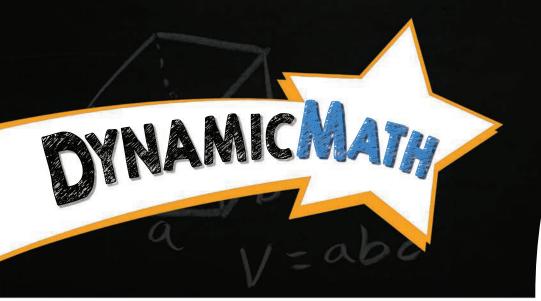
GRADE 9


Mathematics

COMPLETE GRADE 9 MATH CURRICULUM

- p questions ranging from easy to advanced
- step by step guided examples
- > chapter tests included

LOOKING FOR MORE?

- + additional resources
- + guided video lessons

GET EXTRA SUPPORT math-help.ca/more

THE DYNAMIC MATH PROGRAM

BOOKS

The Dynamic Math workbooks cover the mathematics curriculum for Grades 4 to 12. The books are grade and province specific, covering the same material that is taught in the classroom.

VIDEO LESSONS

Does your child need more help? We have a growing library of math video lessons that will help your child with over-the-shoulder instruction. It's like having your very own "tutor in your pocket"!

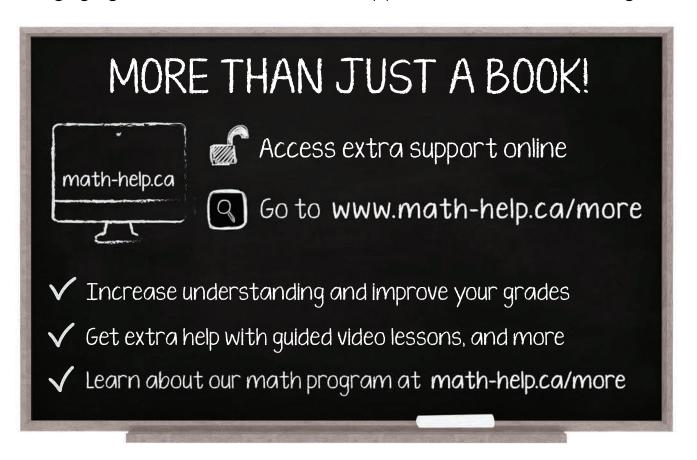
math-help.ca/videos

EXTRA ONLINE CONTENT

Our math instructors are always looking for ways to help students achieve greater success in math. Make sure to visit our website where you can find extra resources and the latest updates.

math-help.ca/more

TEACHERS


Teachers and schools can buy class sets of the Dynamic Math books to use in their classrooms as workbooks or textbooks. Since the books are specifically aligned with the curriculum in each province, they are a great resource for schools.

CALL TO DISCUSS OPTIONS FOR YOUR CLASSROOM

1-604-592-9309

WHY DYNAMIC MATH?

Dynamic Math workbooks are written by teachers directly for each province. This ensures that you are getting the exact same material that is being taught in the classroom. Our teachers also produce engaging online content to further support and enhance learning.

Suite 207 8501 162nd Street Surrey, BC V4N 1B2

604.592.9309

sales-inquiries@dynamic-classroom.ca

ISBN: 978-1-988243-14-6

www.dynamic-classroom.ca

Contributing Authors:

Alan R. Taylor, Ed.D. & Bill Kokoskin, M.A.

Dear Parents,

Helping kids understand and apply mathematics knowledge and skills is a collective responsibility of parents, teachers, and principals.

Students need to learn mathematics in a way that will serve them throughout their lives. Understanding mathematics can provide our students with many job and career opportunities.

This is why students need to know why mathematics works the way it does, how to use it with confidence and competence when solving problems.

Understanding mathematics enables us to:

- Solve problems, make sound decisions and perform calculations with ease
- Explain how we solved a problem and why we made a particular decision
- Understand patterns and trends so that we can make predictions
- Understand Financial Literacy to manage time and money
- · Handle everyday situations that involve numbers and feel confident

Before your child can learn mathematics, he or she needs to believe in his or her ability to do so. That's where you come in!

Parents, you are your child's first role model for learning. When you engage with your child in a supportive, relaxed atmosphere, your child will enjoy exploring the world of mathematics.

Dynamic Math is committed to helping parents and students. We understand that not everyone learns the same way, and not everyone feels the same about math. This is why we are continually working to create math resources that help students of all abilities, while supporting the many learning styles and varying levels of enthusiasm towards math.

