convert between fractions with a denominator of 10, 
100, 1,000, etc., and decimals — we just put the numerator after the decimal point.

4 = 0.410

40 = 0.40100

400 = 0.4001,000

But often, our denominator cannot be renamed into a denominator of 10, 100, 
1,000, etc. Take 1

7  
— how can we convert it? 
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While you likely already know how to convert this fraction (by dividing the 
numerator by the denominator), let’s think about why this is the case. Fractions 
represent division, so it would make sense to convert them to decimals simply by 
completing the division! 

1
7

0 . 1 4 2
= 7 ) 1 . 0 0 0

– 7
3 0

– 2 8
2 0

– 1 4
6

If we keep dividing, we’ll end up with 0.14285714285. For our purposes, though, 
let’s just round the answer to the nearest hundredth: 0.14. The decimal equivalent 
of 1

7  is approximately 0.14. 

Dividing a Decimal Number by a Decimal Number

The “rule” for dividing a decimal number by a decimal number is to count the 
number of digits to the right of the decimal point in the divisor and move the 
decimal point that number of digits to the right in the dividend. Then divide as 
usual.

8.23)3.776  changes to 
.

823)377.6( ( ( (  
The decimal point in both the divisor and the dividend moved two spaces 
to the right.

2.686)4.67  changes to 
.

2686)4670.( ( ( ( ( (

The decimal point in both the divisor and the dividend moved three spaces 
to the right; notice that to move the dividend three spaces we had to add a 0.

3.41)5.893  changes to 
.

341)589.3( ( ( (

The decimal point in the dividend and the divisor moved two spaces. It is 
okay to have a decimal in the dividend, just not in the divisor.

Any guesses why this rule works? Look at a problem written as a fraction, 
remembering that the fraction line is a way of representing division. 

0.86)4.6  = 4.6
0.86

Notice how if we were to multiply this fraction by 100
100 , we would end up 

removing the decimal from the divisor (0.86).

4.6
0.86  • 100

100  = 460
86
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This fraction could now be written as 8 6 ) 4 6 0 .

When we move the decimal point in the dividend and divisor in a division 
problem, we’re really multiplying both the dividend and the divisor by a fraction 
worth 1, which doesn’t change the value (yet another application of the identity 
property of multiplication!).

Keeping Perspective
Remember that you’re learning all these mechanics so that you’ll be equipped 
to use decimals in everyday life. Decimals help us when shopping, designing 
greeting cards, reading temperatures, comparing distances — the list could 
go on and on. Since decimals give us a way to represent partial quantities as 
part of our base-10 place-value system, they are an incredibly useful tool.

7.6 Chapter Synopsis

Decimals, and the rules for working with decimals, serve as useful tools we can 
use while depending on God and joyfully doing the work He has given us. Writing 
partial quantities in the decimal system lets us work with them with the same ease 
as we can whole quantities. 

■	Our decimal system extends to include partial quantities. Partial quantities 
written in the decimal system (i.e., decimals) have assumed denominators of 
10, 100, 1,000, etc., with each digit to the right being 1

10  of the previous one. 

■	Because decimals are part of the same place-value system we use for whole 
numbers, we can add and subtract using the same method we do for whole 
numbers, being careful to correctly line up the digits. We can also use the 
same methods for multiplying and dividing, using simple rules to deal with 
the decimal points. Always remember that rules in math are typically a shortcut 
for working with some consistency God created and sustains.

■	When dividing with decimals, some numbers go on and on. We often round, 
as we rarely need that precise of an answer. Unless otherwise specified, in this 
course we are rounding to the nearest hundredth.

■	Because fractions represent division, we can convert fractions to decimals by 
simply dividing the numerator by the denominator. 
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[CHAPTER 14]

Measuring  
Distance
14.1 Units for Measuring Distance 

Imagine for a moment life without measurements. How would we know how 
much flour to put in a recipe? How would we survey land or record and read 
maps? How would architects design buildings and articulate that information to 
builders? How would quantities of food be described on packages? Measurements 
are important!

God created us with the ability to measure and develop different systems for 
measuring. To start with, we’ll focus on measuring distance or length.

To measure something, we need a standard we can compare it to—that is, a unit. 
A unit is what we call “a special quantity in terms of which other quantities are 
expressed.”1

If we each used our own unit to measure distance, we’d have to go through a lengthy 
process to communicate to others a specific distance. A builder, for instance, would 
have to learn a brand-new set of units for every architectural drawing. 

To avoid this sort of confusion, there are standardized systems for measurement. 
Let’s take a look at measuring distance using two common measuring systems: the 
U.S. Customary System and the Metric System. 

The Basic Unit — a Meter

Both the U.S. Customary System and the Metric System base their distance units 
on a unit called the meter.2 And just how big is a meter?

Its approximate length is easiest to see on a measuring tape. Pull one out and 
measure 100 centimeters or 39.3701 inches. That’s approximately a meter.

1 meter = 100 centimeters = 39.3701 inches
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I say approximately, because while we typically use devices such as rulers and 
measuring tapes to measure objects, these devices are not perfect representations 
(although they’re definitely close enough for most practical purposes!).
These devices are called standards — a “standard” is “a physical realization or 
representation of a unit.”3  

So what is the exact definition of a meter? The meter has actually had various 
definitions. You might think it would be the length of a specific bar or stick, of 
which duplicate sticks could be made — and it was at one point in time. The 
meter is currently defined, though, in terms of “the speed of light in a vacuum” 
— specifically as “the length of the path traveled by light in a vacuum during an 
interval of 

1
299,792,458  of a second.”4 This is a repeatable distance (because God 

causes light to travel consistently!) measurable by devices worldwide rather than a 
distance that must be measured against one specific bar. 

Expanding from the Meter

Now, it would be quite difficult to measure some things with a meter. Imagine a 
stick a meter long with no smaller markings. How would you describe the length 
of a paper clip? And how many meters would you need to describe a long distance, 
like the distance between two towns?

