Life of Sred ${ }^{\circ}$
Trigonometry
Expanded Ơdition

Stanley F. Schmidt, Ph.D.

PD

Polka Dot Publishing

OWhat is Trig OAll Ofbout?

卫rigonometry plays with triangles. Mostly right triangles. Trigon means triangle and metry means measuring (in Greek). Someone probably stuck the "o" in trigon-o-metry to make it easier to pronounce.

By the end of the first chapter of this book you'll be able to find the quantities indicated by a question mark:

and you'll know the first of the three major trig functions (the sine function). That's the first nine pages of the book.

The rest of the book pretty much flows naturally from those first nine pages. If you looked at the definition of the sine function in Chapter 1 for several minutes, you could predict how the cosine and tangent functions would be defined in Chapter 2. The only thing you wouldn't know is their names.

In Chapter 3 through Chapter 9, we take the concepts of sine, cosine, and tangent and stretch them like taffy.

In Chapter 1 we were taking the sine of the acute angles in a right triangle. In Chapter 3 we wonder what the sine of 110° would equal.

In Chapter 4 we find the basic algebraic facts about sine, cosine, and tangent, such as $(\text { sine of } A)^{2}+(\text { cosine of } A)^{2}=1$ for every angle A. These basic facts will be used later in calculus.

In Chapter 5 we invent a new way to measure angles. Instead of talking about 30°, we have $\pi / 6$ radians.

Chapter 6: We put sines, cosines, and tangents in algebra equations and solve them.

Chapter 7: The trig functions are used in triangles that are not right triangles.

Chapter 8: We turn the sine, cosine, and tangent functions inside out by finding their inverses. Back in algebra we knew that if $\mathrm{h}($ Meddie $)=$ apple pie, then the inverse function, h^{-1}, would give us $\mathrm{h}^{-1}($ apple pie $)=$ Meddie.

Chapter 9: We locate the point $(2,3)$ on a graph using angles and lengths instead of just lengths. Instead of saying that the point is two units to the right and three units upward, we'll say that it is roughly 3.6 units from the origin at an angle of approximately 56°.

The real surprise comes in the last chapter.
All the Chapters from 2 through 9 you might have been able to predict, but not Chapter 10.

In that last chapter we stir together parts of what we've learned in trigonometry so far and come up with the answer to $\sqrt[5]{1}$. Not just the answer $\sqrt[5]{1}=1$ that you know from algebra. We arrive at five different answers. Probably less than 2% of all college graduates can name those five numbers.

In the last question of the last Gour Twin ta Play, you will find the million different answers to $\sqrt[1,000,000]{\mathrm{i}}$ and plot all your answers.

$$
\mathrm{i} \text { is equal to } \sqrt{-1}
$$

(It will be easy to do.)

OA OVate to Students

It is Tuesday evening. Fred is coming back to KITTENS University after a two-day bus trip. Fred celebrated his sixth birthday last Friday. Going from Tuesday evening to Wednesday night in his life, you will learn all of trigonometry.

Reading the adventures in the life of Fred can be done at 1,000 pages per hour or whatever your normal reading speed is. However, the rate at which most people read and understand new material in mathematics is a bit slower than a thousand pages per hour. You are doing well if you learn the trigonometry at about two pages per hour. Using a calculator, we find that works out to about thirty minutes per page.

One of the nice things about mathematics is that there aren't that many pages. I saw in my college bookstore years ago the required reading list for one English course. I think the course dealt with eighteenthcentury British novels. There were about a dozen novels the students had to buy-just for one course. My eyes would start to squeak reading that many pages.

Throughout this book are sections called Gaur Furn ta Play, which are opportunities for you to interact with the material. Complete solutions are given for all the problems in the Gaur Furn to Play sections, but just reading the problems and the solutions without working them out for yourself really won't work (unless you have an IQ above 150).

If you would like to learn trigonometry, the general rule is easy: Personally work out each of the problems before you look at the solutions I supply.

After 10 chapters you will have mastered all of trig.

