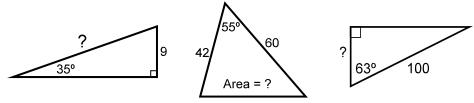

Life of Fred® Trigonometry Expanded Edition


Stanley F. Schmidt, Ph.D.

What is Trig All About?

rigonometry plays with triangles. Mostly right triangles. *Trigon* means triangle and *metry* means measuring (in Greek). Someone probably stuck the "o" in *trigon*-o-*metry* to make it easier to pronounce.

By the end of the first chapter of this book you'll be able to find the quantities indicated by a question mark:

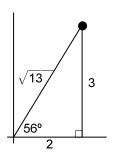
and you'll know the first of the three major trig functions (the sine function). That's the first nine pages of the book.

The rest of the book pretty much flows naturally from those first nine pages. If you looked at the definition of the sine function in Chapter 1 for several minutes, you could predict how the cosine and tangent functions would be defined in Chapter 2. The only thing you wouldn't know is their names.

In Chapter 3 through Chapter 9, we take the concepts of sine, cosine, and tangent and stretch them like taffy.

In Chapter 1 we were taking the sine of the acute angles in a right triangle. In Chapter 3 we wonder what the sine of 110° would equal.

In Chapter 4 we find the basic algebraic facts about sine, cosine, and tangent, such as (sine of A)² + (cosine of A)² = 1 for every angle A. These basic facts will be used later in calculus.


In Chapter 5 we invent a new way to measure angles. Instead of talking about 30°, we have $\pi/6$ radians.

Chapter 6: We put sines, cosines, and tangents in algebra equations and solve them.

Chapter 7: The trig functions are used in triangles that are not right triangles.

Chapter 8: We turn the sine, cosine, and tangent functions inside out by finding their inverses. Back in algebra we knew that if h(Meddie) = apple pie, then the inverse function, h^{-1} , would give us h^{-1} (apple pie) = Meddie.

Chapter 9: We locate the point (2, 3) on a graph using angles and lengths instead of just lengths. Instead of saying that the point is two units to the right and three units upward, we'll say that it is roughly 3.6 units from the origin at an angle of approximately 56°.

The real surprise comes in the last chapter.

All the Chapters from 2 through 9 you might have been able to predict, but not Chapter 10.

In that last chapter we stir together parts of what we've learned in trigonometry so far and come up with the answer to $\sqrt[5]{T}$. Not just the answer $\sqrt[5]{T} = 1$ that you know from algebra. We arrive at five *different* answers. Probably less than 2% of all college graduates can name those five numbers.

In the last question of the last *Your Turn to Play*, you will find the million different answers to 1,000,000 and plot all your answers.

i is equal to
$$\sqrt{-1}$$
 (It will be easy to do.)

A Note to Students

t is Tuesday evening. Fred is coming back to KITTENS University after a two-day bus trip. Fred celebrated his sixth birthday last Friday. Going from Tuesday evening to Wednesday night in his life, you will learn all of trigonometry.

Reading the adventures in the life of Fred can be done at 1,000 pages per hour or whatever your normal reading speed is. However, the rate at which most people read and understand new material in mathematics is a bit slower than a thousand pages per hour. You are doing well if you learn the trigonometry at about two pages per hour. Using a calculator, we find that works out to about thirty minutes per page.

One of the nice things about mathematics is that there aren't that many pages. I saw in my college bookstore years ago the required reading list for one English course. I think the course dealt with eighteenth-century British novels. There were about a dozen novels the students had to buy—just for one course. My eyes would start to squeak reading that many pages.

Throughout this book are sections called *Your Turn to Play*, which are opportunities for you to interact with the material. Complete solutions are given for all the problems in the *Your Turn to Play* sections, but just reading the problems and the solutions without working them out for yourself really won't work (unless you have an IQ above 150).

If you would like to learn trigonometry, the general rule is easy: Personally work out each of the problems before you look at the solutions I supply.

After 10 chapters you will have mastered all of trig.

Just before the Index is the **A.R.T.** section. This section very briefly summarizes every part of trigonometry. If you have to review for a final exam or if you want to quickly look up some topic eleven years after you've read this book, the **A.R.T.** section is the place to go.

A.R.T. = **A**ll **R**eorganized **T**ogether.