While you could describe short distances as portions of a meter and long distances 
as multiple meters, it would be easier to use longer or shorter units for these 
distances. The U.S. Customary and the Metric System both have a variety of units 
to cover both short and long distances. 

The U.S. Customary System

In America, the U.S. Customary System of measurement is the system used for 
most daily purposes. 

In terms of a meter, the yard is defined as 0.9144 meters. In other words, the yard 
is just shy of one meter. Pull out that measuring tape again and look for 3 feet or 36 
inches — that’s one yard. Notice that it’s just shy of a meter.

1 yard = 0.9144 meters

1 meter = 39.3701 inches

Each of these numbers marks 1 inch

While the meter is not 
an actual unit in the U.S. 
Customary System, the 
yard is defined in terms of 
a meter.
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How about some smaller units to help us measure shorter distances? We’ve got a 
foot, which is 1

3  of a yard, and an inch, which is technically defined in terms of a 
portion of a meter, but is more commonly known as 1

36th  of a yard or 1
12th  of a foot. 

Notice the foot and inch marks on your measuring tape.

And for longer distances, we have a mile, which equals 1,760 yards or 5,280 feet. 
(Which, as you can imagine, is much too long to show on a measuring tape!)

Below are the units with their common abbreviations, showing how they compare 
to one another.

12 inches (in) = 1 foot (ft)
3 feet (ft) or 36 inches (in) = 1 yard (yd)

1 mile (mi) = 1,760 yards (yd) or 5,280 feet (ft)

You will need to memorize the bolded relationships, as you’ll need them often in 
everyday life. 

Metric System/SI

The Metric System, or the International System of Units (SI), is a measuring 
system used around the world, including the United States, especially in scientific 
fields. We already looked at the definition of a meter. But, like the U.S. Customary 
System, the Metric System has other units to make it easier to measure shorter and 
longer distances.

Below are the four most common metric units typically used to express lengths in 
the Metric System: 

1,000 millimeters (mm) = 1 meter (m) 
10 millimeters (mm) = 1 centimeter (cm)
100 centimeters (cm) = 1 meter (m)

1 kilometer (km) = 1,000 meters (m) 

You will need to memorize these relationships, as you’ll need them in everyday life.

As you might guess, millimeters and centimeters, like inches, are helpful for 
expressing shorter distances (like household objects), while kilometers, like miles, 
help measure longer distances. 

12 inches = one foot
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Keeping the Metric Names Straight
The prefix “milli” comes from the Latin word mīlle, which means 

“thousand,” and a millimeter is 1
1,000th  of a meter (that is, 1,000 

equal a meter). Think of a million (a million is 1,000 thousands), 

millennial (“a span of one thousand years”),5 etc.

The prefix “centi” comes from the Latin word centum, which means 

“hundred,” and a centimeter is 1
100th  of a meter (that is, 100 of 

them equal a meter). Think of a centipede (they have a lot of legs), 

a cent ( 1
100th  of $1), a centennial (a 100-year celebration), etc.

 The prefix “kilo” is from the Greek khilioi, which means “thousand,” 
and a kilometer means 1,000 meters. Any guesses what a kilowatt 
means? Yup — 1,000 watts.6  

Why both Latin and Greek prefixes? While I couldn’t find this 
specifically explained anywhere, it’s interesting to note that the 
derivatives milli, centi, and kilo are all French, and the Metric System 
traces much of its roots to France.7  

The names aren’t arbitrary — remembering the meaning of the 
prefixes can help you keep them straight. 

Measuring

Pull out a ruler and a measuring tape. Many of these devices list the U.S. 
Customary measurements on one side, and the metric measurements on the other, 
making it easy to measure in both systems.

For now, let’s look at the U.S. Customary side — the numbers mark off the inches, 
and the tiny tick marks in between inches mark fractions of an inch. Each inch is 
broken into 16 fractional markings. Longer markings mark off 1

4 , 1
2 , and 3

4  
of an inch. 

 

1
4

1
2

3
4
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To measure a distance, simply hold your ruler or measuring tape to the distance 
you’re trying to measure. For example, the rock shown is 4 1

2  inches long if we 
measure all the way to the farthest edge.

Whose Standard?
When we measure a length, we measure it against a standard — 
a yard, ruler, etc. — and see how it compares. If we use a faulty 
standard, we’ll get very misleading information.

The same is true spiritually. Many people think of themselves as 
“good enough” to get to heaven because they see themselves 
as better than other people. When we die, though, we won’t be 
judged based on how well we did compared to others — we’ll 
be held against God’s standard. So we’d be wise to look at that 
standard now and see how we measure up. 

Consider just a few of God’s commandments from Exodus 20. Be 
honest with yourself. Are you really a good person when compared 
with this standard of holiness?

“Thou shalt have no other gods before me.” Have you ever loved 
or desired anything before God?

“Honour thy father and thy mother: that thy days may be long upon 
the land which the LORD thy God giveth thee.” Have you always 
honored your parents perfectly?

“Thou shalt not kill.” Jesus clarified this: “Ye have heard that it 
was said of them of old time, Thou shalt not kill; and whosoever 
shall kill shall be in danger of the judgment: But I say unto you, 
That whosoever is angry with his brother without a cause shall be 
in danger of the judgment” (Matthew 5:21–22). Whoa! Who hasn’t 
been angry without cause?

“Thou shalt not commit adultery.” Again, Jesus clarifies: “Ye have 
heard that it was said by them of old time, Thou shalt not commit 
adultery: But I say unto you, That whosoever looketh on a woman to 
lust after her hath committed adultery with her already in his heart” 
(Matthew 5:27–28). The impure thoughts in our hearts and minds 
make us guilty in God’s eyes!

