Life of Fried

OAdvanced OAlyebra
Oxpanded Ödition

Stanley F. Schmidt, Ph.D.

${ }^{\mathrm{P}} \mathrm{P} \boldsymbol{p}$

What Ms in Afduanced OAlgebra?

A11 kinds of stuff. It's the second half of algebra. You've seen the first half, and therefore, things like $2 \mathrm{x}=14$ are not very scary anymore. This is the rest of high school algebra. After completing this book, you will have all the algebra you need for college calculus. The only two other math courses needed for calculus will be a geometry course (with an emphasis on doing proofs) and a trig course.

In beginning algebra we've already done most of the classic word problems such as ...

JENNIFER CAN DIG A DITCH IN 4 HOURS.
JASON CAN DIG IT IN 5 HOURS. IF THEY
WORK TOGETHER HOW LONG WILL IT TAKE?
or

```
JASON RUNS DOWN THE HALL AT 5 MPH.
WHEN HE'S 5O FEET AWAY, JENNIFER RUNS
after him at G MPH. HOW LONG before
THEY'RE HAPPY?
```

We've already learned 94.7% of factoring. The only thing left is the factoring of $x^{3}+y^{3}$, which is $(x+y)\left(x^{2}-x y+y^{2}\right)$ and the factoring of $x^{3}-y^{3}$, which is $(x-y)\left(x^{2}+x y+y^{2}\right)$. Oops! I guess you've just finished factoring.

You've gone through the agony of learning to add algebraic fractions:

$$
\frac{x+2}{x+5}+\frac{x+1}{x+4}=\frac{(x+2)(x+4)}{(x+5)(x+4)}+\frac{(x+1)(x+5)}{(x+4)(x+5)}=\frac{(x+2)(x+4)+(x+1)(x+5)}{(x+4)(x+5)}
$$

and the terror of the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
The further you go in math, the less memorizing and the less computational cookbook stuff you encounter. You will find that understanding rather than just being a good tape recorder starts to matter more.

In Fred's everyday life in this book, he runs into things that would baffle a beginning algebra student. For example, in Chapter 3 you learn how to solve $2^{x}=5$. In Chapter 6 you learn how to battle the dreaded Snow King using a Waddle-Ray which can be obtained at your local doughnut store. In Chapter 9 we add up an infinite number of numbers, such as $1 / 2+1 / 6+1 / 18+1 / 54+\ldots$, and we get an answer! A finite answer. Not your usual old stuff.

We are often asked for the Big Overview: What is ahead and which order to study the subjects.

After learning arithmetic and pre-algebra, the steps are:
Life of Fred: Beginning Algebra
Life of Fred: Advanced Algebra Life of Fred: Geometry
Life of Fred: Trigonometry
Life of Fred: Calculus
Life of Fred: Statistics
Life of Fred: Linear Algebra

(Statistics may be taken before Calculus.)

And now the scary question ...

Otre You Ready for Advanced Algebra?

Here are some questions taken from Life of Fred: Beginning Algebra. The answers are given on the next two pages. This will give you an indication of whether you are ready for advanced algebra.