Just before the Index is the A.R.T. section. This section very briefly summarizes every part of trigonometry. If you have to review for a final exam or if you want to quickly look up some topic eleven years after you've read this book, the A.R.T. section is the place to go.
A.R.T. $=$ All Reorganized Together.

Oline Orays This Book cos Different

1. The A.R.T. section I just mentioned.
2. Motivation. When I taught math in high school and in college, the question that I and every other math teacher received was, "When are we ever gonna use this stuff?"

The Life of Fred series is a direct response to that question.
\checkmark Every piece of math first happens in Fred's life.
\checkmark He needs the math.
\checkmark Only then do we present the math.
This is true from the earliest books in the series, in which we first encounter $3+4$, up through all of calculus. In Chapter 23 in calculus, Betty is driving Fred to their favorite pizza place (PieOne Pizza). There is a heavy wind and Betty tries to figure out how much work her car must do to push through that wind. She does a huge computation.* Fred uses Green's theorem and reduces the whole thing down to

$$
\int_{(0,0)}^{(\pi, 1)}(\cos x+6 y) d x+\left(6 x+e^{y}\right) d y=\phi(\pi, 1)-\varphi(0,0)=6 \pi+e-1
$$

Fred's One-Liner

* I don't want to frighten you, so don't look at this very long.

Betty's Napkin Computation

I know that that calculus stuff looks scary now, but when you are in fourth semester calculus, Fred's One-Liner solution will be a r-e-1-i-e-f. 3. Complete. Life of Fred: Trig has all of trigonometry-more material than is normally presented in a university classroom.
4. More than complete. There are six optional chapters $\left(1^{112}, 2^{1 / 2}, 3^{1 ⁄ 2}, 41 / 2\right.$, $71 / 2$, and $91 / 2$) that review much of the material from previous math courses. These Looking Back Chapters are placed just before the trig chapters in which the material will be needed. Many readers appreciate the chance to quickly refresh their memories.
5. Much more than complete. We do much more than just math problems in this book.

There is a natural way to learn-and an unnatural way. Sticking a large group of kids in a sit-up-straight-and-be-quiet classroom, giving them a dose of English for an hour, then herding them to a math classroom for a dose of math, is unnatural.

English teachers teach English. History teachers teach history. Auto shop teachers teach auto shop. But who teaches the kids?

Children (and adults!) love to learn. Watch a bunch of eight-yearolds during the summer playing in the back yard. They find bugs (biology). They dig holes (civil engineering). They wonder why the sun doesn't burn up (nuclear physics). They make mud pies (culinary arts).

One subject tumbles into another. And it is fun.
Life of Fred: Trig aims toward that ideal.
\star The topic of continuous and discrete variables takes us into a half-page discussion of one of the plays of Shakespeare (p. 53).
\star When Fred is waiting to see the nurse, he imagines that she will be "a cheerful heir to the legacy of Florence Nightingale." We outline why she played such a pivotal role in the history of women working outside the home (p. 276).

* Healthy living is mentioned. Exercise: Fred starts his

Wednesday morning with "his morning jog around the campus" with the result that "Everything felt so wonderful. He was happy to be alive. . . ." Diet: Fred had spent the six years of his life living off vending machine food and pizza with his friends. He had drunk a lot of Sluice during those years-a soda with a lot of sugar in it. He is 36 inches tall and weighs 37 pounds. In the opening two pages of chapter eight, nurse Florrie introduces Fred to a drink that he's never had before. Fred really liked it and exclaimed, "This is great. It quenches your thirst and doesn't leave a nasty aftertaste." And Florrie added, "And no beer gut either." The drink
is . . . water. Dental hygiene: Each night (p. 41 and p. 406) Fred flosses and brushes his teeth.
\star Learning English is at least as important as learning trig. Fred owns a llama, which he received at his birthday party in chapter six. At the beginning of chapter seven he spots the current issue of a llama magazine. We explain why it is incorrect to say that he was anxious to read it. And we spend a half page (p. 285) describing the positive results of reading the great authors.
, Have you ever eaten saltimbocca?
6. Super much more than complete. I remember the times I was a student and the teacher would provide a glimpse of what lay ahead. I treasured those moments, but those times were rare. Most math teachers just present theorem-definition-theorem-definition-theorem-definition-theorem-definition-theorem-definition-theorem-definition-theorem-definition-theorem and I could never get the Big Picture. In the last chapter of this book, we are going to look ahead to each of the 24 chapters of Life of Fred: Calculus. We are going to look at all two years of calculus and get a grand overview. In addition, we'll outline what high school math you will need for each chapter.
7. Fun. How many math books have you ever read that claim that they are fun? This book is fun-along with being a lot of work.