“Thou shalt not bear false witness against thy neighbour.” “Bearing 
false witness” is telling a lie. Have you ever told a lie . . . even a small 
one? What about when you were little?
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“Thou shalt not covet. . . .” Have you ever wanted something that 
wasn’t yours?

When held against God’s standard, we are all guilty — we’re all 
idolaters, murders, adulterers, coveters, and liars.  And that's just a 
few of God’s commandments. Plus, in God’s eyes, if we’re guilty of 
breaking just one of His commandments, we’re guilty of breaking 
them all (James 2:10). The Bible compares even our righteous 
deeds to filthy rags (Isaiah 64:6). And He warns that all sin will be 
punished — and the punishment for sin is eternal death (Romans 
6:23) in a torturous lake of fire (Revelation 20:15; 21:8).

But there’s good news! God knew before the world began that man 
would rebel against Him, and He had a plan. You see, mankind was 
not always so hopelessly lost in sin — originally, God created us 
perfect and without any sin at all. But man chose to rebel, bringing 
sin and death into the world. 

Yet God, knowing all the evil you and I would do (and think), chose 
to come down as a man and claim all that evil as His own, dying 
on a cross to bear the penalty we deserved. He now offers His 
righteousness and eternal life in Heaven to all who place their trust 
in Jesus.

Question: Have you placed your trust in Jesus, or are you still trying 
to attain God’s standard of perfection on your own? Have you 
unconsciously raised your own standard to get to Heaven or are you 
looking at God’s standard and His solution? If you haven’t trusted 
Jesus, today is the day! None of us know what tomorrow will hold. 
If you have trusted Jesus, rejoice in His undeserved righteousness 
and go tell someone else about what He has done. 

Solving Problems with Measurements

Let’s take a look now at solving problems involving measurements. 

Example: If I’m 5 1
2  feet tall and I stand on a 6-foot ladder, at what height will my 

head be?
We can easily add our measurements together to find the answer.

5 1
2  feet + 6 feet = 11 1

2  feet

Example: If I’m 66 inches tall and I stand on a 6-foot ladder, how tall will my head be?
The answer to this question is not as obvious, is it? We cannot simply 
add 66 inches and 6 feet, or we will get an entirely bogus answer! Since 
the units of measure are not the same, we need to first reexpress the 
inches as feet or the feet as inches. 
We’ll go into more details on how to express distance in different units 
in the next lesson; for now I just wanted you to be aware that when 
dealing with measurements, you need to make sure you’re dealing with 
the same units! 

See www.LivingWaters.com 
for more information, both 
on the gospel and on how to 
use the 10 Commandments 
in sharing it with others.
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Keeping Perspective — A Glance at History
While we focused on the U.S. Customary System and the Metric System units 
of length in this lesson, throughout history, men have used different units of 
length. In reading your Bible, you’ve probably read about the cubit. The cubit 
was defined as the length from a man’s elbow to his middle fingertip. Since 
this length varies based on the height of a man, this measurement could lead 
to different standards. (For example, the measurement from Goliath’s elbow 
to fingertip was much different than David’s!) The ancient Egyptians used the 
“Royal Cubit,” which was somewhere around 20.6 inches; many other cubits 
were closer to 18 inches. Can you see why standardization is important? 

According to the National Institute of Standards and Technology (NIST), 
the branch of the Department of Commerce in charge of providing 
“measurement standards for science and industry” and a “national scientific 
laboratory in the physical sciences,”8 our inch, foot, and yard trace their 
origin back to the cubit, with the Romans influencing some of the smaller 
units, along with introducing the idea of a mile.9 

No matter what units we use, the principle is the same: we’re using a standard 
to describe distances. We can do this because God created us with this ability.

14.2 Conversions via Proportions

Say you measured an edge of your garden, and it was 72 inches long. You want 
to buy edging to go along that edge, which is sold by the foot. How many feet of 
edging do you need? 

In order to figure out how many feet you need, you need to convert 72 inches to 
feet — that is, you need to figure out how to describe 72 inches using feet as your 
unit of measurement instead. Any ideas how to do that? There are actually many 
ways — let’s take a look at one of them.

Conversions via Proportions

Think back to what you know about ratios and proportions. As we’ve seen, a ratio 
is “the relative size of two quantities expressed as the quotient of one divided by 
the other,”10 or basically a fancy name for using division to compare quantities. A 
proportion is two equal ratios.

Let’s use a ratio to compare how inches and feet relate. There are 12 inches in 1 
foot, so we could write this ratio as a fraction like this:

12 in
1 ft      or     1 ft

12 in . 
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It’s important to note that this ratio is really worth 1. After all, 12 inches 
and 1 foot represent the same distance, just in different units. This means 
that we really could substitute either one for the other in the ratio. When 
we do, we see that the ratio is really worth 1, as any number divided by 
itself equals 1.

substitute 12 in for 1 ft 12 in = 12 in = 11 ft 12 in

substitute 1 ft for 12 in 1 ft = 1 ft = 112 in 1 ft

12 inches = 1 foot

In this course, we’ll refer to a ratio between two units that is worth 1 as a 
conversion ratio. It shows us how the two units compare. 

Conversion ratio between inches and feet: 12 in
1 ft  or 1 ft

12 in

Now that we’ve expressed the relationship between inches and feet as a ratio, it’s 
easy to convert 72 inches to feet. All we need to do is form an equivalent ratio—
that is, another ratio that expresses the same distance in both feet and inches, but 
using 72 inches instead of 12 inches. We can figure out the number of feet to use in 
the ratio using a proportion!

12 in = 72 in
1 ft ? ft

Now we can think through what number would finish creating an equivalent 
ratio (see 5.3). Since 72 ÷ 12 = 6, if we multiply by 6

6 , we’ll form an equivalent 
ratio with 72 as our numerator.

