
GRADE 12

WHY DYNAMIC MATH?

Dynamic Math workbooks are written by teachers directly for each province. This ensures that you are getting the exact same material that is being taught in the classroom. Our teachers also produce engaging online content to further support and enhance learning.

Suite 207 8501 162nd Street Surrey, BC V4N 1B2

604.592.9309

sales-inquiries@dynamic-classroom.ca

ISBN: 978-1-988243-06-1

www.dynamic-classroom.ca

Contributing Authors:

Alan R. Taylor, Ed.D. & Bill Kokoskin, M.A.

Dear Parents,

Helping kids understand and apply mathematics knowledge and skills is a collective responsibility of parents, teachers, and principals.

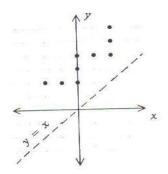
Students need to learn mathematics in a way that will serve them throughout their lives. Understanding mathematics can provide our students with many job and career opportunities.

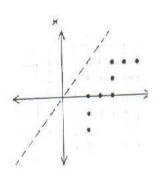
This is why students need to know why mathematics works the way it does, how to use it with confidence and competence when solving problems.

Understanding mathematics enables us to:

- Solve problems, make sound decisions and perform calculations with ease
- Explain how we solved a problem and why we made a particular decision
- Understand patterns and trends so that we can make predictions
- Understand Financial Literacy to manage time and money
- · Handle everyday situations that involve numbers and feel confident

Before your child can learn mathematics, he or she needs to believe in his or her ability to do so. That's where you come in!

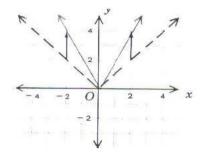

Parents, you are your child's first role model for learning. When you engage with your child in a supportive, relaxed atmosphere, your child will enjoy exploring the world of mathematics.

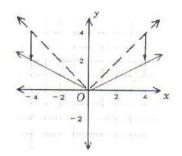

Dynamic Math is committed to helping parents and students. We understand that not everyone learns the same way, and not everyone feels the same about math. This is why we are continually working to create math resources that help students of all abilities, while supporting the many learning styles and varying levels of enthusiasm towards math.

From our clear concise instructions and straightforward guided examples to our additional practice material and tests, there's something to suit everyone. Combined with our video tutorials, students will be able to get a tutor-like experience from anywhere and at a fraction of the cost of standard tutoring or after-school help programs.

Mathematics 12 Table of Contents

	Page		Page
CHAPTER 1 – TRANSFORMATIONS	S	CHAPTER 5 – TRIGONOMETRIC ANGLI AND GRAPHS	ES
1.1 Relations and Functions (Review)	2	5.1 Angle and Degree Measure	154
1.2 Transformational Geometry: A Conceptual Approach (Review)	10	5.2 Angles in Standard Position (Definition of Trig Functions)	158
1.3 Vertical and Horizontal Translations	23	5.3 Special Angles	169
1.4 Compressions and Expansions	29	5.4 Graphs of Trigonometric Functions	175
1.5 Reflections and Inverses	38	5.5 Transformations of Trigonometric Functions	181
CHAPTER 2 – POLYNOMIALS AND POLYNOMIAL EQUATIONS AND FUNCT	TIONS	CHAPTER 6 – TRIGONOMETRIC EQUATAND IDENTITIES	ΓIONS
2.1 Division of Polynomials	52	6.1 Basic Trigonometric Identities	198
2.2 Remainder Theorem	58	6.2 Sum and Difference Identities	204
2.3 Zero-Product Property	67	6.3 Double Angle Identities	207
2.4 Factor Theorem	72	6.4 Basic Trigonometric Equations	210
2.5 Rational and Number of Roots Theorems	76	6.5 Applications of Trigonometric Equations	216
2.6 Polynomial Functions	7 9		
2.7 Solving Polynomial Inequalities	87	CHAPTER 7 – EXPONENTS AND	
2.8 Using a Graphing Calculator	91	LOGARITHMS	
		7.1 Review of Exponents	224
CHAPTER 3 – RADICAL, ABSOULTE VA	LUE,	7.2 Exponential Functions	228
AND RATIONAL EQUATIONS AND		7.3 Logarithmic Functions	232
INEQUALITIES		7.4 Properties of Logarithms	242
3.1 Radical Functions	101	7.5 Solving Exponential and Logarithmic	247
3.2 Radical Equations	110	Equations	
3.3 Asymptotes	113	7.6 Solving Exponential and Logarithmic	251
3.4 Rational Functions	117	Identities	
3.5 Rational Equations	123	7.7 Application Problems and Exponents and Logarithms	253
CHAPTER 4 – COMPOSITE			
FUNCTIONS/OPERATIONS		CHAPTER 8 – COMBINATORICS	
4.1 Addition and Subtraction of Functions	130	8.1 Fundamental Counting Principle	270
4.2 Multiplication and Division of Functions	134	8.2 Factorial Notation	276
4.3 Composite Functions	138	8.3 Permutations	280
4.4 Using a Graphing Calculator to Graph	141	8.4 Combinations	286
Operations with Functions		8.5 Binomial Theorem	291
4.5 Using a Graphing Calculator to Graph	146		
Composite Functions		ANSWERS TO EXERCISES AND CHAPTER TESTS	300