1. If two sets have the same number of elements in them, are they equal? (from Chapter 1)
2. If the diameter of a circle is exactly 4 feet (that would make a nicesized pizza), what is the exact circumference? (from Chapter 2)
3. We need 30 cc of 25% cough medicine. In the medicine cabinet was a solution that was too weak. It contained only 20% of the cough medicine by volume. Another bottle was too strong. It contained 35% cough medicine by volume. How much of each of these bottles should be mixed together to obtain 30 cc of 25% cough medicine? (Chapter 3)
4. Plot $\mathrm{y}=\mathrm{x}^{2}$. (Chapter 5)
5. $\left(\mathrm{y}^{20}\right)^{3}=$? (Chapter 6)
6. Factor $6 x^{2}+29 x+35$ (Chapter 7)
7. Simplify $\frac{x^{2}-x y+3 x-3 y}{x^{2}-2 x y+y^{2}} \quad$ (Chapter 8)
8. Solve $\sqrt{2 y-3}+3=y$ (Chapter 9)
9. Solve $5 \mathrm{x}^{2}=-4 \mathrm{x}+13$ (Chapter 10)
10. What is the equation of the line whose graph is (Chapter 11)
11. Suppose the domain is $\{5,6,7\}$ and the
 codomain is all rational numbers. For each
element in the domain, pretend it is the radius of a pizza and would be mapped to the area of the pizza (by the formula $\mathrm{A}=ð \mathrm{r}^{2}$). So 5 would be mapped to 25才. Is this a function? (Chapter 11)
12. Solve $48-3 x>36$ (Chapter 12)
13. No. Two sets are equal if they have the same elements in them. For example, $\{\mathbf{\square}, \boldsymbol{*}\}$ is equal to $\{\boldsymbol{*}, \mathbf{\Xi}\}$. The sets $\{\#\}$ and $\{$ pen $\}$ have the same number of elements in them, but they are not equal.
14. 4 ð feet The formula relating the diameter of a circle and its circumference is $C=ð d$. If $d=4$, then $C=4$.
15. Let $x=$ the number of cc of the 20% medicine used.

Then $30-x=$ the number of cc of the 35% medicine used (since we have to make up a total of 30 cc of medicine).
Then $0.20 \mathrm{x}=$ the amount of cough medicine taken from the 20% bottle. Then $0.35(30-x)=$ the amount of cough medicine taken from the 35% bottle.
The total amount of medicine needed is 25% of 30 cc , which is 7.5 cc .
The equation then is $0.20 \mathrm{x}+0.35(30-\mathrm{x})=7.5$
Solving, we obtain $x=20 \mathrm{cc}$ of the 20% medicine.
Then $30-x=10 \mathrm{cc}$ of the 35% medicine.
4.

This can be done by point-plotting.
Three steps: 1. name x values
2. find the corresponding y values
3. plot those points until you have enough of them to "connect the dots."
5. $\left(y^{20}\right)^{3}=y^{60}$ by the rule $\left(x^{a}\right)^{b}=x^{a b}$
6. $6 x^{2}+29 x+35=(3 x+7)(2 x+5)$
7. $\frac{x^{2}-x y+3 x-3 y}{x^{2}-2 x y+y^{2}}=\frac{(x-y)(x+3)}{(x-y)(x-y)}=\frac{x+3}{x-y}$
8. $y=6$.
$\sqrt{2 y-3}+3=y$

$$
\begin{array}{rlrl}
\sqrt{2 y-3} & =y-3 & & \text { isolating the radical } \\
2 y-3 & =y^{2}-6 y+9 & & \text { squaring both sides } \\
y=6 \text { OR } y=2 & & \text { solving by factoring }
\end{array}
$$

$y=6$ checks in the original problem.
$y=2$ doesn't check in the original problem.
9. First place $5 x^{2}=-4 x+13$ into the form $a x^{2}+b x+c=0$ and then use the quadratic formula.

$$
x=\frac{-4 \pm \sqrt{16-(4)(5)(-13)}}{10}=\frac{-4 \pm \sqrt{276}}{10}
$$

and if you (optionally) simplified $\sqrt{276}=\sqrt{4} \sqrt{69}=2 \sqrt{69}$, then your final answer would be $x=\frac{-2 \pm \sqrt{69}}{5}$
10. $y=(3 / 7) x+2$ The slope of the line is $3 / 7$ and its y-intercept is 2 . The slope-intercept form of a line is $y=m x+b$ where $m=3 / 7$ and $b=2$.
11. 25 ð is not a rational number. Therefore, this is not a function. A function, by definition, maps each element of the domain to exactly one element of the codomain. 25 d is not in the codomain.
12.

$$
48-3 x>36
$$

Subtract 48 from both sides $\quad-3 x>-12$
Divide both sides by $-3 \quad \mathrm{x}<4$
(When you multiply or divide an inequality by a negative number, you have to change the sense of the inequality: > becomes <.)
small essay

Being Happy in Math

One important part of success in math is working at the right place in your math education. Right now, $2+2=4$ would bore the socks off of you and $\int_{x=0}^{1} \cosh \mathrm{xdx}$ might just be a little too much. (That last thing is from fourth semester calculus.)