Mary Poppins, that great child psychologist, knew the truth: a spoonful of sugar doesn't hurt at all. This book has $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$.

Fred will be jumping out of a hot-air balloon in pitch darkness. He will be served a dinner (on the second page of Chapter 1) by his limo driver that is stunning. And Fred boxes "the big G" Philistine for twelve rounds.
8. Short. Yes, short.

In 69 lessons you will finish all of trig. (There are 10 optional Looking Back lessons and 15 lessons Looking Forward to calculus.) If you did $3411 / 2$ lessons per day, you would be done in two days.*
9. $\$ 39$. No other complete trig textbook comes even close.

[^0]
Contents

Chapter 1 Sine

Lesson One Angles of Elevation. 21
Lesson Two Definition of the Sine Function 28
Lesson Thicee Angles of Depression. 31
Lesson Fowr \quad Area of a Triangle $=1 / 2 \mathrm{ab} \sin \theta$. 37
Lesson Tive The First City—Review of the chapter. 42
Lesson six The Second City. 45
Lesson Seven The Third City 48
Chapter 1½ Looking Back
Lesson Eight Graphing and Significant Digits. 50
Chapter 2 Cosine and Tangent
Lesson eline Definition of the Tangent Function. 57
Lesson Ten Slope and the Tangent Function. 64
Lesson Eீleven Using the Tangent Function 72
Lesson Twelve Definition of the Cosine Function 78
Lesson Thitcen The First City—Review of the chapter. 82
Lesson Fourteen The Second City. 85
Lesson Sifueen The Third City 87