CHAPTER 1

TRANSFORMATIONS

- 1.1 Relations and Functions (Review)
- 1.2 Transformational Geometry: A Conceptual Approach (Review)
- 1.3 Vertical and Horizontal Translations
- 1.4 Compressions and Expansions
- 1.5 Reflections and Inverses

1.1 Relations and Functions (Review)

Before we work with transformations of functions and their related equations, it is important to review what is meant by a **relation** and a **function**. In this section, we will look at relations and functions, in addition to their corresponding equations and graphs.

Relation

A relation is a set of ordered pairs. As a result, every graph is a relation. A relation can be thought of as a set of ordered pairs. All first elements in the set of ordered pairs are called the domain while all second elements determine the range.

Relations can be shown in several ways, among them the following: as a word description, a set of ordered pairs, an equation or inequality, or as a graph. An example of a relation shown in each of these ways is next.

Word description

An output number is determined by multiplying an input number by 2 and then adding 1.

Equation

$$y = 2x + 1$$

Set of ordered pairs

$$(0, 1), (-\frac{1}{2}, 0), (1, 3), (2, 5), (-1, -1), (-2, -3), \dots$$

Table of values

X	0	$-\frac{1}{2}$	1	2	-1	-2	e* =	- fr
У	1.	0	3	5	-1	-3	· -	

Graph

3

In the preceding graph of y = 2x + 1

↑ ↑ Output Input x is the independent variable.

y is the dependent variable.

The domain is all real numbers (all possible values of x).

The range is all real numbers (all possible values of y).

Examples of Relations

Ordered Pairs

$$(-2, 3), (-\frac{1}{2}, 4), (0, \frac{9}{2}), (2, 6)$$

Domain

$$-2, -\frac{1}{2}, 0, 2$$

$$3, 4, \frac{9}{2}, 6$$

Equations

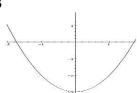
$$y = 3$$

$$\mathbf{x} = \mathbf{y}$$

$$\mathbf{y} = |\mathbf{x}|$$

$$x^2 + y^2 = 1$$

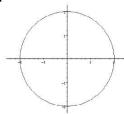
all real numbers


$$-1 \le x \le 1$$

all reals
$$\geq 0$$

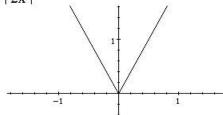
$$-1 \le y \le 1$$

Graphs


$$y = x^2 - 3$$

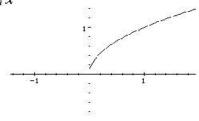
all real numbers

all real numbers \geq -3


$$x^2 + y^2 = 4$$

$$-2 \le x \le 2$$

$$-2 \le y \le 2$$


y = |2x|

All real numbers

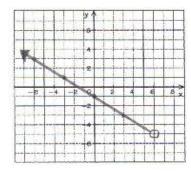
 $y \ge 0$

 $y = \sqrt{x}$

 $x \ge 0$

 $y \ge 0$

Function


A function is a special kind of relation that exists between numbers or variables with the following rule: for every valid input number, there is a single output number. In other words, for every x, there is only one y.

