
GRADE 11

WHY DYNAMIC MATH?

Dynamic Math workbooks are written by teachers directly for each province. This ensures that you are getting the exact same material that is being taught in the classroom. Our teachers also produce engaging online content to further support and enhance learning.

Suite 207 8501 162nd Street Surrey, BC V4N 1B2

604.592.9309

sales-inquiries@dynamic-classroom.ca

ISBN: 978-1-988243-05-4

www.dynamic-classroom.ca

Contributing Authors:

Alan R. Taylor, Ed.D. & Bill Kokoskin, M.A.

Dear Parents,

Helping kids understand and apply mathematics knowledge and skills is a collective responsibility of parents, teachers, and principals.

Students need to learn mathematics in a way that will serve them throughout their lives. Understanding mathematics can provide our students with many job and career opportunities.

This is why students need to know why mathematics works the way it does, how to use it with confidence and competence when solving problems.

Understanding mathematics enables us to:

- Solve problems, make sound decisions and perform calculations with ease
- Explain how we solved a problem and why we made a particular decision
- Understand patterns and trends so that we can make predictions
- Understand Financial Literacy to manage time and money
- · Handle everyday situations that involve numbers and feel confident

Before your child can learn mathematics, he or she needs to believe in his or her ability to do so. That's where you come in!

Parents, you are your child's first role model for learning. When you engage with your child in a supportive, relaxed atmosphere, your child will enjoy exploring the world of mathematics.

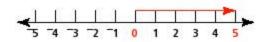
Dynamic Math is committed to helping parents and students. We understand that not everyone learns the same way, and not everyone feels the same about math. This is why we are continually working to create math resources that help students of all abilities, while supporting the many learning styles and varying levels of enthusiasm towards math.

From our clear concise instructions and straightforward guided examples to our additional practice material and tests, there's something to suit everyone. Combined with our video tutorials, students will be able to get a tutor-like experience from anywhere and at a fraction of the cost of standard tutoring or after-school help programs.

Table of Contents Grade 11 Mathematics

	Page		Pag€
Chapter 1 – Absolute Value of Numbers and		Chapter 5 – Factoring Polynomials	
Intro to Radicals		5.1 Review of Factoring in General	142
1.1 Absolute Value of a Number and the	2	5.2 Factoring $ax^2 + bx + c$, $a \neq 0$	148
Number Line		5.3 Factoring $a^2x^2 - b^2y^2$, $a \ne 0$, $b \ne 0$	151
1.2 Equations and Inequalities Involving	7	5.4 Factoring $a[f(x)]^2 + b(f(x)) + c, a \neq 0$	153
Absolute Value		5.5 Factoring $a^2[f(x)]^2 - b^2[g(y)]^2$; $a \neq 0, b \neq 0$	155
1.3 Powers and Roots of Numbers	14	5.6 Combination of Factoring	157
1.4 Ordering Radicals and Using a Calculator to	18	5.7 Factor Theorem	159
Approximate Values			
1.5 Simplifying Radicals by Factoring	22	Chapter 6 – Relations and Quadratic	
1.6 Adding and Subtracting Radicals	25	Functions	
1.7 Multiplication and Division of Square Root	29	6.1 Review of Relations and Functions	164
Radicals		6.2 Graphs of Quadratic Functions	177
		6.3 Transformations of Quadratic Functions	191
Chapter 2 – Properties and Applications of		6.4 Reciprocal Functions	197
Radicals		6.5 Graphing the Absolute Value Function	203
2.1 Writing Radicals in Simplest Form	42	6.6 Solving Absolute-Value Equations	213
2.2 Product of a Binomial Times a Binomial	46	Algebraically and Graphically	
2.3 Conjugates of Binomials and Rationalizing	49		
Denominators		Chapter 7 – Applications with Quadratic	
2.4 Relationships between Roots, Absolute	52	Functions	
Values, and Signs		7.1 Completing the Square	225
2.5 Solving Equations Involving Radicals	54	7.2 Maximum and Minimum Problems	230
2.6 Problems Involving Radical Expressions	59	7.3 Solving Quadratic Equations	235
		7.4 The Discriminant	252
Chapter 3 – Rational Expressions and			
Equations		Chapter 8 – Sequences and Series	
3.1 Rational Numbers (Review)	70	8.1 Arithmetic Sequences	261
3.2 Addition and Subtraction of Fractions	74	8.2 Arithmetic Series	268
(Review)		8.3 Geometric Sequences	273
3.3 Multiplication and Division of Fractions	78	8.4 Geometric Series	277
(Review)	20000000	8.5 Sums of Infinite Geometric Series	281
3.4 Rational Expressions	83		
3.5 Adding and Subtracting Rational	87	Chapter 9 – Inequalities	
Expressions	(2.12)	9.1 Graphing Inequalities in One Variable in	293
3.6 Multiplying and Dividing Rational	89	Two Dimensions	1 22
Expressions	difference?	9.2 Graphing Inequalities in Two Variables	297
3.7 Multiple Operations with Rational	92	9.3 Graphing Systems of Linear and Quadratic	303
Expressions		Inequalities	
3.8 Rational Equations	94	9.4 Graphing Quadratic Inequalities in One	313
3.9 Solving Problems Involving Rational	97	Variable	
Equations		9.5 Problems for Quadratic Inequalities	317
Chantan 4 Trigonometry		Charter 10 Linear and Quadratic Systems	
Chapter 4 – Trigonometry	106	Chapter 10 – Linear and Quadratic Systems	225
4.1 Definition of Trig Functions and Angles in Standard Position	106	10.1 Linear-Quadratic Systems	325 329
	116	10.2 Quadratic-Quadratic Systems	332
4.2 Special Angles4.3 Law of Sines	121	10.3 Problems for Systems	332
4.3 Law of Cosines 4.4 Law of Cosines	121	Answers to Exercises and Chapter Tests	338
4.4 Law of Cosmes 4.5 Solving General Triangles (Ambiguous	130	Amonoro to Exercises and Chapter Tests	550
Case)	130		