Nine Ways This Book Is Different

- 1. The **A.R.T.** section I just mentioned.
- 2. Motivation. When I taught math in high school and in college, the question that I and every other math teacher received was, "When are we ever gonna use this stuff?"

The *Life of Fred* series is a direct response to that question.

- ✓ Every piece of math first happens in Fred's life.
- ✓ He needs the math.
- ✓ Only then do we present the math.

This is true from the earliest books in the series, in which we first encounter 3 + 4, up through all of calculus. In Chapter 23 in calculus, Betty is driving Fred to their favorite pizza place (PieOne Pizza). There is a heavy wind and Betty tries to figure out how much work her car must do to push through that wind. She does a huge computation.* Fred uses Green's theorem and reduces the whole thing down to

$$\int_{(0,0)}^{(\pi,1)} (\cos x + 6y) dx + (6x + e^y) dy = \phi(\pi, 1) - \phi(0, 0) = 6\pi + e - 1$$

Fred's One-Liner

```
\int_{C} (\cos x + 6y) \, dx + (6x + e^y) dy \qquad \text{where $C$ is the three line segments} \qquad (0,0) \text{ to } (5,0) \\ (5,0) \text{ to } (5,1) \text{ and} \\ (5,1) \text{ to } (\pi,1) \qquad (5,1) \qquad (5,1) \text{ to } (\pi,1) \qquad (5,1) \text{ to } (\pi,1) \qquad (5,1) \text{ t
```

^{*} I don't want to frighten you, so don't look at this very long.

I know that that calculus stuff looks scary now, but when you are in fourth semester calculus, Fred's One-Liner solution will be a r-e-l-i-e-f.

- 3. Complete. *Life of Fred: Trig* has all of trigonometry—more material than is normally presented in a university classroom.
- 4. More than complete. There are six optional chapters (1½, 2½, 3½, 4½, 7½, and 9½) that review much of the material from previous math courses. These Looking Back Chapters are placed just before the trig chapters in which the material will be needed. Many readers appreciate the chance to quickly refresh their memories.
- 5. Much more than complete. We do much more than just math problems in this book.

There is a natural way to learn—and an unnatural way. Sticking a large group of kids in a sit-up-straight-and-be-quiet classroom, giving them a dose of English for an hour, then herding them to a math classroom for a dose of math, is unnatural.

English teachers teach English. History teachers teach history. Auto shop teachers teach auto shop. But who teaches the kids?

Children (and adults!) love to learn. Watch a bunch of eight-yearolds during the summer playing in the back yard. They find bugs (biology). They dig holes (civil engineering). They wonder why the sun doesn't burn up (nuclear physics). They make mud pies (culinary arts).

One subject tumbles into another. And it is fun.

Life of Fred: Trig aims toward that ideal.

- ★ The topic of continuous and discrete variables takes us into a half-page discussion of one of the plays of Shakespeare (p. 53).
- * When Fred is waiting to see the nurse, he imagines that she will be "a cheerful heir to the legacy of Florence Nightingale." We outline why she played such a pivotal role in the history of women working outside the home (p. 276).

* Healthy living is mentioned. *Exercise*: Fred starts his Wednesday morning with "his morning jog around the campus" with the result that "Everything felt so wonderful. He was happy to be alive. . . ." *Diet*: Fred had spent the six years of his life living off vending machine food and pizza with his friends. He had drunk a lot of Sluice during those years—a soda with a lot of sugar in it. He is 36 inches tall and weighs 37 pounds. In the opening two pages of chapter eight, nurse Florrie introduces Fred to a drink that he's never had before. Fred really liked it and exclaimed, "This is great. It quenches your thirst and doesn't leave a nasty aftertaste." And Florrie added, "And no beer gut either." The drink

is . . . water. *Dental hygiene*: Each night (p. 41 and p. 406) Fred flosses and brushes his teeth.

* Learning English is at least as important as learning trig. Fred owns a llama, which he received at his birthday party in chapter six. At the beginning of chapter seven he spots the current issue of a llama magazine. We explain why it is incorrect to say that he was *anxious* to read it. And we spend a half page (p. 285) describing the positive results of reading the great authors.

* Have you ever eaten saltimbocca?

