
GRADE 11

THE DYNAMIC MATH PROGRAM

BOOKS

The Dynamic Math workbooks cover the mathematics curriculum for Grades 4 to 12. The books are grade and province specific, covering the same material that is taught in the classroom.

VIDEO LESSONS

Does your child need more help? We have a growing library of math video lessons that will help your child with over-the-shoulder instruction. It's like having your very own "tutor in your pocket"!

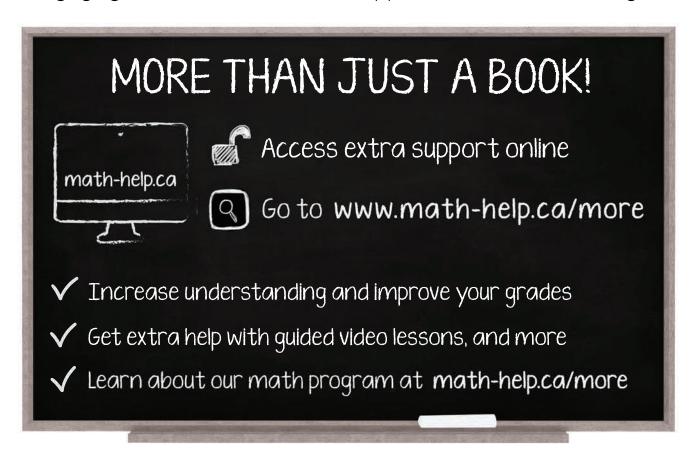
math-help.ca/videos

EXTRA ONLINE CONTENT

Our math instructors are always looking for ways to help students achieve greater success in math. Make sure to visit our website where you can find extra resources and the latest updates.

math-help.ca/more

TEACHERS


Teachers and schools can buy class sets of the Dynamic Math books to use in their classrooms as workbooks or textbooks. Since the books are specifically aligned with the curriculum in each province, they are a great resource for schools.

CALL TO DISCUSS OPTIONS FOR YOUR CLASSROOM

1-604-592-9309

WHY DYNAMIC MATH?

Dynamic Math workbooks are written by teachers directly for each province. This ensures that you are getting the exact same material that is being taught in the classroom. Our teachers also produce engaging online content to further support and enhance learning.

Suite 207 8501 162nd Street Surrey, BC V4N 1B2

604.592.9309

sales-inquiries@dynamic-classroom.ca

ISBN: 978-1-988243-16-0

www.dynamic-classroom.ca

Contributing Authors:

Alan R. Taylor, Ed.D. & Bill Kokoskin, M.A.

Dear Parents,

Helping kids understand and apply mathematics knowledge and skills is a collective responsibility of parents, teachers, and principals.

Students need to learn mathematics in a way that will serve them throughout their lives. Understanding mathematics can provide our students with many job and career opportunities.

This is why students need to know why mathematics works the way it does, how to use it with confidence and competence when solving problems.

Understanding mathematics enables us to:

- Solve problems, make sound decisions and perform calculations with ease
- Explain how we solved a problem and why we made a particular decision
- Understand patterns and trends so that we can make predictions
- Understand Financial Literacy to manage time and money
- · Handle everyday situations that involve numbers and feel confident

Before your child can learn mathematics, he or she needs to believe in his or her ability to do so. That's where you come in!

Parents, you are your child's first role model for learning. When you engage with your child in a supportive, relaxed atmosphere, your child will enjoy exploring the world of mathematics.

Dynamic Math is committed to helping parents and students. We understand that not everyone learns the same way, and not everyone feels the same about math. This is why we are continually working to create math resources that help students of all abilities, while supporting the many learning styles and varying levels of enthusiasm towards math.

From our clear concise instructions and straightforward guided examples to our additional practice material and tests, there's something to suit everyone. Combined with our video tutorials, students will be able to get a tutor-like experience from anywhere and at a fraction of the cost of standard tutoring or after-school help programs.