CHAPTER 1 ABSOLUTE VALUE AND INTRO TO RADICALS


- 1.1 Absolute Value of a Number and the Number Line
- 1.2 Equations and Inequalities Involving Absolute Value
- 1.3 Powers and Roots of Numbers
- 1.4 Ordering Radicals and Using a Calculator to Find Approximate Values
- 1.5 Simplifying Radicals by Factoring
- 1.6 Adding and Subtracting Radicals
- 1.7 Multiplication and Division of Square Root Radicals

1.1 Absolute Value of a Number and the Number Line

The **absolute value** of a number can be thought of as the distance from 0 to the number on a number line. The direction doesn't matter and, as a result, the absolute value of a number is never negative.

Examples:

The absolute value of 5 is 5.

The absolute value of -5 is 5.

Note: 5 is 5 units to the right of 0.

Note: -5 is 5 units to the left of 0.

The symbol for absolute value consists of two vertical line segments that appear on either side of the number or expression.

Examples:

- 1. |5| means the absolute value of 5, which is equal to 5.
- 2. |-5|means the absolute value of -5, which is equal to 5.
- 3. $\left| \frac{1}{2} \right| = \frac{1}{2}$ and $\left| -\frac{1}{2} \right| = \frac{1}{2}$
- 4. |0.27| = 0.27 and |-0.27| = 0.27

Keep in mind the following rules.

- The absolute value of a positive number or 0 is the number.
- The absolute value of a negative number is its opposite.

OR

If x is any real number, |x| = x if $x \ge 0$ (|7| = 7) and |x| = -x if x < 0 (|-7| = -(-7) = 7)

The absolute value of zero is equal to "0." Why? Just ask yourself: how far is zero from 0. Answer: zero units. So |0| = 0.

We can simplify single absolute value terms containing more than one numerical expression inside the symbol by working inside of it first.

Examples:

(i)
$$|2-5| = |-3| = 3$$

(ii)
$$|7-8| = |-1| = 1$$

(iii)
$$|12 - 8| = |4| = 4$$

(iv)
$$|1.2 - 3| = |-1.8| = 1.8$$

Examples with Solutions

Simplify each of the following.