From our clear concise instructions and straightforward guided examples to our additional practice material and tests, there's something to suit everyone. Combined with our video tutorials, students will be able to get a tutor-like experience from anywhere and at a fraction of the cost of standard tutoring or after-school help programs.

Table of Contents BC Grade 9 Mathematics

		Page		Page
Unit 1	– Number Concepts		Unit 6 – Comparing Figures	
1.1	The Real Number System	2	6.1 Congruent Triangles	155
1.2	Square Root of a Number	10	6.2 Similar Triangles	162
1.3	Powers, Bases, and Coefficients	20	6.3 Similar Polygons	167
1.4	Laws of exponents	26	6.4 Converting Linear Units	171
			6.5 Enlargements and Reductions	173
Unit 2	- Number Operations		6.6 Scale Diagrams	176
2.1	Operations with Rational Numbers	41		
2.2	Working with Percent (Review)	55	Unit 7 – Probability and Statistics	
2.3	Calculations Using Scientific	58	7.1 Review of Probability	187
	Notation		7.2 Probability of Independent Events	191
2.4	Evaluating Exponential Expressions	61	7.3 Populations and Samples	194
	with Numerical Bases		7.4 Conducting a Survey/Collecting Data	200
2.5	Using Laws of Exponents to Simplify Expressions with Variable Bases	63	7.5 Misuse of Statistics and Probability	203
	1		Unit 8 – Financial Literacy	
Unit 3	- Expressions, Equations and Graphs		8.1 Budgeting	217
	Translating Words and Algebraic	72	8.2 Balancing a Budget	220
	Expressions		8.3 Transactions	223
3.2	Generalizing Patterns in Problem	75	8.4 Savings and Interest	228
	Solving		8.5 Banking	232
3.3	Modeling Situations Represented by	78	C	
	First Degree Expressions		Unit 9 – Curricular Competencies	
3.4	Tables of Values and Linear	82	9.1 Communicating	241
	Equations		9.2 Representing	246
3.5	Graphs and Linear Relationships	90	9.3 Connecting	251
			9.4 Reasoning	256
Unit 4	- Variables, Equations, and Inequalities	es	_	
4.1	Solving and Verifying First-Degree Equations	104	Answers to Exercises and Unit Tests	261
4.2	Solving First Degree Inequalities Algebraically	114		
43	Using Equations to Solve Problems	120		
	Using Inequalities to Solve Problems	124		
7.7	Osing inequalities to solve 1 toolems	127		
Unit 5	- Polynomials			
	Constant Terms, Coefficients, and	133		
	Variables in Polynomials			
5.2	Simplifying Polynomials	137		
	Addition and Subtraction of	139		
	Polynomials			
5.4	•	142		
	Monomials			
5.5	Dividing a Polynomial by a	146		
	Monomial			

ABORIGINAL APPLICATIONS end of Units 1, 2, 3, 4, 6, 7, 9

UNIT 1 NUMBER CONCEPTS

- 1.1 The Real Number System
- 1.2 Square Root of a Number
- 1.3 Powers, Bases, and Coefficients
- 1.4 Laws of Exponents

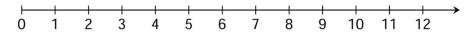
$$\sqrt{7}$$

 π

23

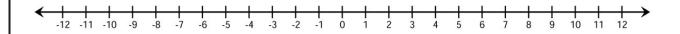
If you need additional help, there are more resources available at math-help.ca/more.

1.1 The Real Number System


The system of **real numbers** consists of a collection of smaller sets of numbers that has evolved over several centuries. It began with numbers used to count objects, which were used for trading. It was then extended and refined as a need for numbers to represent parts of objects and locations on the number line became important. Below is a discussion of the sets of numbers that make up the real number system. Each of these sets builds on those contained in the preceding set.

Natural Numbers

Natural numbers can be thought of as counting numbers. They can be used to identify how many objects are in a collection. Since a collection of objects has at least one item, the natural numbers begin with the number 1 and then continue to represent additional objects in the set. Counting numbers can be listed as follows: 1, 2, 3, 4, 5, 6, 7, 8, ...