- 6. Super much more than complete. I remember the times I was a student and the teacher would provide a glimpse of what lay ahead. I treasured those moments, but those times were rare. Most math teachers just present theorem-definition-theorem-definition-theorem-definition-theorem-definition-theorem-definition-theorem-definition-theorem-definition-theorem and I could never get the Big Picture. In the last chapter of this book, we are going to look ahead to each of the 24 chapters of *Life of Fred: Calculus*. We are going to look at all two years of calculus and get a grand overview. In addition, we'll outline what high school math you will need for each chapter.
- 7. Fun. How many math books have you ever read that claim that they are fun? This book is fun—along with being a lot of work.

Mary Poppins, that great child psychologist, knew the truth: a spoonful of sugar doesn't hurt at all. This book has $C_{12}H_{22}O_{11}$.

Fred will be jumping out of a hot-air balloon in pitch darkness. He will be served a dinner (on the second page of Chapter 1) by his limo driver that is stunning. And Fred boxes "the big G" Philistine for twelve rounds.

8. Short. Yes, short.

In 69 lessons you will finish all of trig. (There are 10 optional Looking Back lessons and 15 lessons Looking Forward to calculus.)

If you did 34½ lessons per day, you would be done in two days.*

9. \$39. No other complete trig textbook comes even close.

^{*} Other options include: A) two lessons per day, which would take you through trig in 34½ days and B) one lesson per day (Monday–Saturday), in which case you would finish in less than six weeks.

Contents

Chapter 1 Sine	
Lesson One	Angles of Elevation
Lesson Two	Definition of the Sine Function
Lesson Three	Angles of Depression
Lesson Four	Area of a Triangle = $\frac{1}{2}$ ab sin θ
Lesson Five	The First City—Review of the chapter 42
Lesson Six	The Second City45
Lesson Seven	The Third City
Chapter 1½ Loo	king Back
Lesson Eight	Graphing and Significant Digits 50
Chapter 2 Cos	ine and Tangent
Lesson Nine	Definition of the Tangent Function 57
Lesson Ten	Slope and the Tangent Function
Lesson Eleven	Using the Tangent Function72
Lesson Twelve	Definition of the Cosine Function
Lesson Thirteen	The First City—Review of the chapter 82
Lesson Fourteen	The Second City85
Lesson Fifteen	The Third City

Chapter 2½ Looking Back

Lesson Sixteen	Functions Defined As Machines
Lesson Seventeen	Domain and Range of a Function
Chapter 3 Trig	Functions of Any Angle
Lesson Eighteen	Trig Angles
Lesson Nineteen	Expanding the Domain of a Function 101
Lesson Twenty	Trig Functions of Any Angle
Lesson Twenty-one	Identities
Lesson Twenty-two	The First City—Review of the chapter 119
Lesson Twenty-three	The Second City
Lesson Twenty-four	The Third City
Chapter 3½ Look	ring Back
Lesson Twenty-five	Factoring
Lesson Twenty-six	Fractions
Chapter 4 Trig	Identities
Lesson Twenty-seven	Proving Trig Identities for Sines and Cosines 138
Lesson Twenty-eight	Proving Trig Identities and the Secant Function. 146
Lesson Twenty-nine	Proving Trig Identities Using the Five Hints 152

Lesson Thirty	Cotangent Function
Lesson Thirty-one	Cosecant Function
Lesson Thirty-two	The Last Hints for Proving Trig Identities 168
Lesson Thirty-three	The First City—Review of the chapter 176
Lesson Thirty-four	The Second City
Lesson Thirty-five	The Third City
Chapter 4½ Look	ring Back
Lesson Thirty-six	Graphing $y = a \sin (bx + c)$
Chapter 5 Radia	ans
Lesson Thirty-seven	Degrees, Minutes, Seconds
Lesson Thirty-eight	Radians
Lesson Thirty-nine	Area of a Sector
Lesson Forty	The First City—Review of the chapter 211
Lesson Forty-one	The Second City
Lesson Forty-two	The Third City
Chapter 6 Conc	litional Equations, Functions of Two Angles
Lesson Forty-three	Conditional Trig Equations
Lesson Torty-four	Functions of Two Angles
Lesson Forty-five	A More Complete List