You just took the beginning algebra quiz. Do you want to be happy? It's important you are working at the right place. If you took some wishywashy beginning algebra course and you got only seven or eight questions right on this quiz, then the smart thing to do would be to grab a copy of Life of Fred: Beginning Algebra Expanded Edition and zip through the 104 lessons before starting this book.

OA Note to Students

Fred has just received an honorable discharge from the army and is taking the bus home to KITTENS University in Kansas. You are about to join him on that bus ride.

On the two-day ride you will experience all of advanced algebra-everything you will need to know before studying trigonometry and calculus. You will have it all.

The supplies you'll need for the trip:

1. pencil or pen
2. paper
3. a handheld calculator that has the keys: sin, log, !, and y^{x}. This is the last calculator that you will ever need. You can usually find them for $\$ 15$ or less. Stop! Last week I was in one of those stores that sell everything for a dollar and found one of those calculators for a buck.

You will not need a "graphing calculator." I don't even own one, and I do a lot of math.

When I studied algebra, my teacher told the class that we could reasonably expect to spend thirty minutes per page to master the material in the old algebra book we used. With the book you are holding, you will need two reading speeds: slower when you're learning algebra and faster when you're enjoying the life adventures of Fred.

Throughout the book are sections called Your Tum la Play and Cities, which are opportunities for you to interact with the material. Just reading the problems and reading my solutions doesn't work. You have to do them. Education does take effort.

Our story begins at noon on Monday and ends on Tuesday evening. Each lesson is a day's work. After 10 chapters you will have mastered all of advanced algebra.

Just before the Index, the A.R.T. section begins. A.R.T. $=$ All Reorganized Together. This section very briefly summarizes advanced algebra. If you have to review for a final exam or want to quickly look up some topic ten years after you've read this book, the A.R.T. section is the place to go.