Whole Numbers

Whole numbers consist of the natural numbers with the addition of the number 0. Although 0 does not represent an object in a set, it is an important addition to the number system. Whole numbers can be listed as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, ... They correspond to locations on the number line as follows:

Integers

The set of **integers** builds on the set of whole numbers by adding the negative values of each. It includes numbers such as -1, -2, -3, -4, -5, ... (Note: There is no negative value for 0.) Negative values of whole numbers are used in many situations, such as to represent a minus temperature (-22° C), distance below sea level (-8 m below the sea), or a golf score that is under par (-4 strokes under par). Integers correspond to locations on the number line as follows.

Rational Numbers

The set of **rational numbers** builds on the set of integers by including parts of the counting objects discussed earlier (such as, one-half of an item or quantity, or one quarter of a degree in temperature).

A **rational number** is any number that can be written in the form $\frac{a}{b}$ where a and b are integers and b $\neq 0$. This includes the natural numbers (1, 2, 3, ...), the whole numbers (0, 1, 2, 3, ...), and the integers (...-3, -2, -1, 0, 1, 2, 3 ...). Natural, whole, and integer numbers are rational since each can be written in the form $\frac{a}{b}(1=\frac{2}{2}, -3=-\frac{3}{1}, 0=\frac{0}{4})$.

The set of rational numbers begins to fill in many locations on the number line, but there still remain locations that do not have corresponding numbers associated with them.

Examples of Rational Numbers:

All fractions and mixed numbers, both positive and negative

$$\frac{2}{3}$$
, $-\frac{3}{4}$, $\frac{5}{2}$, $-3\frac{1}{4}$ Note: $\frac{0}{7} = 0$ is rational but $\frac{7}{0}$ is **not rational** since it is not defined when the denominator equals 0.

All integers

$$(-11, -3, 0, 1, 5, 68)$$

All terminating and repeating decimals, both positive and negative $0.8, -0.32, 0.\overline{3}, 7.\overline{12}$

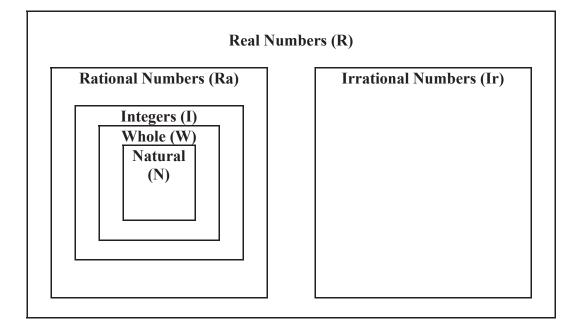
Irrational Numbers

To complete our system of real numbers, it is necessary to add an additional set. These additional numbers are called **irrational numbers**. Irrational numbers are any numbers that cannot be written as the quotient of two integers $\frac{a}{b}$, where $b \neq 0$.

Examples of Irrational Numbers:

Numbers that are roots of whole numbers that <u>cannot</u> be simplified to obtain a rational number $\sqrt{2}$, $\sqrt{5}$, $\sqrt{11}$ (Note: $\sqrt{9}$ is <u>rational</u> since it is equal to 3.)

Numbers whose decimal representation does not repeat in a pattern


0.1357421... (Note: $0.33\overline{3}$ is <u>rational</u> since it repeats a pattern and is equal to $\frac{1}{3}$.)

Special numbers such as π (which is equal to 3.1415927...)

Real Numbers

The set of **real numbers** consists of all rational and irrational numbers. All locations on a number line correspond to a real number. We can think of the set of real numbers as filling all locations on the number line.

The diagram below shows the relationship between the sets of numbers discussed so far.

Note:

As shown in the above diagram, the set of rational numbers includes the following.

Natural Numbers: $N = \{1, 2, 3, 4, ...\}$

Whole Numbers: $W = \{0,1,2,3,4,...\}$

Integers: $I = \{...-3, -2, -1,0,1,2,3,4,...\}$

Rational: Ra = All of the above <u>plus</u> any other number that can be written in the form $\frac{a}{b}$, $b \neq 0$

All rational and all irrational numbers make up the set of real numbers.

Identification of Rational and Irrational Numbers

Rational numbers can be shown in several different formats, as long as they can be rewritten in the form $\frac{a}{b}$, $b \neq 0$.

- 1. Natural numbers, whole numbers, and integers Examples: 7, -43, 0, 2761, -403
- 2. Proper fractions, mixed numbers, or improper fractions Examples: $\frac{3}{11}$, $-\frac{2}{9}$, $3\frac{1}{4}$, $\frac{7}{5}$, $-8\frac{1}{10}$, $-\frac{7}{3}$
- 3. Decimals (terminating or repeating) Examples: 0.8, -0.25, 0.22\overline{3}, 2.\overline{61}

Irrational numbers cannot be shown as common fractions.