1.
$$|9-3|$$

$$|9-3|=|6|=6$$

2.
$$|4.5-5|$$

$$|4.5 - 5| = |-0.5| = 0.5$$

3.
$$|\sqrt{2}-3\sqrt{2}|$$

$$\left| \sqrt{2} - 3\sqrt{2} \right| = \left| -2\sqrt{2} \right| = 2\sqrt{2}$$

4.
$$\left| \frac{1}{2} - \frac{3}{4} \right|$$

$$\left| \frac{1}{2} - \frac{3}{4} \right| = \left| -\frac{1}{4} \right| = \frac{1}{4}$$

5.
$$|1 - -5.5|$$

$$|1 - -5.5| = |1 + 5.5| = |6.5| = 6.5$$

Order of Operations (Review)

There is an order of operations with numbers that we will use to simplify expressions with more than one term. When there are several operations needed to simplify an expression, a special order of operations needs to be done. Following are 4 levels to be done in order, beginning with level 1. Remember **BEDMAS**:

- 1. Level 1
- If more than one set, innermost first **B** (brackets) **←**
- 2. Level 2
- E (exponents)
- Same level, do left to right **D** (divide) ←
- 3. Level 3
 - M (multiply)
- 4. Level 4
- Same level order doesn't matter A (add)
- (subtract) S

If there are no brackets (parentheses), perform all multiplication and division in the order they appear from left to right, before any addition or subtraction.

Examples:

1.
$$2 + 3 \times 5 + 6 = 2 + 15 + 6 = 23$$

1.
$$2 + 3 \times 5 + 6 = 2 + 15 + 6 = 23$$
 2. $15 + 9 \div 3 + 2 \times 4 = 15 + 3 + 8 = 26$

If there are brackets (parentheses) perform all operations inside the brackets before any other operations.

Examples:

1.
$$(5+6) \times 3 = 11 \times 3 = 33$$

2.
$$7 + (8 - 2) \times 4 = 7 + \underline{6} \times 4 = 7 + 24 = 31$$

3.
$$12 \div (2+4) + 7 = \underline{12 \div 6} + 7 = 2 + 7 = \underline{9}$$

3.
$$12 \div (2+4) + 7 = \underline{12 \div 6} + 7 = 2 + 7 = 9$$
 4. $12 \div 2 + (4+7) = \underline{12 \div 2} + 11 = 6 + 11 = 17$

The same rules apply when we are working with terms containing absolute value.

Examples:

1.
$$|-2 + 3 \times 5| = |-2 + 15| = |13| = 13$$

2.
$$7 - \left| \frac{1}{2} - 1 \right| = 7 - \left| -\frac{1}{2} \right| = 7 - \frac{1}{2} = 6\frac{1}{2}$$

Examples with Solutions

1. Simplify.

$$2 + 3 \times 4$$

2. Simplify.

$$(2 + 3) \times 4$$

3. Simplify.

$$32 \div 4 - (3 \times 2)$$

4. Simplify.

$$1.3 + 2(5 + 0.25) - 4$$

5. Simplify.

$$|2 - 3.5| + 2 \times 5$$

Since there are no brackets, perform the multiplication first.

$$2+3 \times 4 = 2+12$$

Now add. 2 + 12 = 14

Perform operations inside the brackets first.

$$(2+3)\times 4=5\times 4$$

Now multiply. $5 \times 4 = 20$

Perform operations inside of brackets first.

$$32 \div 4 - (3 \times 2) = 32 \div 4 - 6$$

Now perform division before adding or subtracting. $32 \div 4 - 6 = 8 - 6$

Now subtract. 8-6=2

Perform operations in brackets first.

$$1.3 + 2(5 + 0.25) - 4 = 1.3 + 2(5.25) - 4$$

Now perform multiplication before adding or subtracting. 1.3 + 10.5 - 4

Now add and subtract to get 7.8.

Work inside of the absolute value sign first to get

$$|2-3.5| + 2 \times 5 = |-1.5| + 2 \times 5$$

Clear the absolute value sign to get

$$|-1.5| + 2 \times 5 = 1.5 + 2 \times 5$$

Perform multiplication before addition.

$$1.5 + 2 \times 5 = 1.5 + 10$$

Now perform addition. 1.5 + 10 = 11.5

6. Simplify.

$$|5 - -3.5| - 12 \div 4$$

Clear the absolute value sign to get:

 $|5 + 3.5| - 12 \div 4 = 8.5 - 12 \div 4$

Perform division before subtraction.

$$8.5 - 12 \div 4 = 8.5 - 3$$

Now perform subtraction. 8.5 - 3 = 5.5

7. Simplify.

$$|7 - 3 \times 4| - |-5|$$

Work inside of the absolute value sign first (perform multiplication before subtraction). $|7 - 3 \times 4| - |-5| = |7 - 12| - |-5|$