12 in • 6 = 72 in
1 ft 6 6 ft

12 in = 72 in
1 ft 6 ft

Important! Notice that in both ratios we’ve put inches in the numerator 
and feet in the denominator. We could have reversed this ( 1 ft

12 in  = ? ft
72 in ), 

but we have to be consistent. We could not put feet in the numerator in one 
ratio and in the denominator in the other, as we’d no longer be comparing 
like units to like units.
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1 ft = 72 in 12 in = ? ft
12 in ? ft 1 ft 72 in

12 in = 72 in 1 ft = ? ft
1 ft ? ft 12 in 72 in

72 in equals 6 ft.

Feet must be compared with feet and inches with inches.

Watch Your Units

When doing problems, pay attention to the units used, and make sure to 
include the units in your answer. An answer without units when units 
were involved will be considered partially incorrect, as you’ve not included 
what that number represents. Watching your units carefully will serve you 
well, both in real life and in upper-level sciences.

Keeping Perspective
In math, there’s often more than one way to solve a problem. In fact, in the 
next lesson you’re going to learn yet another way to convert units. Each one 
will come in handy at different times. 

In coming up with these methods, all we’re really doing is looking at the 
notations and skills we’ve already learned (ratios, proportions, etc.) and 
seeing if there’s a way to apply them to help us in expressing distances. We’re 
then walking away with a “rule” or “method” about how to convert units that 
simplifies what we discovered. You’ll see this process repeated over and over 
again in math.

14.3 Different Conversion Methods 

We saw in the last lesson that we can express the conversion ratio as a fraction: 
12 in
1 ft  or 1 ft

12 in . We also saw that since both 12 inches and 1 foot represent the 
same length, both these fractions really represent 1.

We then used that knowledge to find the answer via a proportion:
12 in = 72 in
1 ft ? ft

12 in • 6 = 72 in
1 ft 6 6 ft

Answer: 6 ft
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It’s time now to look at two additional methods to convert units. Both these 
methods prove quite useful, as we’ll see. 

Conversion via the Ratio Shortcut

Since multiplying by a fraction worth 1 doesn’t change the value and since the 
conversion ratio is worth 1, rather than setting up a proportion, we could multiply 
72 inches by our conversion ratio instead.

72 in • 1 ft = 72 in • 1 ft
12 in 12 in

Remember, 72 in can be thought of as 72 in
1 . Since dividing by 1 doesn’t change 

the value of the number, we ignored the 1, but we treated 72 as a numerator, 

as if it were written 72 in
1 .

Dealing with the Units

Now, what does 72 in • 1 ft
12 in  equal? How do we handle the units? Just as we can 

divide by 12
12  to simplify the numbers, we can divide by in

in  to simplify the units.

72 in • 1 ft ÷ in = 72 • 1 ft = 72 ft ÷ 12 = 6 ft12 in in 12 12 12

Notice that we could have simplified both the units and the numbers as we went. 
Remember, a fraction line means to divide. Since both the numerator and the 
denominator have “in”, the division will cancel out the multiplication, just as it 
does with numbers.

6 
72 in • 1 ft = 6 ft12 in

1

The “Rule”

We’ve finally arrived at another “rule,” or method, for unit conversions. Once 
again, this method applies the principles we’ve learned to a new situation, reducing 
the amount of thinking we have to do each time.

To convert a unit into another unit, just multiply it by the conversion ratio! Be 
sure to write the conversion ratio so the unit you’re trying to convert will cancel 
out, leaving you with the unit of measure you need. 

We’ll refer to this method of converting units as conversion via the ratio shortcut, 
and the proportion method we looked at in the last lesson as conversion via a 
proportion.



14. MEASURING 
DISTANCE 285

Example: Convert 8 miles into feet.

8 mi • 5,280 ft = 42,240 ft1 mi
Notice that we put the miles as the denominator  of our conversion ratio so 
the miles would cancel out and the answer would be in feet. 

Example: Convert 42,240 feet into miles.

42,240 ft • 1 mi = 42,240 mi = 8 mi5,280 ft 5,280
Again, notice that we put the feet in the denominator of our conversion 
ratio so it would cancel out. Always write the conversion ratio so the 
unit you’re trying to convert will cancel out. Otherwise, you won’t 
succeed in converting to a new unit.

Conversion via Mental Math

On simple conversion problems, we could convert mentally. Notice that when we 
converted 72 inches to feet we ended up dividing 72 by 12. 

72 in • 1 ft = 72 • 1 ft = 72 ft = 6 ft12 in 12 12

If we had needed to find the answer mentally, we could have simply divided 72 
inches by 12 inches. When you think about it, we know that 1 foot equals 12 
inches. It follows then that if we were to divide the 72 inches by 12, we’d get the 
equivalent measurement in feet. 

If, on the other hand, we’d started with 6 feet and needed to find inches, we could 
find it using multiplication. If 12 inches equals 1 foot, than 6 feet is going to equal 
6 • 12 inches, or 72 inches.

72 inches and 6 feet represent the same distance, but in different units. 

While it is pretty easy to convert between inches and feet mentally since we’re 
familiar with the units, it’s also easy to make a mistake and divide when we need to 
multiply or vice versa. So be cautious when doing unit conversions mentally.

Also, sometimes the numbers involved make it hard to solve problems completely 
mentally. For example, converting 83.54 inches to feet would require this division:

83.54 ÷ 12 = ?

While that’s a little complicated to solve mentally, we could still figure out what we 
need to multiply or divide mentally and then use paper or a calculator to find the 
answer. 

83.54 ÷ 12 = 6.96

On example problems, we’ll still show how to set up problems like this one 
mentally; know, though, that you might need to use paper or a calculator to 
perform the math.

The conversion via the 
ratio shortcut method 
may seem more involved 
at first, but it will save 
you lots of time once 
you become familiar 
with it, especially when 
dealing with multistep 
conversions. 
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Which Method Is Best?