Chapter 2½ Looking Back

Lesson Sixteen Functions Defined As Machines. 89
Lesson Severceen Domain and Range of a Function. 94
Chapter 3 Trig Functions of Any Angle
Lesson Eighteen Trig Angles. 98
Lesison elvecteen Expanding the Domain of a Function. 101
Lesson Twenty Trig Functions of Any Angle 107
Lesson Gwerty-ane Identities 115
Lesson Twenty-we The First City-Review of the chapter. 119
Lesson Twenty-three The Second City.... 122
Lesson Gwenty-four The Third City 126
Chapter $3 ½$ Looking Back
Lesson Twerly-five Factoring. 129
Lesson Gwenty-six Fractions 133
Chapter 4 Trig Identities
Lesson Twerly-seeven Proving Trig Identities for Sines and Cosines 138
Lesson Twerly-eight Proving Trig Identities and the Secant Function. 146
Lesson Twerly-nine Proving Trig Identities Using the Five Hints. 152
Lesson Thirly Cotangent Function. 159
Lesson Thity-one Cosecant Function. 162
Lesson Thity-wa The Last Hints for Proving Trig Identities... 168
Lesson Thirly-three The First City-Review of the chapter. 176
Lesson Thiryy-four The Second City. 176
Lesson Thiry five The Third City 183
Chapter 4½ Looking Back
Lesson Thicly-six \quad Graphing $y=a \sin (b x+c)$. 186
Chapter 5 Radians
Lesson Thirty-seven Degrees, Minutes, Seconds. 193
Lesson Thiry-ight Radians 199
Lesson Thiry-nine Area of a Sector. 206
Lesson Forly The First City—Review of the chapter. 211
Lesson Gorly-ane The Second City 214
Lesson Forly-wa The Third City 216
Chapter 6 Conditional Equations, Functions of Two Angles
Lesson Forly-three Conditional Trig Equations. 218
Lessan Gorly four Functions of Two Angles 228
Lesson Gorly-five A More Complete List 236
Lesson Forty-six \quad Proof of $\sin (x+y)=\sin x \cos y+\cos x \sin y$. 242
Lessan Forly-seven The First City—Review of the chapter. 249
Lesson Forly-eight The Second City 254
Lesson Forly-nine The Third City 258
Chapter 7 Oblique Triangles
Lesson Fifly \quad Picking a Number at Random. 261
Lesson Fifly-one Law of Cosines 267
Lesson Fifly-wa The Handkerchief Problem. 275
Lesson Fifly-three Law of Sines 281
Lesson Fifly-four Proof of the Law of Cosines. 287
Lesson Tifly-five The First City—Review of the chapter. 291
Lesson Fifly-six The Second City... 295
Lesson Fifly-seven The Third City 299
Chapter 7½ Looking Back
Lesson Fifly-eight Inverse Functions, One-to-one Functions. 303
Chapter 8 Inverse Trig Functions
Lesson Fifly-nine Definition of the Inverse Tangent Function. 309
Lesson Sixty Principal Values of the Inverse Trig Functions. 314
Lessen sixity-one The Ambiguous Case for the Law of Sines 321
Lesson sixty-wa The First City-Review of the chapter. 327
Lesson sixty-thice The Second City 331
Lesson slixty-fowr The Third City 334
Chapter 9 Polar Coordinates
Lesson Sixxy-five Polar Coordinates 338
Lesson Sixaty-six The First City-Review of the chapter 346
Lesson sixty-seven The Second City 351
Lesson sixity-ight The Third City 355
Chapter 9½ Looking Back
Lesson Sixixy-nine One-to-one Correspondences 358
Lesson Severty Numbers: Natural, Whole, Rational, Transcendental, Algebraic, and Real. 365
Lesion Severty-one Imaginary Numbers, Complex Numbers 377
Chapter 10 Polar Form of Complex Numbers
Lessan Severty-wa The Barber's Paradox. 388
Lesson Severty-thice r cis θ. 393
Lesson Severly-four de Moivre's Theorem. 398
Lesson Severenty five Proof of de Moivre's Theorem 401
Lesson Severny-six Finding the $\mathrm{n}^{\text {th }}$ Roots of Any Number. 406
Lesson Seventy-seren The First City-Review of the chapter 410
Lesson Severly-eight The Second City 413
Lesson Severly-nine The Third City 415
Chapter 10½ Looking Forward to the 24 Chapters of Calculus
Lesson ©iighly What You'll Need for Calculus Chapter One: Functions 417
Lesison ©ighty-one What You'll Need for Calculus Chapter Two: Limits. 425
Lesson E̊ighty-wo What You'll Need for Calculus Chapter Three: Speed 432
Lesson ©゚ighty-three What You'll Need for Calculus Chapter Four: Slope 436
Lesson ©ighty-four What You'll Need for Calculus Chapter Five: Derivatives. 440
Lesson ©ighty five What You'll Need for Calculus Chapter Six: Concavity 443
Lesson ©ighty-six What You'll Need for Calculus Chapter Seven: Trig 447
Lesson ©ight-seven What You'll Need for Calculus Chapters Eight and Nine:
Related Rates, Curvature, Mean Value Theorem, Acceleration 451
Lesson ©ighty-eight What You'll Need for Calculus
Chapters Ten and Eleven: Integrals, Area, Parametric Forms, Improper Integrals. 456
Lesion ©ighty-nine What You'll Need for Calculus
Chapter Twelve and Thirteen: Work, Solids of Rotation, Torque, Centroids, Averages, Integration by Parts, Moment of Inertia. 460
Lesson elinely What You'll Need for Calculus Chapter Fourteen: Logs. 466
Lesison elvinely-one What You'll Need for Calculus
Chapter Fifteen: Conics and Hydrostatic Force 469
Lesson elinely-we What You'll Need for Calculus
Chapter Sixteen: Infinite Series 473
Lesson elinely-thice What You'll Need for Calculus
Chapters Seventeen and Eighteen:
Solids of Revolution, Trig Substitutions, Surface Area, Polar Coordinates, Alternating Series, Power Series 476
Lesson elinely- four What You'll Need for Calculus
Chapters Nineteen through Twenty-four: Hyperbolic Trig, Separating the Variables, Numerical Integration, Vectors, Partial Derivatives, Double Integrals, Vector Calculus 480
A.R.T. = All Reorganized Together
A supercondensed and reorganized-by-topic overview of trigonometry 484
Index. 491

Astrong wind blew from the south. That seemed like a good sign to Fred since he was heading north on Highway 135 in Kansas. It wouldn't be long before he'd be back at the university where he lived. Home - that had such a sweet sound to it.