Work inside of the absolute value sign first to get: $|5 - 3.5| - 12 \div 4 = |5 + 3.5| - 12 \div 4$

Clear the absolute value sign to get:

$$|7 - 12| - |-5| = |-5| - |-5| = 5 - 5$$

Now perform subtraction. 5-5=0

Exercises 1.1

1. Simplify each of the following terms.

a.
$$|12.5 - 3|$$

c.
$$|11.5 - 15|$$

d.
$$|21.2 - 22|$$

e.
$$|3\sqrt{2} - 7\sqrt{2}|$$

f.
$$|\sqrt{27} - 5\sqrt{3}|$$

g.
$$\left| \frac{3}{2} - \frac{3}{4} \right|$$

h.
$$\left| 2\frac{1}{4} - 3\frac{1}{8} \right|$$

i.
$$|1 - -3.3|$$

2. Use the order of operations to simplify each of the following expressions.

a.
$$|1 - 4.5| + 3 \times 7$$

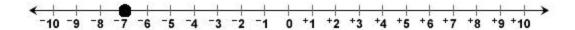
b.
$$\left|2 - \frac{5}{2}\right| + 4 \div 8$$

c.
$$|2.3 - -3.5| - 1.5 \times 4$$

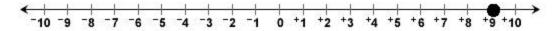
d.
$$|5.7 - -10| - 5 \times 4.2$$

e.
$$|8-2\times 4|-|-3|$$

f.
$$|2-3\times4|-|-1.5|$$


g.
$$|-2-3\times 5|$$

h.
$$|-15.2 - 2 \times 1.5|$$

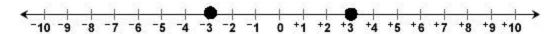

i.
$$7 - \left| \frac{1}{3} - 1 \right|$$

j.
$$5 - \left| \frac{2}{3} - 2 \right|$$

- 3. Answer each of the following questions.
 - a. Write a term involving absolute value that shows a distance of 25 m below sea level.
 - b. Riley jumped from a plane that was at an altitude of 850 m. Show the distance he jumped from the plane using the absolute value sign.
 - c. A point is graphed on the number line below. Graph another point on the line that is the same distance from 0.

d. A point is graphed on the number line below. Graph another point on the line that is the same distance from 0.

1.2 Equations and Inequalities Involving Absolute Value


When an equation includes a variable that is not equal to zero under the absolute value sign, it is equal to two different values.

Example:

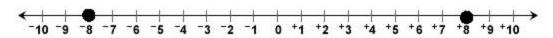
If |x| = 3, then we know that |3| = 3 and that |-3| = 3.

x = 3 or x = -3 is called the translation of the equation |x| = 3.

The graph of the solution to |x| = 3 is shown below.

Each point in the graph above is 3 units from zero.

Example:

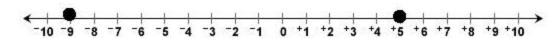

1. Equation

$$|x| = 8$$

Translation and Solution

$$x = 8 \text{ or } x = -8$$

Graph


2. Equation

$$|x + 2| = 7$$

Translation and Solution

$$x + 2 = 7$$
 or $x + 2 = -7 \rightarrow x = 5$ or $x = -9$

Graph

Examples with Solutions

1. Write the translation and find the solution to each of the following equations.

Equation

a.
$$|x| = \frac{1}{3}$$

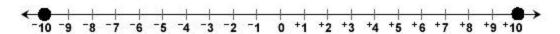
$$x = \frac{1}{3}$$
 or $x = -\frac{1}{3}$

a.
$$|x| = \frac{1}{3}$$
 $x = \frac{1}{3}$ $x = \frac{1}{3}$ $x = \frac{1}{3}$ $x = \frac{1}{3}$ $x = \frac{1}{3}$

b.
$$|x-1| = 5$$

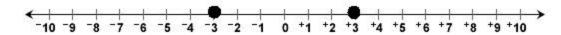
b.
$$|x-1| = 5$$
 $x-1=5$ $x=6$ or $x=-4$

$$x = 6 \text{ or } x = 4$$


c.
$$|2x - 1| = 7$$

$$2x - 1 = 7$$
 or $2x - 1 = -7$

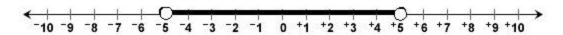
$$2x = 8 \text{ or } 2x = -6, \text{ so } x = 4 \text{ or } x = -3$$


2. The graph of the solution for an absolute value equation is shown below. Write an absolute value equation for each solution.

a.