We’ve now talked about three different methods for unit conversion:

■	Conversion via a proportion

■	Conversion via the ratio shortcut

■	Conversion via mental math

Which one is best? It depends! In general, it’s a good habit to convert via the ratio 
shortcut, as it makes multistep conversions much easier, as we’ll see soon.

Conversion via a 
Proportion

Conversion via the  
Ratio Shortcut

Conversion via  
Mental Math

We know 1 foot equals 12 inches, so 72 
inches divided by 12 will give us our feet12 in

=
72 in 6 

72 in •
1 ft

= 6 ft
1 ft ? ft 12 in 72 ÷ 12 = 6

1

Answer: 6 ft Answer: 6 ft Answer: 6 ft

Keeping Perspective
Once again, we’re continuing to build on what we know to find shortcuts to 
deal with additional situations. The process of unit conversion we looked 
at in this lesson is one you’ll continue to build on later. As you familiarize 
yourself with it, remember that each conversion method is ultimately a way 
of helping us work with real-life distances. It’s math in action — a tool to help 
us measure and describe God’s creation.

14.4 Currency Conversions 

We often need to convert between a lot more than distance units. The good news is 
that you have all the skills you need! Let’s practice applying these skills to currency. 

In America, we use the dollar as our currency, but other countries use other 
currencies. When traveling, it’s often necessary to convert between currencies, 
exchanging dollars for pounds, euros, etc. The exchange rate is the conversion ratio 
(also sometimes called the conversion rate; remember, a rate is just a specific type 
of ratio) between two currencies. If the exchange rate is 1

3 , that means that for 
every 1 unit of one currency you could receive 3 of the other.  

Searching the Internet for the exchange rate between two countries should yield 
the current rate (although that rate may vary throughout the day, and there may be 
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an additional fee from the vendor who converts the money). Once you know the 
exchange rate, you can use any of the methods you’ve learned to convert between 
the two currencies.

Example: If 2 British pounds = 1 U.S. dollar, how much is 8 pounds in U.S. 
dollars?

We’ve been given this ratio, or rate: 1 dollar
2 pounds .

Conversion via a 
Proportion

Conversion via the  
Ratio Shortcut

Conversion via  
Mental Math

? dollars
=

1 dollar 4 
8 pounds •

1 dollar
=

4
dollars 8 ÷ 2 = 4

8 pounds 2 pounds 2 pounds 1
1

Answer: $4 Answer: $4 Answer: $4

Example: While in Britain, you find an item marked 45 pounds. How much will it 
cost you in U.S. dollars, assuming a conversion rate of 1.602 British pounds to  
1 U.S. dollar?

Rate: 1 dollar
1.602 pounds

Conversion via a 
Proportion

Conversion via the  
Ratio Shortcut

Conversion via  
Mental Math

45 pounds
=

1.602 pounds 45 pounds •
1 dollar

=
45

dollars 45 ÷ 1.602 = 28.09
? dollars 1 dollar 1.602 pounds 1.602

Answer: $28.09 Answer: $28.09 Answer: $28.09

Conversion and Missionaries
During tough economic times, missionaries have it extra, extra 
tough — not only can the dollars they receive decrease because 
people have less to give, but when the value of the U.S. dollar 
decreases, as is often the case during an economic depression, 
the missionaries often get fewer foreign currency per U.S. dollar, 
meaning their support doesn’t go as far. So keep missionaries you 
support in mind (and prayer) during tough economic times.

Keeping Perspective
The conversion methods you’re learning apply in all sorts of situations — 
including exchanging money in a foreign country. Math can even help you 
while you’re traveling. 

The exchange rate can 
vary based on a variety 
of factors, including the 
economy of the different 
nations.

You might need a 
paper or a calculator to 
complete the conversion 
via Mental Math on this 
one.
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14.5 Metric Conversions

It’s time to dig deeper into the metric measurement system, applying the same 
conversion methods to metric units. 

Understanding the Metric System

While the units we looked at in 14.1 (millimeters, centimeters, meters, and 
kilometers) are the most commonly known, the Metric System actually contains 
other units too. 

10 millimeters (mm) = 1 centimeter (cm)
10 centimeters = 1 decimeter (dm)

10 decimeters = 1 meter (m)
10 meters = 1 decameter (dam)

10 decameters = 1 hectometer (hm)
10 hectometers = 1 kilometer (km)

Notice how, starting with centimeters, each unit is worth 10 of the previous unit. 
We’ll see shortly that this makes the Metric System incredible easy to work with, 
since our decimal system is also based on 10. 

Conversions within the Metric System

The same methods for conversions that we’ve looked at so far apply to the Metric 
System — but because the Metric System is based on 10 and because multiplying 
or dividing by 10 is simply a matter of moving our decimal point (see 7.3), the 
math involved is much simpler.

Example: Convert 1 millimeter to centimeters.

Conversion via a 
Proportion

Conversion via the  
Ratio Shortcut

Conversion via  
Mental Math

1 mm
=

10 mm
1 mm •

1 cm
=

1cm
= 0.1 cm 1 ÷ 10 = 0.1

? cm 1 cm 10 mm 10

Answer: 0.1 cm Answer: 0.1 cm Answer: 0.1 cm

Because each unit in the 
Metric System is worth 10 
of the previous unit, to 
convert from one unit to 
the next largest unit, we 
need only to divide by 10. 
1 mm = 0.1 cm (decimal 
moved over one place to 
the left, as we divided by 
10).  
Likewise, to convert from 
one unit to the next 
smallest, we need only to 
multiply by 10.  
0.1 cm = 1 mm (decimal 
moved over one place to 
the right as we multiplied 
by 10).
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Example: Convert 3 cm to millimeters.