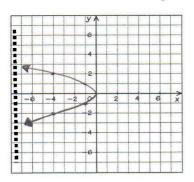
Example: $y = x^2$ is a function since only 1 value of y results from every value of x. $x = y^2$ is <u>not</u> a function, for example if x = 4, y could equal either 2 or -2.

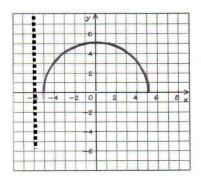
The **domain** of a function is the set of all possible input numbers called the independent variable (all values of x that work).

The range is the set of all possible output numbers, called the dependent variable (all values of y that work).

Example: What is the domain and range of the following function?

Domain, set of "x's"


: all real numbers < 6

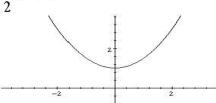

Range, set of "y's"

 \therefore all real numbers > -5

A quick way to determine whether a relation is a function or not is to do a <u>vertical line test</u> on the graph of the relation. If only one value of y can be found for every value of x, then we know that the relation is function.

Example: Which of the following are graphs of functions?

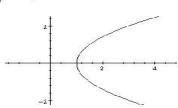
The above graph is **not** a function since the vertical dotted line intersected it in more than one location.


The above graph is a function since any vertical line will intersect it in only one location.

Several examples of relations are shown next, some are functions and others are not.

Examples of Relations	Function?	Reason
Ordered Pairs (2, 3), (3, 5), (4, 6), (5, 8)	Yes	Each value in the domain has a unique value in the range.
(1, 3), (2, 4), (3, 5), (1, 6)	No	When $x = 1$ there is more than one value of y (e.g. 3 and 6).
$\frac{\text{Equations}}{y = 2x + 1}$	Yes	Each value in the domain has exactly one value in the range.
$x^2 + y^2 = 1$	No	There is more than one value of y for all but two values of x (when $x = 0$, $y = \pm 1$).

Graphs


$$y = \frac{1}{2}x^2 + 1$$

Yes

There is exactly one value of y for each value of x.

$$x = \frac{1}{2}y^2 + 1$$

No

There are two values of y for each value of x > 1.

In our review of functions and relations, we stated that a **function** is a special kind of relation that exists between numbers or variables with the following rule: for every valid input number, there is a single output number. In other words, for every x, there is only one y.

To quickly distinguish between a function and a relation when using an equation we use a special notation for a function. It is called **f of x notation**, as described next.

Using f(x) Notation

Functions are usually denoted using "f of x" notation (f(x)), which is another name for the dependent variable, y.

Examples:

f(2) = 3

means that function $f\,maps\;2\;to\;3$

f(-1) = 2

means that function f maps -1 to 2

f(x) = y

means that function f maps x to y

Examples with Solutions

$$f(x) = 2x - 7$$
 $f(3)$ $2(3) - 7 = -1$ $f(-5)$ $2(-5) - 7 = -17$

$$f(x+1)$$

$$2(x+1) - 7 = 2x - 5$$

$$f(\mathbf{x}) = \mathbf{x}^2 + \mathbf{x} - 1$$

$$f(-2)$$

$$(-2)^2 + (-2) - 1 = 4 - 2 - 1 = 1$$

$$f(x+1)$$

$$(x + 1)^2 + (x + 1) - 1 = x^2 + 3x + 1$$

$$f(-x)$$

$$(-x)^2 + (-x) - 1 = x^2 - x - 1$$

$$-f(x)$$

$$-(x^2 + x - 1) = -x^2 - x + 1$$

$$g(x) = \sqrt{x+2} - 1$$

$$\sqrt{7+2}-1=\sqrt{9}-1=3-1=2$$

$$g(-1)$$

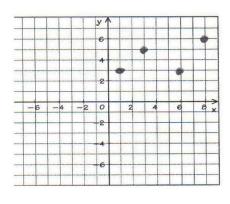
$$\sqrt{-1+2} - 1 = \sqrt{1} - 1 = 1 - 1 = 0$$

$$h(x) = \frac{x^2 + x}{x - 1}$$

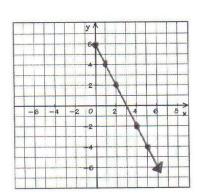
$$\frac{2^2+2}{2-1} = \frac{6}{1} = 6$$

$$\frac{(-1)^2 + (-1)}{(-1) - 1} = \frac{1 - 1}{-2} = \frac{0}{-2} = 0$$

$$h(x-1)$$


$$\frac{(x-1)^2 + (x-1)}{(x-1)-1} = \frac{x^2 - 2x + 1 + x - 1}{x-2} = \frac{x^2 - x}{x-2}$$