Table of Contents Mathematics 11 – Pre-Calculus

Unit 1 – Numbers and Radicals	Page	Unit 5 – Factoring Polynomials	Page
1.1 The Real Number System	2	5.1 Review of Factoring in General	138
1.2 Powers and Roots of Numbers	9	5.2 Factoring $ax^2 + bx + c$, $a \neq 0$	144
1.3 Ordering Radicals and Using a Calculator	13	5.3 Factoring $a^2x^2 - b^2y^2$, $a \neq 0$, $b \neq 0$	147
to Approximate Values		5.4 Factoring $a[f(x)]^2 + b(f(x)) + c, a \neq 0$	149
1.4 Simplifying Radicals by Factoring	17	5.5 Factoring $a^2[f(x)]^2 - b^2[g(y)]^2$;	151
1.5 Adding and Subtracting Radicals	20	$a \neq 0, b \neq 0$	
1.6 Multiplication and Division of Square	24	5.6 Combination of Factoring	153
Root Radicals		Curricular Competencies	155
1.7 Laws of Exponents for Rationals	29	em i i i i i i i i i i i i i i i i i i i	
1.8 Applications of Rational Exponents	34	Unit 6 – Relations and Quadratic Functions	
Curricular Competencies	38	6.1 Review of Relations and Functions	159
Aboriginal Applications	39	6.2 Graphs of Quadratic Functions	172
1100 · g.······ 1.pp··········		6.3 Transformations of Quadratic Functions	186
Unit 2 – Properties and Applications of Radio	rals	Curricular Competencies	192
2.1 Writing Radicals in Simplest Form	47	Aboriginal Applications	193
2.2 Product of a Binomial times a Binomial	51	1100115that 11ppiteations	175
2.3 Conjugates of Binomials and	54	Unit 7 – Applications with Quadratic Function	ons
Rationalizing Denominators	51	7.1 Completing the Square	200
2.4 Relationships between Roots, Absolute	57	7.2 Maximum and Minimum Problems	205
Values and Signs	31	7.3 Solving Quadratic Equations	210
2.5 Solving Equations Involving Radicals	59	7.4 The Discriminant	227
2.6 Problems Involving Radical Equations	64	Curricular Competencies	231
Curricular Competencies	70	Aboriginal Applications	231
Aboriginal Applications	71	Aboriginal Applications	232
Aboriginal Applications	/ 1	Unit 9 Inequalities	
Unit 2 Dational Evangasians and Equations		Unit 8 – Inequalities	241
Unit 3 – Rational Expressions and Equations	77	8.1 Graphing Inequalities in One Variable in Two Dimensions	24 1
3.1 Rational Expressions	81		245
3.2 Adding and Subtracting Rational	81	8.2 Graphing Inequalities in Two Variables	245
Expressions	02	8.3 Graphing Systems of Linear and	251
3.3 Multiplying and Dividing Rational	83	Quadratic Inequalities	260
Expressions	9.6	8.4 Graphing Quadratic Inequalities in One	260
3.4 Multiple Operations with Rational	86	Variable	265
Expressions	0.0	8.5 Problems for Quadratic Inequalities	265
3.5 Rational Equations	88	Curricular Competencies	268
3.6 Solving Problems Involving Rational	91	Aboriginal Applications	269
Equations	0.6	T. 1. 0. T. 1. 1. 1. 1. 1.	
Curricular Competencies	96	Unit 9 – Financial Literacy	27.5
XX 4: 4		9.1 Simple and Compound Interest	275
Unit 4 – Trigonometry		9.2 Using a Calculator	279
4.1 Definition of Trig Functions and Angles	100	9.3 Investments	281
in Standard Position		9.4 Investments with Regular Payments	286
4.2 Special Angles	110	9.5 Loans with Regular and Single	289
4.3 Law of Sines	115	Payments	
4.4 Law of Cosines	120	9.6 Buying and Leasing	293
4.5 Solving General Triangles	124	Curricular Competencies	297
Curricular Competencies	130		
Aboriginal Applications	131	Answers to Exercises and Unit Tests	302