Contents

Chapter 1 Ratio, Proportion, and Variation. 17Lesson 1: Ratios, Median Averages, ProportionsLesson 2: Solving Proportions by Cross-MultiplyingLesson 3: Constants of ProportionalityLesson 4: Inverse VariationLesson 5: The Biology of HeightLesson 6: The First CityLesson 7: The Second CityLesson 8: The Third City
Chapter 1½ Looking Back 56
Lesson 9: The Laws of Exponents Lesson 10: $\sqrt{x y}=\sqrt{x} \sqrt{y}$, Rationalizing Denominators Lesson 11: Solving Radical Equations
Chapter 2 Radicals. 64
Lesson 12: Surface Area of a Cone Lesson 13: A Story: The History of Mathematics Lesson 14: A Ten-Ton Nickel Lesson 15: The First City Lesson 16: The Second City Lesson 17: The Third City
Chapter 2½ Looking Back 107
Lesson 18: Venn Diagrams and Sets Lesson 19: Venn Diagrams and Counting Problems Lesson 20: Significant Digits
Chapter 3 Logarithms 125
Lesson 21: Setting up Exponential Equations Lesson 22: The Birdie Rule (the Power Rule) Lesson 23: Solving Exponential Equations Lesson 24: The Power and Quotient Rules Lesson 25: Finding Antilogs Lesson 26: First Definition of Logs Lesson 27: Second Def. of Logs, Change-of-Base Lesson 28: Third Definition of Logs
Lesson 29: The First CityLesson 30: The Second CityLesson 31: The Third City
Chapter 3½ Looking Back. 175
Lesson 32: Graphing by Point-Plotting Lesson 33: Graphing Terminology
Chapter 4 Graphing 183
Lesson 34: Slope
Lesson 35: Finding the Slope Given Two Points
Lesson 36: Slope-Intercept, Double-Intercept Forms
Lesson 37: Point-slope and Two-point Forms
Lesson 38: The Slopes of Perpendicular Lines
Lesson 39: The First City
Lesson 40: The Second City
Lesson 41: The Third City
Chapter 4½ Looking Back 212Lesson 42: Multiplying BinomialsLesson 43: Common Factors
Lesson 44: Easy Trinomials, Difference of Squares
Lesson 45: Grouping
Lesson 46: Harder Trinomials
Lesson 47: Simplifying Fractions
Lesson 48: Adding and Subtracting Fractions
Lesson 49: Multiplying and Dividing Fractions
Lesson 50: Linear, Fractional, Quadratic Equations
Lesson 51: Radical Equations
Chapter 5 Systems of Equations 249
Lesson 52: Systems of Equations
Lesson 53: Graphing Planes in Three Dimensions
Lesson 54: Cramer's Rule
Lesson 55: 2×2 Determinants
Lesson 56: 3×3 Determinants
Lesson 57: The First City
Lesson 58: The Second City
Lesson 59: The Third City
Chapter 6 Conics. 293Lesson 60: EllipsesLesson 61: CirclesLesson 62: A Definition of EllipseLesson 63: Reflective Property of EllipsesLesson 64: ParabolasLesson 65: Hyperbolas
Lesson 66: Graphing Inequalities
Lesson 67: The First City
Lesson 68: The Second CityLesson 69: The Third City
Chapter 7 Functions 344
Lesson 70: Domain, Codomain, Def. of FunctionLesson 71: Is This a Function?
Lesson 72: $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ notation
Lesson 73: One-to-one and Inverse Functions
Lesson 74: Guess the Function
Lesson 75: The Story of the Big Motel
Lesson 76: Onto Functions, 1-1 Correspondences
Lesson 77: Functions as Ordered Pairs, Relations
Lesson 78: The First City
Lesson 79: The Second City
Lesson 80: The Third City
Chapter 7½ Looking Back 404Lesson 81: Degrees of Terms and of PolynomialsLesson 82: Long Division of Polynomials
Chapter 8 Linear Programming, Partial Fractions, Math Induction. 411Lesson 83: Partial Fractions
Lesson 84: Proofs by Math Induction
Lesson 85: First Part of Linear Programming
Lesson 86: Second Part of Linear Programming
Lesson 87: The First City
Lesson 88: The Second City
Lesson 89: The Third City
Chapter 9 Sequences, Series, Matrices 458Lesson 90: Arithmetic ProgressionsLesson 91: Adding and Multiplying Matrices
Lesson 92: Geometric SequencesLesson 93: Geometric Progressions, Sigma NotationLesson 94: The First CityLesson 95: The Second CityLesson 96: The Third City
Chapter 10 Permutations and Combinations. 489
Lesson 97: The Fundamental Principal of Counting Lesson 98: Permutations Lesson 99: Combinations Lesson 100: The Binomial Formula Lesson 101: Pascal's Triangle Lesson 102: The First City Lesson 103: The Second City Lesson 104: The Third City
The Hardest Problem in Advanced Algebra. 526
Lesson 105: Six Kinds of Waddle Doughnuts
A.R.T. (All Reorganized Together). 528
Solution to the Hardest Problem in Advanced Algebra. 538
Index 540

Chapter One

Lesson One－Ratios，Median Averages，Proportions

戓c保青

Fred looked out the bus window．The cold，white Texas landscape might have seemed bleak to many people，but to him it was a joy． He was heading north－back to his home in Kansas．
He thought about the last four days． Friday had been his sixth birthday．So much had happened since then：his＂abduction＂into the army，all the new friends he had met，his hurt rib，and his honorable discharge．＊

Now he could look out at the passing telephone poles and just imagine them as a clock ticking away the hours till he reached his office at KITTENS University（Kansas Institute for Teaching Technology，Engineering and Natural Sciences），where he has lived for the last five

view from the window years．

It would be good to get out of his hospital nightshirt with the little blue and green frogs all over it．Tomorrow would be Tuesday and maybe by then his rib wouldn＇t hurt so badly．With a good night＇s sleep and a fresh bunch of clothes，he＇d meet his 8 a．m．class．