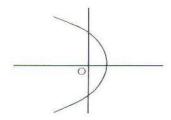
Exercises 1.1


1. Find the domain and range of each function.

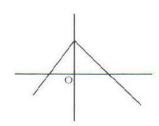
a.
$$(1, 5), (2, 7), (3, 7), (5, 8)$$

C.

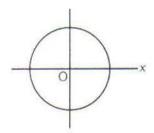
d.

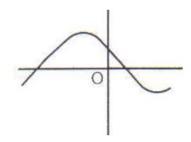


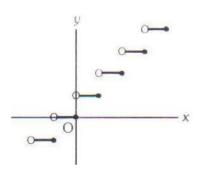
e.
$$y = x^2$$

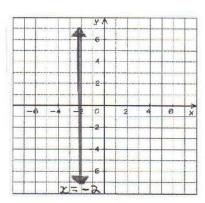

f.
$$y = |x| + 1$$

2. Which of the following relations are functions?


c.


d.


e.


f.

g.

h.

3. If $f(x) = (x + 5)^2$, find

a. the domain

b. the range

c. f(2)

d. f(-2)

$$f. f(x + 1)$$

- 4. If $f(x) = -2(7 x^2)$ find
 - a. f(-2)

b. f(0)

c. $f(\sqrt{2})$

d. f(x + 1)

- 5. If $f(x) = 2x^2 \frac{1}{2}$, find
 - a. the domain

b. the range

c. f(-2)

d. $f(\frac{1}{2})$

ANSWERS TO	
EXERCISES AND	
CHAPTER TESTS	

CHAPTER 1

Exercises 1.1 (page 7)

1. a) Domain: 1, 2, 3, 5; Range: 5, 7, 8

b) Domain: -2, 0, 0.5, 1, 5; Range: 3, 4

c) Domain: 1, 3, 6, 8; Range: 3, 5, 6

d) Domain: $x \ge 0$; Range: $y \le 6$

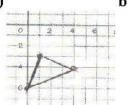
e) Domain: all reals; Range: $y \ge 0$

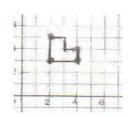
f) Domain: all reals; Range: $y \ge 1$

2. a) No b) Yes c) No d) Yes e) No f) Yes

g) Yes h) No 3. a) Domain: all reals

b) Range: $y \ge 0$ **c)** 49 **d)** 9 **e)** $4x^2 + 20x + 25$

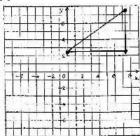

f) $x^2 + 12x + 36$ 4. a) -6 b) -14 c) -10


d) $2x^2 + 4x - 12$ **5. a)** Domain: all reals

b) Range: $y \ge -\frac{1}{2}$ **c)** 7.5 **d)** 0

Exercises 1.2 (page 16)

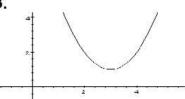
1. a)


2. 8 units left and 6 units up 3. a) (-6, -2) b) (0, -3) c) (-7, -1) d) (-16, 0) 4. (-2, 6)

5. a) (2, -3) b) (-1, -4) 6. a) (-2, 3) b) (1, 4) 7.

8. A (2, 6), B (1, 1), C (5, 2)

9.

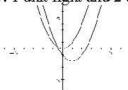


10. a) (4, 7) b) (-4, -7) c) (10, 7) d) (-4, -1)

Exercises 1.3 (page 26)

1.
$$y = f(x-2)$$
 2. $y = (x-1)^2 - 1$

3.