Lesson Forty-six	Proof of $\sin (x + y) = \sin x \cos y + \cos x \sin y$ 242
Lesson Forty-seven	The First City—Review of the chapter 249
Lesson Forty-eight	The Second City
Lesson Forty-nine	The Third City
Chapter 7 Oblid	que Triangles
Lesson Tifty	Picking a Number at Random
Lesson Tifty-one	Law of Cosines
Lesson Tifty-two	The Handkerchief Problem
Lesson Tifty-three	Law of Sines
Lesson Tifty-four	Proof of the Law of Cosines
Lesson Tifty-five	The First City—Review of the chapter 291
Lesson Tifty-six	The Second City
Lesson Tifty-seven	The Third City
Chapter 7½ Look	ring Back
Lesson Tifty-eight	Inverse Functions, One-to-one Functions 303
Chapter 8 Inverse Trig Functions	
Lesson Fifty-nine	Definition of the Inverse Tangent Function 309
Lesson Sixty	Principal Values of the Inverse Trig Functions 314

Lesson Sixty-one	The Ambiguous Case for the Law of Sines 321
Lesson Sixty-two	The First City—Review of the chapter 327
Lesson Sixty-three	The Second City
Lesson Sixty-four	The Third City
Chapter 9 Polar	Coordinates
Lesson Sixty-five	Polar Coordinates
Lesson Sixty-six	The First City—Review of the chapter
Lesson Sixty-seven	The Second City
Lesson Sixty-eight	The Third City
Chapter 9½ Look	ing Back
Lesson Sixty-nine	One-to-one Correspondences
Lesson Seventy	Numbers: Natural, Whole, Rational, Transcendental, Algebraic, and Real 365
Lesson Seventy-one	Imaginary Numbers, Complex Numbers 377
Chapter 10 Polar	Form of Complex Numbers
Lesson Seventy-two	The Barber's Paradox
Lesson Seventy-three	r cis θ
Lesson Seventy-four	de Moivre's Theorem
Lesson Seventy-five	Proof of de Moivre's Theorem
Lesson Seventy-six	Finding the n th Roots of Any Number406

Lesson Seventy-seven	The First City—Review of the chapter 410
Lesson Seventy-eight	The Second City
Lesson Seventy-nine	The Third City
Chapter 10½ Loc	oking Forward to the 24 Chapters of Calculus
Lesson Eighty	What You'll Need for Calculus Chapter One: Functions
Lesson Eighty-one	What You'll Need for Calculus Chapter Two: Limits
Lesson Eighty-two	What You'll Need for Calculus Chapter Three: Speed
Lesson Eighty-three	What You'll Need for Calculus Chapter Four: Slope
Lesson Eighty-four	What You'll Need for Calculus Chapter Five: Derivatives
Lesson Eighty-five	What You'll Need for Calculus Chapter Six: Concavity
Lesson Eighty-six	What You'll Need for Calculus Chapter Seven: Trig
Lesson Eight-seven	What You'll Need for Calculus Chapters Eight and Nine: Related Rates, Curvature, Mean Value Theorem, Acceleration
Lesson Eighty-eight	What You'll Need for Calculus Chapters Ten and Eleven: Integrals, Area, Parametric Forms, Improper Integrals

Lesson Eighty-nine	What You'll Need for Calculus Chapter Twelve and Thirteen: Work, Solids of Rotation, Torque, Centroids, Averages, Integration by Parts, Moment of Inertia
Lesson Ninety	What You'll Need for Calculus Chapter Fourteen: Logs
Lesson Ninety-one	What You'll Need for Calculus Chapter Fifteen: Conics and Hydrostatic Force 469
Lesson Ninety-two	What You'll Need for Calculus Chapter Sixteen: Infinite Series
Lesson Ninety-three	What You'll Need for Calculus Chapters Seventeen and Eighteen: Solids of Revolution, Trig Substitutions, Surface Area, Polar Coordinates, Alternating Series, Power Series
Lesson Ninety-four	What You'll Need for Calculus Chapters Nineteen through Twenty-four: Hyperbolic Trig, Separating the Variables, Numerical Integration, Vectors, Partial Derivatives, Double Integrals, Vector Calculus
A.R.T. = All Reorgan	nized T ogether A supercondensed and reorganized-by-topic overview of trigonometry
Index	491

Chapter One Lesson One—Angles of Elevation

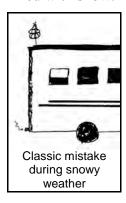
かいるとうしゃくしゃくしゃしゃしゃくん かいるしゃくしゃくん

strong wind blew from the south. That seemed like a good sign to Fred since he was heading north on Highway 135 in Kansas. It wouldn't be long before he'd be back at the university where he lived. *Home*—that had such a sweet sound to it.