Conversion via a 
Proportion

Conversion via the  
Ratio Shortcut

Conversion via  
Mental Math

3 cm
=

1 cm
3 cm •

10 mm
= 30 mm 3 • 10 = 30

? mm 10 mm 1 cm

Answer: 30 mm Answer: 30 mm Answer: 30 mm

Example: Convert 2 meters to centimeters.
Here we’re switching from meters to centimeters — those are more than 
1 unit apart. But the math is still quite simple! We know there are 100 
centimeters in 1 meter.

Conversion via a 
Proportion

Conversion via the  
Ratio Shortcut

Conversion via  
Mental Math

2 m
=

1 m
2 m •

100 cm
= 200 cm 2 • 100 = 200

? cm 100 cm 1 m

Answer: 200 cm Answer: 200 cm Answer: 200 cm

Measuring with Metric

Pull out a ruler and take a look at the metric side of it for a moment. The numbers 
mark off the centimeters, and the tiny tick marks mark off millimeters. There are 
10 millimeters per 1 centimeter.

10 millimeters = 1 centimeter

The line shown below is 2 centimeters and 1 millimeter long.  We could represent 
it in centimeters alone as 2.1 cm, since 1 millimeter equals 0.1 cm. (Remember, 
dividing by 10 just means moving the decimal over to the left.) Notice how easy it 
is to express the portion representing a part of a centimeter as a decimal!

2 centimeters and 1 millimeter long or 2.1 cm

Since every conversion 
between metric units 
is a multiple of 10, 
conversions within the 
Metric System can easily 
be done mentally.
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Remember to Convert First!

It’s easy to add, subtract, multiply, or divide the wrong numbers and reach an 
entirely wrong answer if you add unlike units. For instance, if you’re asked to add 
2 centimeters and 5 millimeters, you can’t just add 2 and 5, because they represent 
different units of measure. 

2 cm
 + 

5 mm
 ≠ 

7 cm

2 cm
 + 

5 mm
 ≠ 

7 mm

You have to first convert the centimeters to millimeters or the millimeters to 
centimeters, and then add them. 

2 cm
 + 

5 mm
 = 

2.5 cm or 25 mm

2 cm + 5 mm = 2.5 cm

2 cm + 5 mm = 25 mm

Is Morality Like Measurements?
Most people acknowledge that murder is wrong (God has written 
His laws upon our hearts — Romans 2:15), but few can explain why 
it’s wrong. Without acknowledging a Creator, we have no basis for 
an absolute standard for right and wrong. Some people will argue 
that society as a whole determines right and wrong, just as they 
determine measurement units. But in that case, who is to say that 
Hitler was wrong for murdering the Jews? His German society didn’t 
view it as wrong!

You see, only the biblical worldview gives us a basis for morality. 
Morality is not an arbitrary rule like a unit of measure that man can 
change — it’s given to us by God, based on the character of God. 

When people tell you they don’t believe in God, consider 
asking them how they explain right and wrong. Point out that by 
condemning the “Hitlers” of this world, they are acting contrary to 
their worldview. 

The Bible gives us a firm foundation that makes sense out of every 
area of life — let’s share it with others in love!

Keeping Perspective
The Metric and the U.S. Customary System are both different ways to 
measure distances. While you will likely use the U.S. Customary System 
more in daily life, becoming familiar with them both is important, as other 
countries (and many technical fields) use the Metric System.

See Dr. Jason Lisle’s 
The Ultimate Proof of 
Creation: Resolving the 
Origins Debate (Green 
Forest, AR: Master Books, 
2009) for more details 
on how morality only 
makes sense in a biblical 
worldview, and on how 
to use that to challenge 
other worldviews.
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14.6 Multistep Conversions 

Sometimes it takes more than one step to convert between two units. Let’s say we 
need to convert 4 miles into yards, but we can’t remember how many yards are in a 
mile, only that there are 5,280 feet in a mile.

We could look up the ratio between yards and miles, or we could find the answer 
by breaking this problem down into further steps, converting our miles to feet and 
then to yards. 

Conversion via Proportions:
Converting to feet:

4 mi = 1 mi
? ft 5,280 ft

Answer: 21,120 ft
Now that we have found the feet, we can convert to yards.

21,120 ft = 3 ft
? yd 1 yd

Answer: 7,040 yd

Conversion via the Ratio Shortcut:
Converting to feet: 

4 mi • 5,280 ft = 21,120 ft1 mi
Converting to yards: 

21,120 ft • 1 yd = 7,040 yd3 ft
Answer: 7,040 yd

Conversion via Mental Math: 
Converting to feet:

4 • 5,280 ft = 21,120 ft 
Converting to yards:

21,120 ÷ 3 = 7,040
Answer: 7,040 yd

Doing It in One Step

Using the conversion via the ratio shortcut method can greatly simplify multistep 
conversion problems, as we can do the conversion in a single step by multiplying 
by more than one conversion ratio until we have the answer in the desired unit.

Notice it’s a little 
challenging to do 
multistep conversions 
mentally. 
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1,760

4 mi • 5,280 ft • 1 yd = 4 • 1,760 • 1 yd = 7,040 yd1 mi 3 ft 1
1

Notice how each unit cancelled out as we went! 

Also notice that we used 5,280 ft
1 mi  

instead of 1 mi
5,280 ft  because we needed to have 

miles in the denominator in order to cancel it out. And we used 1 yd
3 ft  instead of  

3 ft over 1 yd for the same reason — we needed the feet to cancel. 
If you’re ever unsure which unit you should put on the numerator and the 
denominator in a conversion ratio, just think about what you need to use in 
order to cancel out the units you don’t want and leave only the unit you do. 

Keeping Perspective
Hopefully, you now see why multiplying by a conversion ratio is such a 
valuable method to know. Sometimes methods that initially seem silly end 
up saving time in more complicated situations. The more you learn math, the 
more you’ll realize how different tools combine. Yet all these tools only work 
because of the inherent consistency God created and sustains. Don’t lose 
sight of the fact that He is the One “. . .upholding all things by the word of his 
power. . .” (Hebrews 1:3). 