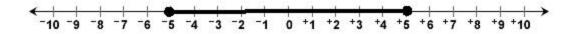
Solution: x = 10 or x = -10, so |x| = 10

b.

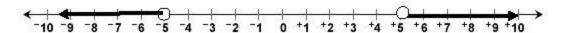


Solution: x = 3 or x = -3, so |x| = 3

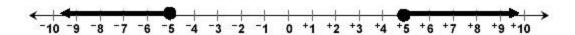
Absolute Value Inequalities


Less Than or Less Than or Equal to

We know that |x| = 5 means that x = 5 or x = -5. However, if |x| < 5, then x lies between -5 and 5. This translates to x > -5 AND x < 5. It can be written as -5 < x < 5. The graph of the solution would look like the following:


Notice that the endpoints are <u>not</u> part of the solution.

If $|x| \le 5$ then x lies between -5 and 5 inclusive, this translates to $x \ge -5$ AND $x \le 5$. It can be written as $-5 \le x \le 5$. The graph of this solution would look like the following:


Greater Than or Greater Than or Equal to

If the absolute value inequality were |x| > 5, then x is greater than 5 or it is less than -5, this translates into x < -5 OR x > 5. The graph would look like the following:

As shown, the endpoints for each ray are not part of the solution.

If the absolute value inequality were $|x| \ge 5$, then x is greater than or equal to 5 or it is less than or equal to -5, this translates into $x \ge 5$ OR $x \le -5$. The graph would look like the following:

Examples with Solutions

1. Write the translation for each of the following inequalities.

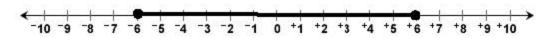
a.
$$|x| \le 32$$

$$-32 \le x \le 32$$

b.
$$|x| < \frac{1}{7}$$

$$-\frac{1}{7} < \chi < \frac{1}{7}$$

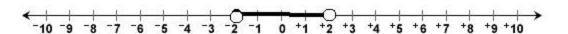
c.
$$|x| > 3.2$$


$$x \le -3.2$$
 or $x \ge 3.2$

d.
$$|x| \ge 9$$

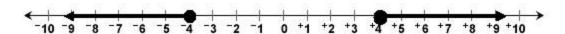
$$x \le -9$$
 or $x \ge 9$

2. Write the translation and inequality for each of the following graphs.


a.

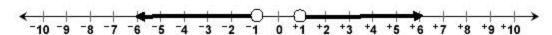
Translation: $x \le 6$ and $x \ge -6 \rightarrow -6 \le x \le 6$

Inequality: $|x| \le 6$


b.

Translation: $x \le 2$ and $x \ge -2 \rightarrow -2 \le x \ge 2$

Inequality: $|x| \le 2$


C.

Translation: $x \ge 4$ or $x \le -4$

Inequality: $|x| \ge 4$

d.