He thought back over the last several days. On Friday, his sixth birthday, he had been seized by the induction evaders investigators and had endured 27 hours chained inside a military prisoner transport. He spent the weekend as a soldier down in a U.S. Army camp in Texas. By Monday he had an honorable discharge. The army chaplain paid his bus fare so that he could get back home. On the bus he had made friends with George and Cheryl Mittens, their three daughters, and the girls' four friends. The bus was hijacked and driven to Cuba, Kansas. And finally on Tuesday after another bus ride to the South Kansas library, George, who had become a multi-billionaire on this bus trip, ordered a limo for Fred's trip back to the northern part of Kansas.*

The back of the limo was almost as big as Fred's office at KITTENS University (Kansas Institute for Teaching Technology, Engineering, and Natural Sciences). The interior was all leather and gold with a telephone, a television, and a wet bar.

The windows were tinted a dark blue-gray, making it difficult for Fred to see the evening sky.
"Is it okay if I roll down the window to look outside?" Fred asked the driver.
"Of course, Sir," the driver responded. "You may do as you wish. This is your vehicle to enjoy for the trip."

[^1]Fred rolled down the window and was instantly sorry. His lap was filled with snow.

The bus driver put the limo on automatic pilot and raced back to assist his young passenger. "Don't worry about it, Sir," the driver assured him. "This happens frequently." He vacuumed Fred's lap with a wet/dry vacuum. "Perhaps you would enjoy a bit of dinner before we arrive at KITTENS?"

When Fred looked down at his lap, the driver thought Fred was nodding "yes," and so he began dinner preparations in the limo's kitchen. Fred was hoping that dinner would be a small slice of pineapple pizza. That would hit the spot before he arrived back at his office and could visit the vending machines down the hall. He had recently made it his goal to weigh 40 pounds before he hit puberty. That would mean that he would have to increase his body weight by 10% in the next seven years. The driver/chef placed a large oak table in front of Fred and brought in what he had called "a bit of dinner":
Ofppetizer
Escargots in an Applewood-smoked Bacon Sauce
Soup
Spring Pea and Squash Blossom Soup with Duck Foie Gras
Salad
Montrachet Goat Cheese Melted over Young Field Greens
Pasta
Smoked Pheasant Ravioli with Fresh Tarragon
Apple-Lime
Sontree
Saltimbocca of Salmon in a Bed of Northern Elk Medallions
Dessert
Jell-O ${ }^{\circledR}$

[^2]Fred sat there stunned. The vending machines down the hall never had anything like this. He carefully nibbled some of the young field greens (avoiding the melted goat cheese).

Suddenly the limo rolled to a stop. The driver looked at his watch and said, "This is too early for the limo to be coming to a stop. We've got another ten minutes before we get to KITTENS." He raced to the front to see why the automatic pilot had stopped the car.

The Troubled Waters Canyon Bridge had completely collapsed. In front of the car was a chasm about a hundred feet across.

Fred and the chauffeur got out of the car and looked at the mess. They could see the lights of the university in the distance.
"Don't worry, Sir," the driver assured Fred. "Acme Ultra Limo Service guarantees that we'll get you to your destination. It's our Gold Service.*"

The driver headed to the trunk of the car and pulled out a large wooden box marked, "Canyon-Fording Emergency \#351." Fred watched the driver unpack and inflate a large hot-air balloon.

[^3]"If you will just climb in, Sir," the driver said as he lifted his $37-\mathrm{lb}$. passenger into the balloon's basket.
"But, but, but," Fred exclaimed. "I don't
 know how to fly one of these things!"
"That's quite all right, Sir," the driver answered. "If you would please toss one end of the rope out of the basket and secure the other end, then everything will be quite safe."