14.7 Conversions Between 
14.6 U.S. Customary and Metric

Guess what? The same methods you’ve been using to convert within a system 
apply for conversions between systems. All we need to know is the ratio between 
two units (i.e., the conversion ratio). 

Below are the ratios between some common U.S. Customary and Metric units.

1 in = 2.54 cm
1 ft = 30.48 cm

1 yd = 0.9144 m
1 mi = 1.60934 km 

Now we can convert away! The examples show the conversions using the 
conversion via the ratio shortcut method, but any of the methods we’ve looked 
at would work. We’re just using this method as it saves time on multistep 
conversions, as we saw in the last lesson.

Because the conversion 
via the ratio shortcut 
makes multistep 
conversions so much 
simpler, we’ll be 
emphasizing it throughout 
this course. 
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Example: Convert 80 yards to meters.

Ratio between meters and yards: 0.9144 m
1 yd  

Multiply:  

80 yd • 0.9144 m = 73.152 m1 yd

Example: You drive into Canada and see a sign saying the town you’re going to is 
100 km away. How many miles is that?

Ratio between kilometers and miles: 1 mi
1.60934 km  

Multiply: 

100 km • 1 mi = 100 mi = 62.14 mi1.60934 km 1.60934

Remember to Think It Through
One common confusion in unit conversion regards which way to 

express the conversion ratio — should it be 1 in
2.54 cm  

or 2.54 cm
1 in

?

It depends on what unit of measure we want in the end.

If we want to convert from 50 inches to centimeters, we would place 
the inches on the bottom of the ratio so they would cancel out.

50 in •
2.54 cm

= 127 cm
1 in

If, on the other hand, we wanted to convert 127 centimeters into 
inches, we would place the centimeters on the bottom of the ratio 
to cancel them out.

127 cm •
1 in

=
127 in

= 50 in
2.54 cm 2.54

Remember, we can write the ratio either way because 1 in and 
2.54 cm represent the same quantity. Thus, either way, the resulting 
fraction is worth 1. 

1 in = 2.54 cm

Substitute 2.54 cm for 1 in:

1 in
=

2.54 cm
= 1

2.54 cm 2.54 cm
Substitute 1 in for 2.54 cm:

1 in
=

1 in
= 1

2.54 cm 1 in
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Keeping Perspective
Do you see a pattern? We keep applying the same methods to different 
situations. A lot of math class is expanding on what you know or applying it 
to new settings. If you ever encounter a problem you don’t know how to solve 
(whether in a textbook or in real life), don’t be afraid to try on your own to 
think through how to apply what you know to it. Chances are you have all 
the tools you need!

14.8 Time Conversions 

It’s time to apply unit conversion to a different area altogether: time. Let’s start by 
taking a look at some units we use for measuring time, and then at how to convert 
between them.

Units of Time

God created time and gave us ways of keeping track of time (day and night, stars, 
etc.) when He created the universe. Unlike us, God had no beginning — He is 
outside of time.

In the beginning God created the heaven and the earth. And the earth 
was without form, and void; and darkness was upon the face of the 
deep. And the Spirit of God moved upon the face of the waters. And 
God said, Let there be light: and there was light. And God saw the 
light, that it was good: and God divided the light from the darkness. 
And God called the light Day, and the darkness he called Night. And 
the evening and the morning were the first day (Genesis 1:1–5).

And God said, Let there be lights in the firmament of the heaven 
to divide the day from the night; and let them be for signs, and for 
seasons, and for days, and years: (Genesis 1:14).

Hast thou not known? hast thou not heard, that the everlasting God, 
the LORD, the Creator of the ends of the earth, fainteth not, neither is 
weary? there is no searching of his understanding (Isaiah 40:28).

Every day, God causes the earth to rotate in a consistent fashion. Whichever side 
of the earth is tilted away from the sun experiences darkness, while the other side 
experiences light.  As the earth rotates, the stars and moon appear to change their 
positions overhead. One complete rotation forms a day. 

Sometimes we need to know specifically how much of a day has passed. If we 
go outside during the morning, the sun will be in a different spot than if we go 
outside in the evening. So the sun’s position helps us keep track of approximately 
what time of the day it is. But it’s not always possible to see the sun, especially on a 
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cloudy day. Nor is it easy to tell someone exactly when we want to meet using the 
sun alone. Thus we use hours and minutes to refer to portions of a day.

God gave us the 7-day week when He created the world in six days and rested on 
the seventh (Genesis 2:2-3; Exodus 20:8-11). A year is based on how long it takes 
the earth to travel around the sun (approximately 365 days).

Every day and year that passes testifies that God is continuing to hold this world 
together in a consistent fashion, just as He promised. 

While the earth remaineth, seedtime and harvest, and cold and  
heat, and summer and winter, and day and night shall not cease.  
(Genesis 8:22).

60 seconds = 1 minute (min)
60 minutes = 1 hour (hr)

24 hours = 1 day (d)
7 days = 1 week (wk)

365 days = 1 year (yr or y)

Conversions between Units

Because we all deal with time every single day, working with and converting 
between various units of time is essential . . . and you already have all the skills you 
need! You can convert between units of time the same way you have been between 
units of distance. Again, we’ll focus on the conversion via the ratio shortcut 
method, as it will save time on multistep problems and is an important method to 
learn.

Example: How many minutes are in 1 day?

1 d • 24 hr • 60 min = 1,440 min1 d 1 hr

Notice how all we did is set up the ratios so that everything but the unit we wanted 
— minutes — crossed out. Again, this works because we’re multiplying by a value 
worth 1.  24 hr

1 d  is equivalent to 1, as both the numerator and the denominator 
represent the same quantity. The same holds true for 60 min

1 hr . 
Applications to Time Problems

Because time is such an intricate part of life, we face time problems all the time 
(pun intended). Some require multiple “tools” from our mathematical toolbox to 
solve. 