Translation: $x \le -1$ or $x \ge 1$

Inequality: $|x| \ge 1$

Exercises 1.2

1. Write the solution for each equation.

a.
$$|x| = 2.3$$

b.
$$|x| = 21.5$$

c.
$$|x| = \frac{3}{2}$$

d.
$$|x| = \frac{13}{5}$$

e.
$$|x-1|=2$$

f.
$$|x + 3| = 7$$

$$g. \left| \frac{1}{2}x - 1 \right| = 2$$

h.
$$\left| \frac{2}{3}x + 1 \right| = 2$$

i.
$$|2x - 3| = 5$$

i.
$$|3x - 1| = 8$$

2. Translate each of the following into an equivalent sentence without the absolute value sign.

a.
$$|x| < \frac{4}{5}$$

b.
$$|x| \le 2.7$$

c.
$$|x| \le \frac{1}{2}$$

d.
$$|x| \le 1\frac{1}{2}$$

e.
$$|2x| < 6$$

f.
$$\left|\frac{1}{2}x\right| < \frac{1}{2}$$

g.
$$|2x + 1| \le 2.5$$

h.
$$|x-3| < 3$$

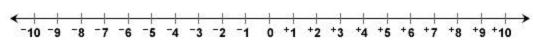
i.
$$|x| \ge 3$$

j.
$$|x| \ge 5.5$$

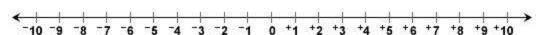
k.
$$|x| > 1$$

1.
$$|x| > \frac{3}{4}$$

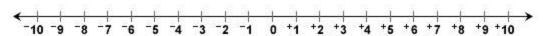
m.
$$|2x| > 6$$

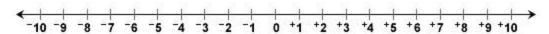

$$n. \left| \frac{1}{3} x \right| \ge 2.1$$

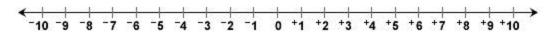
o.
$$|x+1| > 9$$

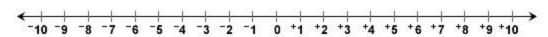

p.
$$|2x - 1| > 10$$

3. Graph the solution of each of the following on the number line.

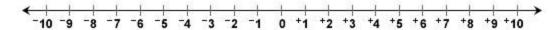

b.
$$|3x| = 1$$


c. |2x + 1| = 7

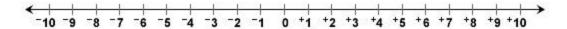

d. $|x| < \frac{1}{2}$


e. |x| > 3

f. $|x-2| \le 1$



 $g. \quad \left| \frac{1}{2}x + 1 \right| \ge 2$



- 4. What is the solution for each of the following absolute value equations?
 - a. The absolute value of x is equal to 9.
 - b. The absolute value of two times x is equal to 11.
 - c. The absolute value of one half x is equal to 9.
 - d. The absolute value of (x plus two) is equal to 8.6.
 - e. The absolute value of (two times x minus one) is equal to 9.

- 5. Translate each of the following into an equivalent sentence without an absolute value sign.
 - a. The absolute value of x is less than 5.
 - b. The absolute value of x is greater than one half.
 - c. The absolute value of two times x is less than 12.
 - d. The absolute value of (x plus two) is greater than 9.5.
 - e. The absolute value of (two times x minus one) is less than 1.
- 6. Graph the solution for each of the following absolute value inequalities on the number line below.
 - a. The absolute value of (two times x plus one) is equal to seven.

b. The absolute value of one third times x is less than 1.

ANSWERS TO

EXERCISES AND

CHAPTER TESTS

CHAPTER 1

Exercises 1.1 (page 5)

1. a) 9.5 b) 3.5 c) 3.5 d) 0.8 e)
$$4\sqrt{2}$$

f)
$$2\sqrt{3}$$
 g) $\frac{3}{4}$ h) $\frac{7}{8}$ i) 4.3 j) 7.8 2. a) 24.5

h) 18.2 **i**)
$$6\frac{1}{2}$$
 j) $3\frac{2}{2}$ 3. **a**) $|-25|$ **b**) $|-850|$

h) 18.2 i)
$$6\frac{1}{3}$$
 j) $3\frac{2}{3}$ 3. a) $|-25|$ b) $|-850|$ c) 4 -9

Exercises 1.2 (page 10)

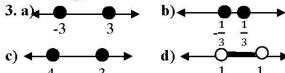
1. a) -2.3, 2.3 b) -21.5, 21.5 c)
$$-\frac{3}{2}$$
, $\frac{3}{2}$ d) $-\frac{13}{5}$, $\frac{13}{5}$

e) -1, 3 **f**) -10, 4 **g**) -2, 6 **h**)
$$-\frac{9}{2}$$
, $\frac{3}{2}$ **i**) -1, 4

j)
$$-\frac{7}{3}$$
, 3 **2. a**) $-\frac{4}{5} \le x \le \frac{4}{5}$ **b**) $-2.7 \le x \le 2.7$

c)
$$-\frac{1}{2} \le x \le \frac{1}{2}$$
 d) $-1\frac{1}{2} \le x \le 1\frac{1}{2}$ e) $-6 < 2x < 6$