Fred did as he was asked. He opened the package marked "Canyon-Fording Emergency BalloonTether 120 -foot Rope \#351A", tossed one end out of the basket and tied the other end around his waist.

The driver looked at what Fred had done and gasped. "Oh no, Sir! I'm afraid I
wasn't quite clear. [Some people who serve use the word quite quite a lot.] Please affix the rope to the basket. I shall attach the other end to this stake in the ground. Then as the balloon ascends, you shall never be more than 120 feet from me."

Fred couldn't figure out what was going on. How could going up in a hot-air balloon get him across this chasm?

What Fred thought was going to happen

What really happened
(The driver had read the first seven words of this chapter.) He called out to Fred, "You may jump out of the basket now, Sir."

Chapter One Lesson One-Otngles of E̊levation

Jump? thought Fred. Where's my parachute? I really can't see how far it is to the ground. It's too dark.
"Driver," Fred called out in the darkness. "How far am I from the ground?"
"I can't tell, Sir," he responded.
 "It's too dark and you're too far away."

Fred said, "I know the rope is 120 feet long. Can you tell me what my angle of elevation is?"
"Very good, Sir." The driver headed to the storage unit in limo and grabbed a protractor,* put it on the ground and measured Fred's angle of elevation (which is how far above the horizontal he was). "Sir," he called to Fred, "Your angle of elevation is two degrees."

Fred needed to know how far the balloon was off the ground (marked by a "?" in the diagram). We have now arrived at the heart of trigonometry. Trig deals with the angles and sides of right triangles.
(Your reading speed should be adjusted appropriately since you're in a more mathematical section. For example, let's read the three sentences of the previous paragraph sssssssll11111111looooooooowwwwwwwwlll11111lyyyyyyyy and see what we find. When you read that Fred needed to find the value of the "?," the thought may have come to you as you looked at the diagram that nothing in algebra or in geometry ever showed you how to find the length of the side that is opposite the 2° angle. The sentence, "We have now arrived at the heart of trigonometry," is really a most amazing statement. Five pages into the first chapter and we have a practical example of the use of the first trig function (the sine function) and in Lesson 2 we will have defined it. No other trig textbook that I know of gets to this point this quickly. One trig book takes 165 pages to get to its first application of the sine function. The third sentence, "Trig deals with the angles and sides of right triangles," defines trigonometry.

[^4]

1. In the above triangle the angle of elevation is labeled as 2°. When I measure the angle in my drawing, I find it is actually about 6°. Redraw the triangle more accurately. (Please attempt this first on your own before you look at my answer on the next page.)

The following questions are from geometry.
2. What does the little square in the lower-right-hand corner of the above triangle mean?
3. Acute angles are angles that are less than 90°. Draw a right triangle that has an acute angle of 45°. (You are not required to own a protractor. Just use your ruler and make a rough drawing.)
4. Make a drawing of a right triangle in which one of the acute angles is approximately 30°.
5. If one acute angle in a right triangle is 30°, what is the measure of the other acute angle?
6. A theorem from geometry states, "In any 30-60-90 triangle, the side opposite the 30° angle is half of the length of the hypotenuse." In the following diagram, mark the side opposite the 30° angle with "opp" and the hypotenuse with "hyp".

3. Your drawing might look like
 or like

The two shorter sides of the triangle (the legs) you draw should have been roughly equal in length.
4. If you want to see how accurately you drew your right triangle containing a 30° angle, measure the shortest side and measure the hypotenuse (the longest side). According to a theorem from
 geometry, the shortest side in 30° right triangle is exactly half as long as the hypotenuse.
5. The sum of all three angles in any triangle is equal to 180°. If one angle is 90° and another is 30°, that would leave 60° for the third angle. These right triangles in which one of the acute angles is 30° are sometimes called 30-60-90 triangles.
6.