He thought back over the last several days. On Friday, his sixth birthday, he had been seized by the induction evaders investigators and had endured 27 hours chained inside a military prisoner transport. He spent the weekend as a soldier down in a U.S. Army camp in Texas. By Monday he had an honorable discharge. The army chaplain paid his bus fare so that he could get back home. On the bus he had made friends with George and Cheryl Mittens, their three daughters, and the girls' four friends. The bus was hijacked and driven to Cuba, Kansas. And finally on Tuesday after another bus ride to the South Kansas library, George, who had become a multi-billionaire on this bus trip, ordered a limo for Fred's trip back to the northern part of Kansas.*

The back of the limo was almost as big as Fred's office at KITTENS University (Kansas Institute for Teaching Technology, Engineering, and Natural Sciences). The interior was all leather and gold with a telephone, a television, and a wet bar.

The windows were tinted a dark blue-gray, making it difficult for Fred to see the evening sky.


"Is it okay if I roll down the window to look outside?" Fred asked the driver.

"Of course, Sir," the driver responded. "You may do as you wish. This is your vehicle to enjoy for the trip."

^{*} The adventures of Fred from Thursday afternoon (the day before Fred's sixth birthday) to Monday are told in *Life of Fred: Beginning Algebra Expanded Edition*. Monday and Tuesday are chronicled in *Life of Fred: Advanced Algebra Expanded Edition*.

Fred rolled down the window and was instantly sorry. His lap was filled with snow.

The bus driver put the limo on AUTOMATIC PILOT and raced back to assist his young passenger. "Don't worry about it, Sir," the driver assured him. "This happens frequently." He vacuumed Fred's lap with a wet/dry vacuum. "Perhaps you would enjoy a bit of dinner before we arrive at KITTENS?"

When Fred looked down at his lap, the driver thought Fred was nodding "yes," and so he began dinner preparations in the limo's kitchen. Fred was hoping that dinner would be a small slice of pineapple pizza. That would hit the spot before he arrived back

at his office and could visit the vending machines down the hall. He had recently made it his goal to weigh 40 pounds before he hit puberty. That would mean that he would have to increase his body weight by 10% in the next seven years. The driver/chef placed a large oak table in front of Fred and brought in what he had called "a bit of dinner":

Appetizer

Escargots in an Applewood-smoked Bacon Sauce

Soup

Spring Pea and Squash Blossom Soup with Duck Foie Gras

Salad

Montrachet Goat Cheese Melted over Young Field Greens

Pasta

Smoked Pheasant Ravioli with Fresh Tarragon

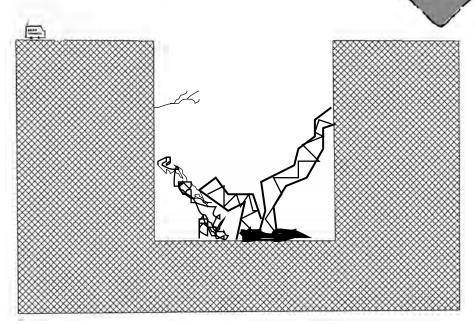
Sorbet*

Apple-Lime

Entree

Saltimbocca of Salmon in a Bed of Northern Elk Medallions

Dessert


Jell-O®

^{*} A sorbet is a fruit or vegetable ice which is served before the main course as a palate cleanser. Webster's Ninth New Collegiate Dictionary indicates that the correct pronunciation is SOAR-bet. This reflects the fact that sorbet is a word originally from Turkish. Webster's Tenth switches to soar-BAY which is the way most people seem to pronounce it today.

Fred sat there stunned. The vending machines down the hall never had anything like this. He carefully nibbled some of the young field greens (avoiding the melted goat cheese).