The telephone poles whooshed by，one after another．He looked out of the bus window and unconsciously began to count them：five poles passed for every three beats of his heart．（He could feel his pulse as little stings in his hurt rib．）The ratio of the passing poles to the heartbeats was 5：3．Ratio means division，so $5: 3$ could also be written as $5 \div 3$ ．

His eyes began to close，shutting out the snowy scene．A little nap would help pass the time．Five－thirds would become ten－sixths would become fifteen－ninths．He＇d soon be asleep．

＂Hey！How old are you？＂

Fred was startled by the half－shouted question．He received a little poke in the ribs and then he was fully awake．
＂I said how old are you，＂the little girl repeated．
＂I＇m six．I just turned six last Friday．＂

[^0]She said, "Oh" and ran to her friends in the back of the bus. They were all about four years old and were all dressed identically in gray-brown dresses. They giggled and chattered.

Fred might easily have been mistaken for a four-year-old. He had always been less than the median weight for his age. (The median weight means that half the people are heavier and half the people are lighter than that weight. The median is one of the three kinds of averages studied in beginning statistics.) Fred, at 37 pounds, was definitely less than the median weight for his age. Maybe only 4% of boys his age weighed less than he did.

He noticed that the ratio of the telephone poles that the bus was passing to his pulse was now $5: 4$. His heart was beating more quickly. Getting awakened with a question and a poke would cause most people's hearts to beat faster.

Oh well he thought, and after a few moments he began to drift back to sleep.

He could hear her coming. Some little girl running up the aisle to his seat. It was a different girl than the first one. Instinctively, he put his arms around his ribs to protect them against further assault.
"What's your name?" she blurted. She had been sent on a mission to find this out.

Fred, who had read all the James Bond books, thought of answering Gauss, Fred Gauss but instead he simply said, "Fred."
"Oh" was her only response, and she ran to the back
 of the bus to report her findings to her girlfriends.

Fred was so used to being around the students at KITTENS that these four-year-olds seemed to him to be so he couldn't think of the word. They seemed to be so immature.

A woman, also wearing one of the gray-brown uniform dresses, came up to Fred and smiled. "Hi. My name is Cheryl Mittens. I hope my little girls haven't been bothering you."
"Not too much. Could you tell me what's going on? Are they just playing or something?"
"Well, you might call it that," Cheryl said. "They're working on earning a badge for their uniforms. It's the Getting-to-Know-People badge. The first requirement is to learn to make contact with some fellow that they want to get to know."
"Oh," said Fred. (He was starting to sound like the girls.) "But I'm 50% older than these girls." (He had done the math in his head: $4 \times 1.50=6$.) Fred thought to himself It's a little early for those girls to $b \in$ thinking about finding a husband. "I read in a marriage manual that the prospective bride should be at least 90% of the age of the groom. That would make the ratio of their ages $9: 10$. Right now, the ratio of their ages to mine is $4: 6$."

Cheryl laughed. "I guess you're right. The girls aren't thinking about marriage right now. And don't worry. They'll never be 90% of your age."

Fred's heart raced at the thought of marriage to one of those children. Maybe he'd be lucky and he'd be a hundred years old before they were grown up enough to be of the appropriate age. Then he wondered how long it really would be before they were 90% of his age-before the

Be warned: This book might be a little out-of-date. ratio of their ages to his age was $9: 10$. He let x equal the number of years from now until that happened. In x years, the girls would be $4+x$ years old and he would be $6+x$ years old. In x years, the ratio
$4+x: 6+x$ would be the same as $9: 10$.

$$
\frac{4+x}{6+x}=\frac{9}{10}
$$

Two ratios set equal to each other is called a proportion. When we solved fractional equations in beginning algebra, we found an expression that all the denominators would evenly divide into and multiplied every term by that expression. In this case $10(6+x)$ will do the trick:

$$
\frac{(4+x) \mathbf{1 0 (6}+x)}{6+x}=\frac{9 \cdot 10(6+x)}{10}
$$

The denominators disappear

$$
(4+x) 10=9(6+x)
$$

Chapter One Lesson One-Tiatios. Olledian etwerages, Proporlions

Distributive property

Subtract $9 x$ from each side

Subtract 40 from each side

$$
\begin{aligned}
40+10 \mathrm{x} & =54+9 \mathrm{x} \\
40+x & =54
\end{aligned}
$$

$$
x=14
$$

So in 14 years (which would make the girls 18 and Fred 20), they would be 90% of his age.