f)
$$-\frac{1}{2} < \frac{1}{2}$$
x $< \frac{1}{2}$ **g**) $-2.5 < 2$ x $+1 < 2.5$


h)
$$-3 \le x - 3 \le 3$$
 i) $x \ge 3$ or $x \le -3$

j)
$$x \ge 5.5$$
 or $x \le -5.5$ **k)** $x > 1$ or $x \le -1$

1)
$$x > \frac{3}{4}$$
 or $x < -\frac{3}{4}$ m) $2x > 6$ or $2x < -6$

n)
$$\frac{1}{3}$$
x ≥ 2.1 or $\frac{1}{3}$ x < -2.1 o) x + 1 ≥ 9 or

$$x + 1 < -9$$
 p) $2x - 1 > 10$ or $2x + 1 < -10$

e)
$$\stackrel{-4}{\longleftarrow}$$
 $\stackrel{3}{\longrightarrow}$ f) $\stackrel{-\frac{1}{2}}{\longleftarrow}$ $\stackrel{\frac{1}{2}}{\longrightarrow}$

e) -4, 5 **5. a)** -5 < x < 5 **b)** x >
$$\frac{1}{2}$$
 or x < $-\frac{1}{2}$

c)
$$-12 \le 2x \le 12$$
 d) $x + 2 > 9.5$ or $x + 2 \le -9.5$

e)
$$-1 \le 2x - 1 \le 1$$

Exercises 1.3 (page 16)

radicand =
$$\frac{4}{9}$$
 c) index = 4; radicand = 625

d) index = 2; radicand =
$$\frac{4}{121}$$
 e) index = 3;

radicand = 3.375 f) index = 5;

radicand = 0.0032 **2. a)** $\sqrt{81}$ **b)** $\sqrt[3]{216}$

c)
$$\sqrt[4]{625}$$
 d) $\sqrt{0.09}$ e) $\sqrt[5]{32}$ f) $\sqrt[3]{\frac{27}{125}}$

3. a) 243 **b)** 0.000027 **c)**
$$\frac{8}{27}$$
 d) $\frac{81}{4}$

e) 0.00032 **f)** 0.000000081 **4. a)** 3 **b)**
$$\frac{2}{3}$$
 c) 5

d)
$$\frac{2}{11}$$
 e) 0.1 **f**) 0.2 **g**) $\frac{1}{3}$ **h**) $\frac{2}{5}$ **i**) 12 **j**) 4

k) 0.3 **l**) 1 **5.** 4 **6.**
$$\frac{2}{3}$$
 7. $\frac{2}{3}$ **8.** $\frac{2}{3}$

Exercises 1.4 (page 20)

1. a)
$$\sqrt{5}$$
, 3, $\sqrt{11}$, 4 b) $\sqrt{3}$, $\sqrt{3.5}$, 2, 3

c)
$$\sqrt{5}$$
, $\sqrt{6}$, 2.5, 4 d) $\sqrt{\frac{1}{8}}$, $\frac{1}{2}$, $\sqrt{2}$, 2

e)
$$\sqrt[3]{25}$$
, 3, $\sqrt[3]{60}$, 4 f) 1, $\sqrt[3]{2}$, $\sqrt[3]{7}$, 2 2. a) 3.16

4. a)
$$2, \sqrt{5}, 2\sqrt{3}$$
 b) $3, 2\sqrt{3}, 3\sqrt{2}, 5$

Exercises 1.5 (page 23)

1. a)
$$2\sqrt{6}$$
 b) $5\sqrt{2}$ c) $5\sqrt{3}$ d) $7\sqrt{3}$ e) $3\sqrt{7}$

f)
$$2\sqrt{11}$$
 g) $3\sqrt[3]{2}$ h) $2\sqrt[3]{5}$ i) $5\sqrt[3]{2}$ j) $3\sqrt[3]{5}$

2. a)
$$2a\sqrt{3}$$
 b) $ab\sqrt{2b}$ c) $9b^2\sqrt{a}$ d) $xy\sqrt{6x}$

e)
$$\frac{1}{2}ab\sqrt{a}$$
 f) $abc\sqrt{abc}$ g) $2x\sqrt[3]{5}$ h) $3y\sqrt[3]{y}$

i)
$$2a\sqrt[3]{2a}$$
 j) $abc\sqrt[3]{2}$ 3. a) $\sqrt{45}$ b) $\sqrt{12n^3}$

c)
$$\sqrt{98ab}$$
 d) $\sqrt{75a^3b}$ e) $\sqrt[3]{40}$ f) $\sqrt[3]{27a^3b}$

g)
$$\sqrt[3]{\frac{2}{27}}$$
 h) $\sqrt[3]{8a^4b^4}$

Exercises 1.6 (page 27)