UNIT 1 NUMBERS AND RADICALS

- 1.1 The Real Number System
- 1.2 Powers and Roots of Numbers
- 1.3 Ordering Radicals and Using a Calculator to Find Approximate Values
- 1.4 Simplifying Radicals by Factoring
- 1.5 Adding and Subtracting Radicals
- 1.6 Multiplication and Division of Square Root Radicals
- 1.7 Laws of Exponents for Rationals
- 1.8 Applications of Rational Exponents

1.1 The Real Number System

The system of **real numbers** consists of a collection of smaller sets of numbers that has evolved over several centuries. It began with numbers used to count objects, which were used for trading and other commercial purposes. It was extended and refined as a need for numbers to represent parts of objects and locations on the number line became important. Below is a discussion of the sets of numbers that comprise the Real Number System. Each of these sets of numbers builds on those contained in the preceding set.

Graphs of real numbers can be associated with fixed points along the number line. Every point on the line corresponds to a number in the set of "reals." All of these points on the line have tangible "real" values associated with them.

Composition of the Real Number System

The Real Number System is comprised of two major sets of numbers: **rational numbers** (Ra) and **irrational Numbers** (Ir).

Rational plus Irrational Numbers = Real Numbers

Rational numbers consist of all numbers that can be written in the form $\frac{a}{b}$, b $\neq 0$

Examples: $0.4 = \frac{1}{5}$, $-1\frac{1}{4} = -\frac{5}{4}$, $0 = \frac{0}{4}$

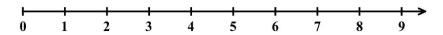
Irrational numbers consist of all other tangible numbers that cannot be written in that form.

Examples: $\sqrt{3}$, $\sqrt{11}$, 1.2013772...

Together, these sets of numbers make up the Real Number System.

Rational Numbers (Ra)

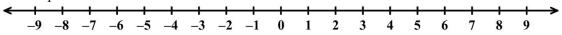
The rational numbers can be broken down further to obtain the following:


Natural Numbers (N)

Natural numbers can be thought of as counting numbers. They can be used to identify how many objects are contained in a collection. Since a collection of objects has at least one item in it, the natural numbers begin with the number 1 and then proceed to represent additional objects in the set. Counting numbers can be listed as follows: 1, 2, 3, 4, 5, 6, 7, 8, ...

Whole Numbers (W)

Whole numbers consist of the natural numbers in addition to the number 0. Although 0 does not represent an object in a set, it is an important addition to the number system. Whole numbers can be listed as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, ...


Whole numbers correspond to locations on the number line as follows:

Integers (I)

The set of **Integers** builds on the set of Whole numbers by adding the negative values of each. As a result, it includes numbers such as -1, -2, -3, -4, -5, ... Note that there is no negative value for 0. Negative values of Whole numbers are used in many situations, such as to represent a minus temperature (-22° C), distance below sea level (-8 m below the sea), or a golf score that is under par (-4 strokes under par).

Integers correspond to locations on the number line as follows:

Illustrating Real Numbers with a Venn Diagram

As shown in the Venn diagram below, the set of rational numbers includes each of the following.

Natural Numbers: $N = \{1, 2, 3, 4, ...\}$

Whole Numbers: $W = \{0, 1, 2, 3, 4, ...\}$

Integers: $I = \{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$

Rational: **Ra** = all of the above <u>plus</u> any other number that can be written in the form $\frac{a}{b}$, $b \neq 0$ Examples: 0.5, 1.24, $\frac{2}{5}$, $-1\frac{1}{4}$, 7)

Together, all of the **rational** and **irrational** numbers make up the set of **real** numbers.