Gasp! Fred thought to himself. That's way too soon. He wanted to wait until he was at least 50 before he'd have to think about such things.

He needed to change the subject. "These girls are too young to be Girl Scouts, but they're wearing some kind of uniform. Are they part of some group?" he asked.

Mrs. Mittens replied, "They're even too young for Blue Birds. My three daughters, Fredrika, Meddie, and Rita, and all their girlfriends in the neighborhood, have made up a little club and I'm their club leader. We call ourselves the Dust Bunnies. That's why our uniforms are grayishbrown."

Life
Life is painful. The only choice you have is how you want to take the pain.

You can take the pain now. It will be short and sharp. And it will end.

You can avoid the pain now. It will come later. It will be a dull pain that will last and last.

Taking out a piece of paper and writing your answers is pain now. Not learning the math well now and getting "lost" later in the book is pain later.

Please take out a sheet of paper and write your answers to the Gour Gurnta Play on the next page before you look at my answers.

You will learn a lot more than if you just read the question and read the answer.

Gour Turn ta Play

1. Which is larger: $6: 5$ or $9: 8$?
2. In some of the old math books they used to write a proportion as

2:3::6:9. What would the double colon in the middle represent?
3. When Fred first counted the ratio of passing telephone poles to his heartbeats, he found it was $5: 3$. Suppose the driver of the bus increased his speed. What might the new ratio look like?
4. As Fred was counting the ratio of passing telephone poles to his heartbeats, suppose (Heaven forbid!) his heart stopped beating.
\checkmark The bus driver wouldn't like this because he would have to stop the bus and do some heart surgery or something.
\checkmark The readers of the advanced algebra book wouldn't like it because the book would end too soon.
\checkmark Mathematicians wouldn't like it because the resulting ratio is 5:0. Why would they object?
5. Solve $\frac{x+3}{x+13}=\frac{3}{5}$
6. The bus driver is 25 years old. The bus is 35 years old. How long will it be before the driver is 75% of the age of the bus?

7. What is the median average of:
$5,8,9,9,10,14,18,19,19$?

1. $6: 5$ means $6 \div 5$ which is 1.2 .
$9: 8$ means $9 \div 8$ which is 1.125 . 6:5 is larger.
2. A proportion is the equality of two ratios.

The expression $2: 3:: 6: 9$ would translate into $2: 3=6: 9$ or $\frac{2}{3}=\frac{6}{9}$
3. Instead of $5: 3$ it might be $6: 3$ or $7: 3$. Any answer you gave which was in the form $\mathrm{x}: 3$ where $\mathrm{x}>5$ would have been fine.
4. A ratio of 5:0 means $\frac{5}{0}$ which is division by zero. Mathematicians don't especially like that. It is similar to going up to someone and saying, "The snamplefork is overzipped." Division by zero doesn't have any meaning. When you divide 2 into 6 you get an answer of 3 .

$$
\frac{3}{2}
$$

You check your answer by multiplying 2 by 3 and hoping to get 6 .
If you try to divide by zero, $0 \stackrel{?}{6}$ what could the answer be? What number could you replace the question mark with so that the answer would check? Suppose the answer were 97426398799426.