- 1. Decimals that do not terminate or repeat in a pattern (0.12323569...)
- 2. Roots of numbers that are not rational $(\sqrt{2}, \sqrt{11}, -3\sqrt{5}, \dots)$
- 3. Special numbers like π

Examples with Solutions

Identify which of the following are rational and which are irrational numbers. Give a reason for your answer.

	Rational or Irrational?	Reason
11.25	Rational	It can be written as $-\frac{125}{100}$ or $-\frac{5}{4}$
2. 0.6010347	Irrational	The decimal doesn't terminate or repeat the same pattern.
3. $-\sqrt{25}$	Rational	It can be written as -5.
4. 0.1111	Rational	It repeats the same pattern and can be written as $\frac{1}{9}$.
5. $\sqrt{13}$	Irrational	The decimal version doesn't repeat the same pattern
		$\sqrt{13} = 3.6055513$
6. 4.01	Rational	It has a terminating decimal. It could be written as $4\frac{1}{100}$ or $\frac{401}{100}$.
7. $-7\frac{1}{2}$	Rational	It could be written as $\frac{-15}{2}$.
8. $2125\frac{1}{4}$	Rational	It could be written as $\frac{8501}{4}$.

9. 2.333... Rational The decimal repeats the same pattern and is equal to $2\frac{1}{3}$ or $\frac{7}{3}$.

10. 5.0100382... Irrational The decimal doesn't terminate or repeat the same pattern.

Comparing and Ordering Rational Numbers

Each rational number corresponds to a point on the number line. Below are several examples.

Numbers increase in size as you go from left to right on the line.

$$1 < 3$$
; $2.1 < 4$; $-7 < -6$; and $2 > 1.8$; $-3 > -5$; $-1 > -10.5$

Examples: To compare the size of rational numbers when one is written in decimal and the other in common fraction form, write both either in decimal or in common fraction form and then compare.

1. Compare 0.1 with $\frac{3}{20}$ (convert both to fractions first).

Change 0.1 to $\frac{1}{10}$.

The common denominator is 20, $\therefore \frac{1}{10} = \frac{2}{20}$.

$$\frac{2}{20} < \frac{3}{20}$$
 or $0.1 < \frac{3}{20}$

2. Compare 3.15 with $3\frac{1}{11}$ (convert both to decimals first).

Change $3\frac{1}{11}$ to a decimal $\rightarrow 3.\overline{09}$.

$$3.15 > 3.\overline{09} \text{ or } 3.15 > 3\frac{1}{11}$$

Exercises 1.1

Identify which of the following are rational and which are irrational numbers. Give a reason for your answer.

	Rational or Irrational	Reason
1. 0.013		
2. $5\frac{1}{2}$		
3. 7.0900134		
4. 0.666		
510.001		
6. $\sqrt{49}$		
7. 0.122357		
8. 0.212121		
9. 210.013		
10. $\sqrt{8}$		
115.999		
12. 3.009		
13. $-345\frac{1}{3}$		

Use a check mark to indicate the set(s) to which each number belongs.

		N	W	I	Ra	Ir
18.	$0.\overline{7}$					
19.	2					
20.	$1\frac{5}{8}$					
21.	-160					
22.	0					
23.	$\sqrt{81}$					
24.	0.93					
25.	$\sqrt{15}$					

Note: N = Natural Numbers, W = Whole Numbers, I = Integers, Ra = Rational Numbers, Ir = Irrational Numbers

26. Locate the following numbers on the number line: $3.1, 2\frac{5}{8}, \frac{13}{12}, -\sqrt{6}, -\sqrt{16}$

-4	-3	-2	-1	0	1	2	3	4

27. Arrange the following numbers from smallest to largest.

a. -0.57, -0.507, -5.07, -5.70

b. $3.4, -\frac{11}{3}, -3.4, -3.5$

c. $-\frac{3}{8}$, $-\frac{2}{3}$, -0.6, -0.4

28. Put the correct symbol (>, =, <) between each pair of numbers.

- a. 0.15

- b. -1.8
- --5

- c. -2.8

- 29. Express each term in common fraction form (as a quotient of two integers).
 - a. 0.17

b. -0.5

c. $-1\frac{2}{3}$

- d. 3.07
- 30. Which rational number is greater?
 - a. -0. 6 or -0.6?

b. -0.25 or $-\frac{1}{3}$?

c. $-\frac{2}{3}$ or $-\frac{4}{5}$?