Suddenly the limo rolled to a stop. The driver looked at his watch and said, "This is too early for the limo to be coming to a stop. We've got another ten minutes before we get to KITTENS." He raced to the front to see why the AUTOMATIC PILOT had stopped the car.

The Troubled Waters Canyon Bridge had completely collapsed. In front of the car was a chasm about a hundred feet across.

Fred and the chauffeur got out of the car and looked at the mess. They could see the lights of the university in the distance.

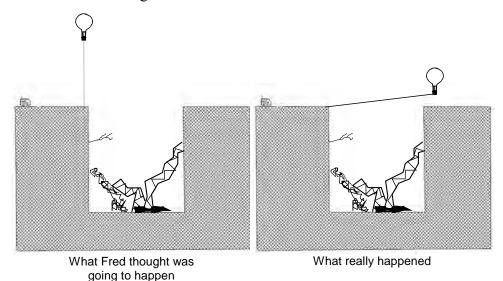
"Don't worry, Sir," the driver assured Fred. "Acme Ultra Limo Service guarantees that we'll get you to your destination. It's our Gold Service.*"

The driver headed to the trunk of the car and pulled out a large wooden box marked, "Canyon-Fording Emergency #351." Fred watched the driver unpack and inflate a large hot-air balloon.

^{*} Acme Ultra Limo is often abbreviated as AU Limo. In chemistry, Au is the symbol for gold.

"If you will just climb in, Sir," the driver said as he lifted his 37-lb. passenger into the balloon's basket.

"But, but," Fred exclaimed. "I don't know how to fly one of these things!"


"That's quite all right, Sir," the driver answered. "If you would please toss one end of the rope out of the basket and secure the other end, then everything will be quite safe."

Fred did as he was asked. He opened the package marked "Canyon-Fording Emergency Balloon-Tether 120-foot Rope #351A", tossed one end out of the basket and tied the other end around his waist.

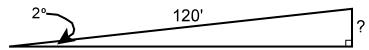
The driver looked at what Fred had done and gasped. "Oh no, Sir! I'm afraid I

wasn't quite clear. [Some people who serve use the word *quite* quite a lot.] Please affix the rope to the basket. I shall attach the other end to this stake in the ground. Then as the balloon ascends, you shall never be more than 120 feet from me."

Fred couldn't figure out what was going on. How could going up in a hot-air balloon get him across this chasm?

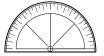
(The driver had read the first seven words of this chapter.) He called out to Fred, "You may jump out of the basket now, Sir."

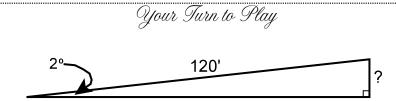
Jump? thought Fred. Where's my parachute? I really can't see how far it is to the ground. It's too dark.


"Driver," Fred called out in the darkness. "How far am I from the ground?"

"It's too dark and you're too far away."

Fred said, "I know the rope is 120 feet long. Can you tell me what my **angle of elevation** is?"

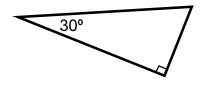

"Very good, Sir." The driver headed to the storage unit in limo and grabbed a protractor,* put it on the ground and measured Fred's angle of elevation (which is how far above the horizontal he was). "Sir," he called to Fred, "Your angle of elevation is two degrees."

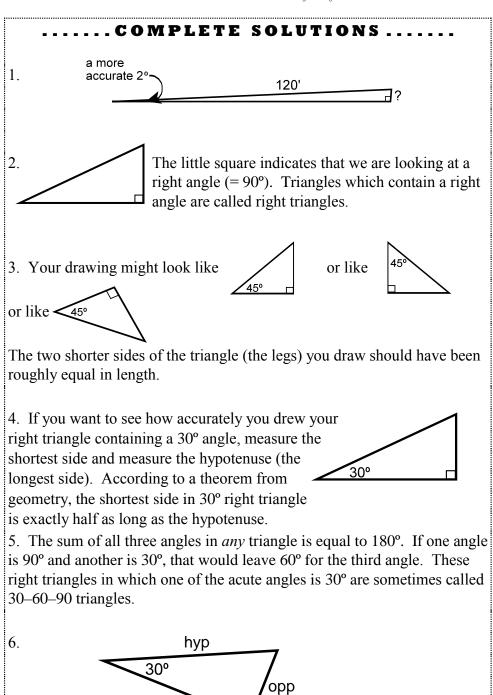


Fred needed to know how far the balloon was off the ground (marked by a "?" in the diagram). We have now arrived at the heart of trigonometry. Trig deals with the angles and sides of right triangles.