Suppose

$$
97426398799426
$$

This answer wouldn't check since $0 \times 97426398799426 \neq 6$.
5.

$$
\begin{array}{rlrl}
\frac{x+3}{x+13} & =\frac{3}{5} & \\
\frac{(x+3) 5(x+13)}{x+13} & =\frac{3 \cdot 5(x+\mathbf{1 3})}{5} & & \text { Multiplying both sides } \\
(x+3) 5 & =3(x+13) & & \text { by } \mathbf{5 (x + 1 3)} \\
x & =12 & &
\end{array}
$$

6. Let $x=$ the years until the bus driver is 75% of the age of the bus.

Then in x years, the bus driver will be $25+x$ years old.
Then in x years, the bus will be $35+x$ years old.

$$
\begin{aligned}
\frac{25+\mathrm{x}}{35+\mathrm{x}} & =75 \% & & \\
\frac{25+\mathrm{x}}{35+\mathrm{x}} & =\frac{3}{4} & & \\
\frac{(25+\mathrm{x}) \mathbf{4 (3 5 + \mathbf { x })}}{35+\mathrm{x}} & =\frac{3(\mathbf{4})(\mathbf{3 5}+\mathbf{x})}{4} & & \begin{array}{l}
\text { Multiply both sides } \\
\text { by } \mathbf{4}(\mathbf{3 5}+\mathbf{x})
\end{array} \\
(25+\mathrm{x}) 4 & =3(35+\mathrm{x}) & & \\
100+4 \mathrm{x} & =105+3 \mathrm{x} & & \text { Distributive property } \\
\mathrm{x} & =5 \text { years } & &
\end{aligned}
$$

7. The median average of $5,8,9,9,10,14,18,19,19$ is the number in the middle when they are all arranged in order of size. In this case it is 10.
abscissa. 180, 530
absolute value 177, 286
addends. 70
adding and subtracting fractions228-231
age word problem. 45, 49, 52
all-night Armadillo Dance Party 40
Alice in Wonderland. 41
alliteration 359
antilog. 151, 152
Argand diagram. 88, 107
arithmetic sequence. 460, 464, 535
last term formula. 462
arithmetic series $=$ arithmetic progression 460, 464
last term formula. 462
sum formula. 462
Bertrand Russell. 384
big numbers. 431, 433
binomial expansion. 515, 516
binomial formula. $515,516,533$
birdie rule (logs) 132, 147
chained arrow notation. 433
change-of-base rule (logs)162, 164
circle. 302
coelacanth. 109
combinations. 503-506, 534
common factors. . . 215, 217, 529
common logs. 158, 160
complex fractions 232
complex numbers 114, 531
conic or conic section (definition) 332, 528
constant of proportionality 30
constant of variation. 30
constellations (all of them) 196, 197
conversion factors 92, 95, 98
countably infinite 381
Cramer's rule 262-264, 537
cross multiplying. 24
degree of a polynomial 404
degree of a term 404
dependent equations. 254
determinants 262-270
disjoint sets. 108
distance between two points.192, 204, 307, 531
division by zero 22
double-intercept form of a line 194, 204, 531
dummy variable. 485
ellipse 293-296
foci. 307-309
reflective property. 312, 313
semi-major axis, semi-minoraxis294
vertices. 295
English Lesson varies directly/inversely/jointly35, 36

Cndex

exponent laws 57, 58
exponential equation. 129
how to solve. 135, 142
exponential growth vs. an S curve. 128
extraneous answers. 68, 69
extraneous roots 69, 235factorial. 493, 496, 497, 534factoring by grouping.221, 222, 529
factoring difference of squares218, 219, 529
factoring easy trinomials. 218, 529
factoring harder trinomials 224, 225, 529
factoring sum and difference of cubes. 234
fifty-foot tall Rita 41-44
five ways to learn 31
fractional equations 235, 237-241, 529
function 530
as ordered pairs 392, 393
codomain. 348
create a function 350
definition 348
domain. 348, 358
examples 347, 352-355
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ notation 359-360
guess-the-function game 371-373, 392, 396
identity function 394
image 351
inverse function. 363
one-to-one functions 362
onto functions 383, 384
pre-image. 387
range of a function. 355
fundamental principle of counting. . . 490, 499, 534
gamma function. 494
geometric sequence. 473, 535
last term formula. 473
geometric series $=$ geometric progression. 475, 535
sum formula 476
graphing a plane in three dimensions 258-260
graphing inequalities.
325-327, 531
strict inequalities. 327
Greek alphabet. 349
Guess-the-Function game. 371-373, 392
hardest problem in advanced algebra 526
harmonic progression 484
"History of Mathematics" a true fairytale. 77-89
Hooke's law 51
hyperbola. 320-324
asymptotes. 321,323
vertices. 334
iff. 166
imaginary numbers. 114, 531
inconsistent equations. 253
independent and dependent variables 199