180 degrees $=\pi$ radians. 204
abscissa. 51
absolute value of r cis θ 412
abundant, deficient, and perfect numbers 220, 221
ACTS 120
acute angles. 26
addition formula 233
Albert Einstein 58, 197
algebraic form to polar form 395
algebraic numbers. 373
alliterative. 93
alternating series. 477
amplitude 187, 188
angle of depression 32
angle of elevation 25
angles
coterminal 99
initial side. 98
standard position 98
terminal side 98
angular speed. 462
area of a sector 207, 208, 447
area of a triangle 38
$1 / 2 \mathrm{ab} \sin \theta$. 39
$1 / 2$ bh. 40
asymptotes 123
average height of a curve
464, 465
Ayn Rand. 115
Babylonians 199
Barber's Paradox 390
base angles of an isosceles triangle are congruent four different proofs 153
base-eight multiplication 203
advantages and disadvantages 205
BASIC program. 429, 430
binomial formula 440
bocci ball. 37, 38
can Vs. may. 343
cardinal numbers 78
cardioid. 344
Cartesian coordinates 339
centroid 461
chance that a triangle picked at random will be a right triangle 263, 264
cis. 397
closed interval. 440
codomain. 359
Commentaries of Caesar on the Gallic War. 420
common logarithms 372
complementary angle 80
complex number plane. 383
complex numbers 380
concavity. 443
conditional equations 223, 226
conjugate. 381
continuous variables. 52, 266,435
contrapositives 93
conversion factors 195-197,
446, 450, 452, 475
cosecant function 162
cosine-definition. 79
cotangent function 159
de Moivre's theorem. . . 398, 400
the proof. 401-404
difference of cubes factoring 131
difference of squares factoring 129
discrete variables. . . 52, 266, 435
dividing by zero. 167
domain 359
double-angle formula. 233
double-intercept form of the line 51
Duck Foie Gras. 22
ducks who go bowling. 202
dumbed down textbooks 219
e. 372, 373
eager vs. anxious. 261
easy trinomial factoring. 130
Edward Gibbon. 140
Eldwood's Modern Care of Llamas. 229
Eldwood's Weird \& Unusual Formulas. 296
Eldwood's Treatise on TellingTime by the Slope of theSun.67
entre nous. 345
even functions. 121
factoring 131
difference of squares 129
easy trinomials. 130
sum of cubes 131
fifth roots of 1. 406
Florence Nightingale. 276
four-leaved rose 353
fractions
adding and subtracting. 133
complex fractions. 134
function
1-1 correspondence. 359-361
as a machine 89, 92
codomain. 359
domain 94, 359
identity function. 90
inverse function. 304, 305
one-to-one 303-305, 359
onto. 359
principal values of inverse trig functions. 314, 316
range 95
function of any angle $=$ cofunction of the complementary angle 165, 191, 234, 447
functions whose domains were expanded. 103
Gianfrancesco Malfatti. 393
graphing calculators. 186
graphing terminology. 51
Green's theorem. 10
handkerchief problem.279, 280, 287, 319
hangman game-how to win 321
harmonic series. 474
Heron's formula 38
how hard you should work on a math problem. 289
hydrostatic force. 469
hyperbole 313
hyperbolic trig functions 480
hypocycloid 458
identities from algebra. 115
identities-provingsuggestions. . . 154, 155, 160,173
working only on one side148, 149
identity function. 90
identity-definition 114, 141
iff 359
imaginary axis. 383
imaginary timeline. 384
infinite geometric series. 473
integers. 368
integral sign. 456
Isaac Newton. 197
Isidore of Seville. 358
Joseph Lister. 229
KITTENS University 21
law of cosines 270, 271
my law of cosines story 289, 290
the handkerchief problem279, 280, 287
when to use 270
law of sines. 282
ambiguous case 321-324
when to use 271
laws of logarithms. 466
lemniscate 346
limaçon 355
limit of a function 71, 425,426
Llama Crackers. 300
Malfatti's problem 393
mathematical induction. 402
Mean Value Theorem. 452,453
memorizing math formulas 240
minutes-angle measure 195
moment of inertia. 462
Montrachet goat cheese. 22
Mt. Math. 168
mutatis mutandis. 283
Napoleon. 59
natural logarithms. 372
natural numbers 67, 366
no cross-multiplying rule. 169 ,
170, 184
Nomina si nescis, perit et cognitio rerum 358
normal sets 390
oblique triangles 264
odd functions. 122, 124
official definition of one 365 ,366
one-to-one functions. 360, 361
onto functions 359
open interval. 440
open questions in mathematics221, 375
ordinal numbers 78
ordinate. 51
parabola 470
parametric form. 457
partial derivative. 482
partial fractions. 477, 478
period of a function 111, 407
periodic function. 111, 407
permittivity of empty space 206
point-plotting 83, 87, 88
point-slope form of the line. . 51 , 68, 437
polar axis. 344
polar coordinates. 340
conversion formulas. 342
plotting. 340
polar to algebraic form.. 395
pole.. 344
pride and sloth. 242
principal values of inverse trig
functions..314, 316
protractor. 25
proving $\sin (\mathrm{x}+\mathrm{y})=\sin \mathrm{x} \cos \mathrm{y}$
$+\cos x \sin y \ldots$. . 245-248
pure imaginary numbers.. . . . 380
Q.E.D.. 402
radians. 201
Rafferty's Pizza. 72
rational numbers.. 369
real numbers.. 373
reciprocal 166
rectangular coordinates. 339
related angles. 224
requiescat in pace $=$ may he/she rest in peace (Latin)