When you read that Fred needed to find the value of the "?," the thought may have come to you as you looked at the diagram that nothing in algebra or in geometry ever showed you how to find the length of the side that is opposite the 2° angle. The sentence, "We have now arrived at the heart of trigonometry," is really a most amazing statement. Five pages into the first chapter and we have a practical example of the use of the first trig function (the sine function) and in Lesson 2 we will have defined it. No other trig textbook that I know of gets to this point this quickly. One trig book takes 165 pages to get to its first application of the sine function. The third sentence, "Trig deals with the angles and sides of right triangles," defines trigonometry.

^{*} Protractors are angle-measuring devices. They're usually plastic. You won't need one for trig, but you should have one if you're running a limousine company that offers Gold Service.





1. In the above triangle the angle of elevation is labeled as 2°. When I measure the angle in my drawing, I find it is actually about 6°. Redraw the triangle more accurately. (Please attempt this first on your own before you look at my answer on the next page.)

The following questions are from geometry.

- 2. What does the little square in the lower-right-hand corner of the above triangle mean?
- 3. **Acute angles** are angles that are less than 90°. Draw a right triangle that has an acute angle of 45°. (You are not required to own a protractor. Just use your ruler and make a rough drawing.)
- 4. Make a drawing of a right triangle in which one of the acute angles is approximately 30°.
- 5. If one acute angle in a right triangle is 30°, what is the measure of the other acute angle?
- 6. A theorem from geometry states, "In any 30–60–90 triangle, the side opposite the 30° angle is half of the length of the hypotenuse." In the following diagram, mark the side opposite the 30° angle with "opp" and the hypotenuse with "hyp".

180 degrees = π radians 204	base angles of an isosceles
abscissa 51	triangle are congruent
absolute value of r cis θ	four different proofs 153
412	base-eight multiplication 203
abundant, deficient, and perfect	advantages and disadvantages
numbers 220, 221	205
ACTS120	BASIC program 429, 430
acute angles 26	binomial formula 440
addition formula	bocci ball
Albert Einstein 58, 197	<i>can</i> vs. <i>may</i>
algebraic form to polar form	cardinal numbers 78
395	cardioid
algebraic numbers 373	Cartesian coordinates 339
alliterative 93	centroid
alternating series 477	chance that a triangle picked at
amplitude 187, 188	random will be a right
angle of depression32	triangle 263, 264
angle of elevation	cis397
angles	closed interval 440
coterminal 99	codomain
initial side 98	Commentaries of Caesar on the
standard position98	Gallic War 420
terminal side 98	common logarithms 372
angular speed	complementary angle80
area of a sector 207, 208, 447	complex number plane 383
area of a triangle	complex numbers 380
Heron's formula 38	concavity 443
$\frac{1}{2}$ ab $\sin \theta$	conditional equations 223, 226
½ bh	conjugate
asymptotes	continuous variables 52, 266,
• •	435
average height of a curve	contrapositives93
	conversion factors 195-197,
Ayn Rand	446, 450, 452, 475
Babylonians 199	cosecant function
Barber's Paradox 390	

cosine—definition 79	four-leaved rose
cotangent function 159	fractions
de Moivre's theorem 398, 400	adding and subtracting 133
the proof 401-404	complex fractions 134
difference of cubes factoring	function
131	1-1 correspondence
difference of squares factoring	
129	as a machine 89, 92
discrete variables 52, 266, 435	codomain
dividing by zero 167	domain 94, 359
domain	identity function 90
double-angle formula233	inverse function 304, 305
double-intercept form of the line	one-to-one 303-305, 359
51	onto
Duck Foie Gras 22	principal values of inverse trig
ducks who go bowling 202	functions 314, 316
dumbed down textbooks 219	range 95
e	function of any angle =
eager vs. anxious 261	cofunction of the
easy trinomial factoring 130	complementary angle
Edward Gibbon 140	165, 191, 234, 447
Eldwood's Modern Care of	functions whose domains were
<i>Llamas</i> 229	expanded 103
Eldwood's Weird & Unusual	Gianfrancesco Malfatti 393
<i>Formulas.</i> 296	graphing calculators186
Eldwood's Treatise on Telling	graphing terminology51
Time by the Slope of the	Green's theorem
<i>Sun</i> 67	handkerchief problem
entre nous	279, 280, 287, 319
even functions 121	hangman game—how to win
factoring	321
difference of cubes 131	harmonic series 474
difference of squares 129	Heron's formula
easy trinomials 130	how hard you should work on a
sum of cubes	math problem 289
fifth roots of 1 406	hydrostatic force
Florence Nightingale 276	hyperbole