Extra for Experts

- 31. List the set of all integers greater than -4 and less than $\frac{1}{2}$.
- 32. Is $\sqrt{\frac{4}{9}}$ rational or irrational? Give a reason for your answer.
- 33. Is the sum of the following numbers rational or irrational? Give a reason for your answer. 0.1 + 0.01 + 0.001
- 34. Is the sum of the following numbers rational or irrational? Give a reason for your answer. 0.333... + 0.666... + 0.999...
- 35. If the sum of $3.82 + 12\underline{ab}$ is an integer, what digits must go in place of ab?
- 36. If the sum of $-12 + -8\frac{1}{2} + n$ is a natural number, what is the smallest number that can replace n?

ABORIGINAL APPLICATIONS THE HUMMINGBIRD

Artist: T. Isaac

First Nations consider the hummingbird to be a symbol of joy and playfulness, as well as the ability to adapt. It represents the enjoyment of life and the lightness of being. Despite its tiny size, it can travel great distances and it is able to fly stationary as well as backwards. It provides one with encouragement to develop adaptability and resiliency, as well as to maintain an optimistic outlook.

Other symbolic meanings attributed to the hummingbird are independence, positivity, swiftness, and sensibility.

Math Applications

- 1. A hummingbird can flutter its wings up to 80 times per second. At this rate, how many times could it flutter its wings in one hour? Show your answer using a number greater than one and less than 10 that is multiplied by a power of 10.
- 2. A hummingbird's heart beats about 1300 times per minute. Write this number using a number greater than 1 and less than 10 multiplied by a power of 10, then raise the number to a power of two.

Answers

1. $80 \times 60 \times 60 = 288000$ per hour.

$$80 \times 60 \times 60 = 288\ 000$$
 2. $1300 = 1.3 \times 10^3$
It flutters its wings up to 2.88 x 10^5 times $(1.3 \times 10^3)^2 = 1.3^2 \times 10^{2 \times 3} = 1.69 \times 10^6$

ANSWERS TO

EXERCISES AND

UNIT TESTS

UNIT 1

Exercises 1.1 (page 7)

Exercises 1.1 (page		D
	Rational/	Reason
4 0 0 1 2	Irrational	G 1 1
1. 0.013	Rational	Can be written as
1		13/1000
2. $5\frac{1}{2}$	Rational	Can be written as 11/2
3. 7.0900134		Decimal doesn't
	Irrational	terminate or
		repeat
4. 0.666		Repeating
	Rational	decimal equal to $\frac{2}{}$
5. -10.001		Can be written as
510.001	Rational	$-\frac{10\ 001}{1000}$
6. √49	Rational	Equal to 7
6. √497. 0.12231353		Decimal doesn't
	Irrational	terminate or
		repeat
8. 0.212121		Repeating
	Rational	decimal equal to
	Rational	21
9. 210.013		Terminating
9. 210.013	Rational	decimal
10. $\sqrt{8}$		Decimal value
10. V8		doesn't terminate
	Irrational	or repeat
		2.8284271
115.333		Decimal repeats
111 3.333	Rational	and can be
	Kationai	written as $-\frac{16}{3}$
12. 3.009		Decimal
	Rational	terminates and
	Kanonai	can be written as
		3009/1000
13. $-345\frac{1}{2}$	-	Can be written as
3	Rational	
		1 3

		Set of Numbers						
	Number	N	W	I	Ra	Ir		
14.	0.7							
15.	-45							
16.	15 7				V			
17.	0.13243							

18.	0.7					
19.	2					
20.	2 1 ⁵ / ₈					
21.	-160					
22.	0			$\sqrt{}$	$\sqrt{}$	
23.	$\sqrt{81}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
24.	0.93				$\sqrt{}$	
25.	$\sqrt{15}$					
26.						