175
right triangles. 27
rotational symmetry. 408
Russell's paradox. 390
scientific calculators.. 186
secant function. 146
seconds-angle measure. . . 195, 197
segment of a circle. 216
semiperimeter.. 38
set builder notation.. 99
sexagesimal 199
Shakespeare 52, 53
sigma notation. 473, 474
Sigmund Freud. 59
significant digits 43, 46, 52-55
similar triangles 91
sine-definition 28
sine function
as a machine 90
six raised to the π power. 96
slope and the tangent function 68, 69
slope-intercept form of the line 51, 68, 88
slopes of perpendicular lines68
slope-definition 67, 436
solar system. 141
solid of revolution 476
sorbet-how to pronounce. 22
story of Cammy
$33,40,61,74,196$
string theories 417
sum of all three angles in any triangle 27
sum of cubes factoring. 131
surface area of a sphere. 451
symmetry with respect to a line 348
symmetry with respect to a point 347
symmetry with respect to the polar axis. 350
tangent function-definition61
The Merchant of Venice. 53
Theodore Roosevelt. 280

Ondex
Thomas Hobbessolitary, poor, nasty, brutish,and short. 241
three-leaved rose 342
torque 461
transcendental numbers. 371
trig identities for two angles
the pages with the flowers236, 237
Trigon means triangle in Greek7
two-point form of the line. 51
unit circle. 69
universal set—why it can't exist391, 392
vectors 481
Venn diagram 373, 374, 376
vexillology. 92
viz., etc., e.g., and i.e... 209, 403
volume of a cone. 440
volume of a cylinder. 444
volume of a sphere. 451
when you will use the double- angle formulas. 243,244
whole numbers. 367
why read the great books 285
why we create new mathematics64
Word Ladders 138
yo-yo tricks 338, 339

[^0]: * Other options include: A) two lessons per day, which would take you through trig in $341 / 2$ days and B) one lesson per day (Monday-Saturday), in which case you would finish in less than six weeks.

[^1]: * The adventures of Fred from Thursday afternoon (the day before Fred's sixth birthday) to Monday are told in Life of Fred: Beginning Algebra Expanded Edition. Monday and Tuesday are chronicled in Life of Fred: Advanced Algebra Expanded Edition.

[^2]: * A sorbet is a fruit or vegetable ice which is served before the main course as a palate cleanser. Webster's Ninth New Collegiate Dictionary indicates that the correct pronunciation is SOAR-bet. This reflects the fact that sorbet is a word originally from Turkish. Webster's Tenth switches to soar-BAY which is the way most people seem to pronounce it today.

[^3]: * Acme Ultra Limo is often abbreviated as AU Limo. In chemistry, Au is the symbol for gold.

[^4]: * Protractors are angle-measuring devices. They're usually plastic. You won't need one for trig, but you should have one if you're running a limousine company that offers Gold Service.