For example, let’s say that you know you run 8 miles per hour. You want to figure 
out how far you can run in 2 hours at that pace. 
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You are probably used to solving this type of problem like this:

8 • 2 = 16. You can run 16 miles in 2 hours.

Now that you know about units, it’s time to begin including them in the problems. 
Here is another way to write the problem that shows what’s really happening with 
the units: 

8 mi • 2 hr = 16 mi1 hr

Notice that we put 8 mi over 1hr: 8 mi
1 hr . This is a ratio showing 8 miles per hour. 

Remember, per is a good clue that you’re dealing with a ratio. 
Always include units in problems when units are given. This practice 
will keep you from a lot of accidental errors, as well as help you solve 
more intricate problems. If you do the math correctly, you’ll end up in the 
correct unit. If you don’t end up in the correct unit, you’ll know you did 
something wrong. 

Example: Jenny can run 8 miles per hour. How far can she run in 90 minutes?
Notice that our speed is given in miles per hour, but we’re asked how far 
we can go in 90 minutes. In order to get an accurate answer, we have to 
make sure that we use the same units. 

While we could convert the 90 minutes to hours, it’s easy enough to 

substitute 60 min for the 1 hr (after all, 60 min = 1 hr), making our 

speed 8 mi
60 min .

Now we can multiply to find the answer.
8 mi •

3
90  min = 8 mi • 3 = 12 mi60  min 2

2

Example: Jenny runs 8 miles an hour. How far can she run in 20 minutes?

Once again, we’ll rewrite our speed as 8 mi
60 min since our time was given 

in minutes instead of hours.
8 mi •

1
20  min = 8 mi = 2.67 mi60  min 3

3

Everyday Time Conversions

While it’s important to know how to convert time units on paper, we often also need 
to convert them mentally. For example, if you know it takes you 25 minutes to drive 
to a store, and that you need about 35 minutes in the store plus another 10 minutes 
to get to your 3 p.m. appointment, at what time do you need to leave your house?
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To find the answer, start by figuring out how many hours and minutes you need 
altogether. Mentally add 25 + 35 + 10, which is 70 minutes. Now, you could 
convert 70 minutes to hours by multiplying by the conversion ratio

7
70 min • 1 hr = 7 hr = 1 1 hr60 min 6 6

6

Now you could convert the fractional amount back to minutes.

10
1 hr • 60 min = 10 min = 10 min6 1 hr 1

1

Total Time Needed: 1 hr, 10 min

But, that’s a long way to go about it for this problem. You can really solve it all 
mentally. You know 60 minutes makes 1 hour, so 70 minutes would be 1 hour and 
10 minutes. 

Now that you know how long you need, you can figure out when to leave. An hour 
earlier than 3 p.m. is 2 p.m., and 10 minutes earlier than that is 1:50 p.m.

Keeping Perspective — Don’t Get Stuck!
When learning math, it’s easy to get stuck on a concept and assume that 
every problem has to be solved the same way. But in real life, we encounter a 
variety of concepts all the time. We can’t rely on just one mathematical tool 
— we need to be able to think through what tool to use for each situation. 

Since one of this course’s goals is to help equip you to use math wherever 
you may need to (it is, after all, a tool that can be used for God’s glory), we’ll 
sometimes throw a problem into a worksheet that requires different tools 
to solve than those covered in that lesson. Be sure to think through every 
problem to make sure your answer — and method of solving — makes sense. 

14.9 Chapter Synopsis

I hope you had some fun this chapter with measurements! Here’s a quick review of 
what we covered.

■	Finding standards: units — To measure, we need a standard, or unit, we can 
use. We explored the distance units in two measurement systems — the U.S. 
Customary System and the Metric/SI System.
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U.S. Customary System 
12 inches (in) = 1 foot (ft) 
3 feet or 36 inches = 1 yard (yd) 
1 mile (mi) = 1,760 yards (yd) or 5,280 feet (ft)
Metric System/SI
10 millimeters (mm) = 1 centimeter (cm) 
10 centimeters = 1 decimeter (dm) 
10 decimeters = 1 meter (m) 
10 meters = 1 decameters (dam) 
10 decameters = 1 hectometer (hm) 
10 hectometers = 1 kilometer (km)

■	Conversions — We explored various methods for unit conversion (via a 
proportion, the ratio shortcut, and mental math) and practiced converting 
distance, currency, and time units. We also learned some common conversion 
ratios that help convert between the Metric and Customary Systems.

Common Conversions between Systems
1 in = 2.54 cm 
1 ft = 30.48 cm 
1 yd = 0.9144 m  
1 mi = 1.60934 km 
Common Conversions of Time
60 seconds = 1 minute (min) 
60 minutes = 1 hour (hr) 
24 hours = 1 day (d) 
7 days = 1 week (wk) 
365 days = 1 year (yr or y)

As you move on from this chapter, remember that units of measuring distance 
are simply predefined distances against which we can compare and describe the 
distances of objects. And methods for unit conversion are just shortcuts that use 
the consistencies and conventions we know about multiplication, fractions, etc., 
to easily convert units. Once again, we’re using the abilities God gave us to help us 
more easily name and describe God’s creation. 

As you continue to learn about and use measurements, ponder the fact that God 
knows not just the measure of the things easy to measure, but the measure of 
things we can’t possibly measure, such as the dust of the earth, the waters in the 
oceans, and the stars in the sky. While we can measure some things, our inability 
to measure so many aspects of creation reminds us again of how much greater 
God is than we are.

Who hath measured the waters in the hollow of his hand, and meted 
out heaven with the span, and comprehended the dust of the earth 
in a measure, and weighed the mountains in scales, and the hills in a 
balance? (Isaiah 40:12).
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