hyperbolic trig functions 480	Mean Value Theorem 452,
hypocycloid	453
identities from algebra 115	memorizing math formulas
identities-proving	240
suggestions 154, 155, 160,	minutes—angle measure 195
173	moment of inertia
working only on one side	Montrachet goat cheese 22
148, 149	Mt. Math 168
identity function90	mutatis mutandis 283
identity—definition 114, 141	Napoleon 59
iff	natural logarithms 372
imaginary axis 383	natural numbers 67, 366
imaginary timeline 384	no cross-multiplying rule 169,
infinite geometric series 473	170, 184
integers	Nomina si nescis, perit et
integral sign 456	cognitio rerum 358
Isaac Newton 197	normal sets
Isidore of Seville 358	oblique triangles
Joseph Lister 229	odd functions 122, 124
KITTENS University21	official definition of one 365,
law of cosines 270, 271	366
my law of cosines story	one-to-one functions 360, 361
	onto functions
the handkerchief problem	open interval
	open questions in mathematics
when to use	
law of sines 282	ordinal numbers 78
ambiguous case 321-324	ordinate
when to use	parabola 470
laws of logarithms 466	parametric form 457
lemniscate	partial derivative 482
limaçon	partial fractions 477, 478
limit of a function 71, 425,	period of a function 111, 407
426	periodic function 111, 407
Llama Crackers 300	permittivity of empty space
Malfatti's problem393	
mathematical induction 402	point-plotting 83, 87, 88

point-slope form of the line 51,	Shakespeare 52, 53
68, 437	sigma notation 473, 474
polar axis	Sigmund Freud
polar coordinates 340	significant digits 43, 46, 52-55
conversion formulas 342	similar triangles 91
plotting	sine—definition 28
polar to algebraic form395	sine function
pole344	as a machine 90
pride and sloth 242	six raised to the π power 96
principal values of inverse trig	slope and the tangent function
functions 314, 316	
protractor 25	slope-intercept form of the line
proving $\sin(x + y) = \sin x \cos y$	51, 68, 88
$+\cos x \sin y \dots 245-248$	slopes of perpendicular lines
pure imaginary numbers 380	
Q.E.D	slope—definition 67, 436
radians	solar system
Rafferty's Pizza 72	solid of revolution 476
rational numbers	sorbet—how to pronounce 22
real numbers	story of Cammy
reciprocal	33, 40, 61, 74, 196
rectangular coordinates 339	string theories
related angles 224	sum of all three angles in any
requiescat in pace = may he/she	triangle27
rest in peace (Latin)	sum of cubes factoring 131
175	surface area of a sphere 451
right triangles 27	symmetry with respect to a line
rotational symmetry408	348
Russell's paradox	symmetry with respect to a point
scientific calculators186	347
secant function146	symmetry with respect to the
seconds—angle measure 195,	polar axis 350
197	tangent function—definition
segment of a circle216	61
semiperimeter	The Merchant of Venice53
set builder notation99	Theodore Roosevelt280
sexagesimal	

Thomas Hobbes
solitary, poor, nasty, brutish,
and short241
three-leaved rose 342
torque
transcendental numbers 371
trig identities for two angles
the pages with the flowers
Trigon means triangle in Greek
two-point form of the line 51
unit circle
universal set—why it can't exist
391, 392
vectors 481
Venn diagram 373, 374, 376
vexillology92
viz., etc., e.g., and i.e 209, 403
volume of a cone 440
volume of a cylinder 444
volume of a sphere451
when you will use the double-
angle formulas 243,
244
whole numbers
why read the great books 285
why we create new mathematics
64
Word Ladders
yo-yo tricks