1. 11 **2.** 2 **3.** 3 **4.** 18 **5.** 9 **6.** 1 **7.** 7 **8.** 1

9. 8 **10.** 2 **11.** 11 **12.** 30 **13.** 20 **14.** 0 **15.** 0

16. $4\sqrt{2}$ **17.** $9\sqrt{13}$ **18.** $6\sqrt{6}$ **19.** $5\sqrt{2}$

20. $-\sqrt{2}$ **21.** $7\sqrt{3}$ **22.** $\sqrt{2}$ **23.** $4\sqrt{5}$ **24.** $7\sqrt{5}$

25. $2\sqrt{3}$ **26.** $2\sqrt{2}$ **27.** $5\sqrt{5}$ **28.** 0 **29.** $-13\sqrt{3}$

30. $10\sqrt{6}$ **31.** $6\sqrt{5}$ **32.** $13\sqrt{2} - 2$ **33.** $3\sqrt{x} - 2$

34. $-x\sqrt{3}$ **35.** $\sqrt{3x} + 10$ **36.** $-\sqrt{x} + 14$

37. $-3\sqrt[3]{a} + 5$ 38. $-4a\sqrt[3]{2} + 25$

Exercises 1.7 (page 31)

1. a)
$$20\sqrt{3}$$
 b) $-36\sqrt{2}$ c) $12\sqrt{3}$ d) $-12\sqrt{10}$

Dynamic Math Resources

Dynamic Classroom has created resources that align with the provincial curriculum for Grades 3 to 12. The following resources are available in Alberta, Saskatchewan, Manitoba and Atlantic Canada.

Math Workbooks

ELEMENTARY			
Grade 3 Mathematics			
Grade 4 Mathematics			
Grade 5 Mathematics			
Grade 6 Mathematics			
Grade 7 Mathematics			

HIGH SCHOOL			
Grade 8 Mathematics			
Grade 9 Mathematics			
Grade 10 Foundations and Pre-Calculus			
Grade 11 Pre-Calculus			
Grade 12 Pre-Calculus			

Orders can be placed online at www.dynamicmath.ca.

Video Subscriptions

Access to all videos for Grades 4-10	Monthly - \$9.95 per month
	6 Months - \$49.95
	12 Months - \$79.95

Orders for videos can be placed online at www.dynamicmath.ca.

If you would like to order Dynamic Math resources for your school, please email us at: info@dynamic-classroom.ca

Resources from Dynamic Classroom

AB, SK, MB and Atlantic Canada

Order Books - https://www.math-help.ca/dynamic-math-store

Enhance learning and results!

Dynamic Math Videos

Get Started with a free trial https://www.math-help.ca/math-videos

Coming Soon!

Grade 3

Ontario

Grade 9 Ontario French Editions Gr 4 - 8

ВС

AB/SK/MB

Atlantic Canada

K to Grade 2

BC

AB/SK/MB

Atlantic Canada

Sign up for your free account! https://www.math-help.ca/free

www.ClassroomReady.com - Reading Comprehension

Monthly News

Weekly News

Science News

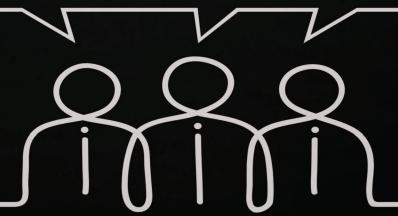
MORE THAN JUST A BOOK!

Guided video lessons that align directly with the curriculum. Learn more and qain access at: math-help.ca/videos

Extra content available online. Visit our website for all the resources and updates: math-help.ca/more

Students learn more and get better grades with the full Dynamic Math program. Get started today!

LEARN MORE >> math-help.ca/more



My son would never have passed grade 10 without Dynamic Math. Thank you!

My daughter loves your math books because she can work through them on her own. We'll definitely be buying the next grade in the fall.

I was so happy to finally find a math workbook that was exactly what my son was doing in class.