-4	-3	-2	-1	0	1	2	3	4
†		†	†				† †	
-4	-1	√ <u>6</u>	$-\frac{13}{12}$				$2\frac{5}{8}$ 3.	1

27. a) -5.70, -5.07, -0.57, -0.507 b) $-\frac{11}{3}$, -3.5, -3.4, 3.4 c) $-\frac{2}{3}$, -0.6, -0.4, $-\frac{3}{8}$ 28. a) < b) = c) < 29. a) $\frac{17}{100}$ b) $-\frac{5}{9}$ c) $-\frac{5}{3}$ d) $3\frac{7}{100} = \frac{307}{100}$ 30. a) -0.6 (It is to the right of -0.\(\overline{6}\) on the number line.) b) -0.25 c) $-\frac{2}{3}$ (change to $-\frac{10}{15}$ and $-\frac{12}{15}$) 31. -3, -2, -1, 0 32. Rational; can be written as $\frac{2}{3}$

33. Rational; can be written as $\frac{3}{111}$ 34. Rational; can be written as $\frac{111}{1000}$ 36. $21\frac{1}{2}$

Exercises 1.2 (page 15)

1. a) 3 b) 15 c) $\frac{5}{7}$ d) $\frac{9}{4}$ e) 0.9 f) 0.02 2. a) 2.6 b) 5.3 c) 8.4 d) 14.1 3. a) $x = \pm 6$ b) $x = \pm 7.1$ c) $x = \pm 0.9$ d) $x = \pm 0.25$ e) $x = \pm 200$ 4. B, D, E 5. a) ± 9 b) ± 7 c) ± 0.3 6. a) 2.75 b) 11.38 c) 0.55 7. a) ± 10.25 b) ± 6.18 c) ± 5.91 d) ± 6.90 8. 7.42 cm 9. a) 4.53 cm b) 0.57 m 10. 40.16 m 11. a) 10.83 cm² b. 7.35 cm² c) 9.07 cm 12. a) 942 cm³ b) 1.82 cm

Exercises 1.3 (page 23)

1. a) 8 b) 9 c) 64 d) 81 e) 25 f) 32 g) 216 h) 729 i) 125 j) 243 **2.** a) 25 b) 49 c) 16

Resources from Dynamic Classroom

BC and Yukon

Order Books - https://www.math-help.ca/dynamic-math-store

Enhance learning and results!

Dynamic Math Videos

Get Started with a free trial https://www.math-help.ca/math-videos

Coming Soon!

Grade 3

Ontario

Grade 9 Ontario French Editions Gr 4 - 8

вс

AB/SK/MB

Atlantic Canada

K to Grade 2

BC

AB/SK/MB

Atlantic Canada

Sign up for your free account! https://www.math-help.ca/free

www.ClassroomReady.com - Reading Comprehension

Monthly News

Weekly News

Science News

Dynamic Math Resources

Dynamic Classroom has created resources that align with the provincial curriculum for Grades 3 to 12. The following resources are available in British Columbia.

Math Workbooks

ELEMENTARY			
Grade 3 Mathematics			
Grade 4 Mathematics			
Grade 5 Mathematics			
Grade 6 Mathematics			
Grade 7 Mathematics			

HIGH SCHOOL
Grade 8 Mathematics
Grade 9 Mathematics
Grade 10 Foundations and Pre-Calculus
Grade 11 Pre-Calculus
Grade 12 Pre-Calculus

Orders can be placed online at www.dynamicmath.ca.

Video Subscriptions

	Monthly - \$9.95 per month	
Access to all videos for Grades 4-10	6 Months - \$49.95	
	12 Months - \$79.95	

Orders for videos can be placed online at www.dynamicmath.ca.

If you would like to order Dynamic Math resources for your school, please email us at: info@dynamic-classroom.ca

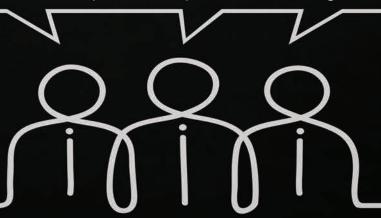
MORE THAN JUST A BOOK!

Guided video lessons that align directly with the curriculum. Learn more and gain access at: math-help.ca/videos

Extra content available online. Visit our website for all the resources and updates: math-help.ca/more

Students learn more and get better grades with the full Dynamic Math program. Get started today!

LEARN MORE >> math-help.ca/more



My son would never have passed grade 10 without Dynamic Math. Thank you!

My daughter loves your math books because she can work through them on her own. We'll definitely be buying the next grade in the fall.

I was so happy to finally find a math workbook that was exactly what my son was doing in class.

BC Grade 9 Mathematics

SKU# 2894626 4 00028 94626

\$34.95 CAD