4. 6 right and 8 down 5. 4 down

6. a) $\widetilde{R} \leftrightarrow (-4, 6)$ **b)** $S \leftrightarrow (-1, -3)$

c) $T \leftrightarrow (-5, 0)$ d) (-6, 0) 7. $y = (x-3)^2$

8. a) 3 units left, 3 units down b) $y \ge -2$

9. 1 unit right and 2 units down

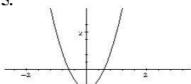
Exercises 1.4 (page 34)

1. a) Replace x with $\frac{1}{2}$ x. b) Replace x with $\frac{1}{5}$ x.

c) Replace x with $\frac{1}{6}$ x. d) Replace x with $\frac{2}{3}$ x.

e) Replace x with $\frac{3}{5}$ x. f) Replace x with $\frac{5}{8}$ x.

2. a) Replace x with 3x. b) Replace x with 6x.


c) Replace x with $\frac{3}{2}$ x. d) Replace x with $\frac{5}{3}$ x.

3. a) horizontal expansion by a factor of 2

b) horizontal compression by a factor of $\frac{1}{2}$

4. $y = 9x^2 + 1$

5.

6. a) vertical expansion by a factor of 4

b) vertical compression by a factor of $\frac{1}{3}$

c) horizontal compression by a factor of $\frac{1}{3}$

d) horizontal expansion by a factor of 4

e) vertical expansion by a factor of 2 and a horizontal compression by a factor of $\frac{1}{3}$

f) vertical compression by a factor of $\frac{1}{3}$ and a horizontal expansion by a factor of 2

7. a) y = 2|x| or y = |2x| b) $y = \frac{1}{2}x^2$

c)
$$y = 2(x + 2)$$
 d) $y = 0.5x^3$ e) $y = 2(\frac{4}{x^2+1})$

Dynamic Math Resources

Dynamic Classroom has created resources that align with the provincial curriculum for Grades 3 to 12. The following resources are available in Alberta, Saskatchewan, Manitoba and Atlantic Canada.

Math Workbooks

ELEMENTARY
Grade 3 Mathematics
Grade 4 Mathematics
Grade 5 Mathematics
Grade 6 Mathematics
Grade 7 Mathematics

HIGH SCHOOL
Grade 8 Mathematics
Grade 9 Mathematics
Grade 10 Foundations and Pre-Calculus
Grade 11 Pre-Calculus
Grade 12 Pre-Calculus

Orders can be placed online at www.dynamicmath.ca.

Video Subscriptions

	Monthly - \$9.95 per month
Access to all videos for Grades 4-10	6 Months - \$49.95
	12 Months - \$79.95

Orders for videos can be placed online at www.dynamicmath.ca.

If you would like to order Dynamic Math resources for your school, please email us at: info@dynamic-classroom.ca

Resources from Dynamic Classroom

AB, SK, MB and Atlantic Canada

Order Books - https://www.math-help.ca/dynamic-math-store

Enhance learning and results!

Dynamic Math Videos

Get Started with a free trial https://www.math-help.ca/math-videos

Coming Soon!

Grade 3

Ontario

Grade 9 Ontario French Editions Gr 4 - 8

ВС

AB/SK/MB

Atlantic Canada

K to Grade 2

BC

AB/SK/MB

Atlantic Canada

Sign up for your free account! https://www.math-help.ca/free

www.ClassroomReady.com - Reading Comprehension

Monthly News

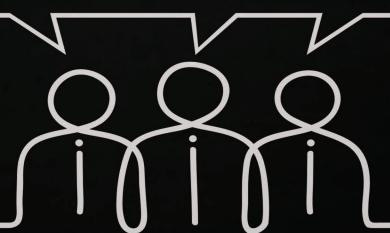
Weekly News

Science News

MORE THAN JUST A BOOK!

- ✓ Continuously expanding set of online resources
- Extra practice for struggling students
- Develop critical thinking skills
- ✓ Engage learning with fun "puzzlers" and games

www.math-help.ca



My son would never have passed grade 10 without Dynamic Math. Thank you!

My daughter loves your math books because she can work through them on her own. We'll definitely be buying the next grade in the fall.

I was so happy to finally find a math workbook that was exactly what my son was doing in class.

\$34.95 CAD