Ondex

infinite geometric progressions482, 483
sum formula. 487
integers. 114
interior decoration 228
intersection of sets 108, 111
inverse function. 152
irony. 129
Jeanette MacDonald 402
lateral surface area 74
linear equation. 235
linear programming 531
all three steps-an overview 449
(1) constraints 432, 433, 435
(2) objective function 447
(3) test the vertices 437
logarithm. 532
erase-the-base approach 161, 162
first definition 158
second definition... 161
third definition 165
logarithmic equation. 153, 155
long division of polynomials407-410
math induction proofs424-429, 532
matrix 466, 532
adding. 467, 468
dimensions. 482
multiplying 469
rows and columns 467
median average 18
metonymy 126, 138
midpoint of a segment formula 335
minors in determinants... 270
multiplying and dividing fractions. 232-234
multiplying binomials.
212-214, 529
natural numbers 114
Omar Khayyam. 300
one-to-one correspondences390
one-to-one functions 362
onomatopoeia 489
onto functions 384
ordered pair. 179
ordered triple 179, 180
ordinate. 180, 530
origin. 180
parabola. 277, 280, 315-318
vertex. 318
partial fractions. 413-418, 533
Pascal's Triangle 517, 518, 533
permutations 497, 498, 534
the formula 499
pi б 2,000 digits 123
point-plotting 175, 176
point-slope form of the line 198, 204, 531
power rule (logs) 131, 132
pre-image 387
principal square root 94
product rule (logs)
142, 143, 147
proportion 19, 535
pure quadratic 74

Cndex

pure quadratics 236
Pythagorean theorem 61, 66
quadrants. 180, 530
quadratic equations by factoring236
quadratic formula 150, 236
found by completing the square 329
quotient rule (logs) 145, 147
radical equation. 67
three steps to solve. 69
radical equations. . 242-248, 534ratio17, 535
rational numbers. 114
rationalizing the denominator 60, 61, 63
real numbers 114
reciprocal. 484
relation 393
scientific notation 121second relativity equation.90, 91semi-major axis, semi-minor axis294
sentences-the four types 249
sigma notation. 478, 479
significant digits 118-124, 535
in computation. 122, 123
simplifying fractions63, 226, 227
slope 184, 204, 530
given two points188-190, 192slope of perpendicular lines.201-204, 531
slope-intercept form of a line194, 204, 531
Sluice. 37
small essay: "Life" 20
square root laws 60, 61
standard form for the circle 302
standard form for the ellipse 330
standard form for the hyperbola 330
Stokes's theorem 275
subscripts. 189
subset 112, 492
superscripts. 189
surface area of a cone 73, 103
system of equations 251, 536
Cramer's rule. . 262-264, 537
elimination method. 251
graphing method. 251
tachyon 90, 94
taking notes. 333
"The Big Motel" story 376-379
three equations and threeunknowns.257, 258
Cramer's rule. 262-264
"Trees" by Joyce Kilmer. 200
two-point form of the line
199, 204, 531
union of sets 108, 111
unit analysis. 92, 95, 98
"Unselfish Love" by Rita. 438
varied inversely 33, 535
Venn diagrams 107-117, 355

Ondex

Venn diagrams and counting problems.. 112-114 ventral surface of four-legged creatures. 28, 29
whole numbers.............. . . 114

You have mastered all of high school algebra.
Only two courses remain:
$>$ Life of Fred: Geometry
$>$ Life of Fred:Trigonometry.
You will then have everything necessary to do mathematics at the university level. Translation: You will be ready for college calculus.

[^0]: ＊This story is told in Life of Fred：Beginning Algebra