Real Numbers (R) Rational Numbers (Ra) Integers (I) Whole (W) Natural N

Identification of Rational and Irrational Numbers

Recall that rational numbers can be shown in several different formats, as long as they can be rewritten in the form $\frac{a}{b}$, $b \neq 0$.

- 1. Natural Numbers, Whole Numbers, and Integers Examples: 7, -43, 0, 2761, -403
- 2. Proper Fractions, Mixed Numbers, or Improper Fractions Examples: $\frac{3}{11}$, $-\frac{2}{9}$, $3\frac{1}{4}$, $\frac{7}{5}$, $-8\frac{1}{10}$, $-\frac{7}{3}$
- 3. Decimals terminating or repeating Examples: 0.8, -0.25, $0.22\overline{3}$, $2.\overline{61}$

Irrational numbers cannot be shown as common fractions.

- 1. Decimals that do not terminate or repeat in a pattern (Example: 0.12323569...)
- 2. Roots of numbers that are not rational (Example: $\sqrt{2}$, $\sqrt{11}$, $-3\sqrt{5}$, ...)
- 3. Special numbers like π

Examples with Solutions

Identify which of the following are rational and which are irrational numbers. Give a reason for your answer.

Number	Rational or Irrational?	Reason
11.75	Rational	It can be written as $-\frac{175}{100}$ or $-\frac{7}{4}$.
2. 0.4010347	Irrational	The decimal doesn't terminate or repeat the same pattern.
3. $-\sqrt{36}$	Rational	It can be written as -6.
4. 0.2222	Rational	It repeats the same pattern and can be written as $\frac{2}{9}$.
5. $\sqrt{17}$	Irrational	The decimal version doesn't repeat the same pattern $\sqrt{17} = 4.123105626$
6. 5.01	Rational	It has a terminating decimal. It could be written as $5\frac{1}{100}$ or $\frac{501}{100}$.
7. $-9\frac{1}{2}$	Rational	It could be written as $-\frac{19}{2}$.

8. $3125\frac{1}{4}$ Rational It could be written as $\frac{12501}{4}$.

9. 4.333... Rational The decimal repeats the same pattern and is equal to $4\frac{1}{3}$ or $\frac{13}{3}$.

10. 7.0100382... Irrational The decimal doesn't terminate or repeat the same pattern.

Comparing and Ordering Real Numbers

Each real number corresponds to a point on the number line.

Examples:

It should be noted that numbers **increase** in magnitude as you go from left to right on the line.

Examples: 1 < 3, 2.1 < 4; -7 < -6; and 2 > 1.8; -3 > -5; -1 > -10.5

To compare the magnitudes of rational numbers where one is written in decimal and the other in common fraction form, write both either in decimal or in common fraction form and then compare.

1. Compare 0.1 with $\frac{3}{40}$. Convert both to fractions first. Change 0.1 to $\frac{1}{10}$. The common denominator is 40, $\therefore \frac{1}{10} = \frac{4}{40}$ $\frac{4}{40} > \frac{3}{40}$ or $0.1 > \frac{3}{40}$

2. Compare 3.15 with $3\frac{2}{11}$. Convert both to decimals first. Change $3\frac{2}{11}$ to a decimal $\rightarrow 3.\overline{18}$. $\therefore 3.15 < 3.\overline{18}$

Exercises 1.1

Identify each of the following as rational or irrational numbers. Give a reason for your answer.

Rational or	Reason	
Irrational		

- 1. 0.017
- 2. $7\frac{1}{2}$
- 3. 5.0900134...
- 4. 0.3333...
- 5. -19.001
- 6. $\sqrt{64}$
- 7. 0.144357...
- 8. 0.313131...
- 9. 510.013
- 10. $\sqrt{6}$
- 11. -5.666...
- 12. 4.009
- 13. $-343\frac{1}{3}$

Use a check mark to indicate which set(s) each number belongs to.

			Se	t of Numb		
	Number	N	W	I	Ra	Ir
14.	0.8					
15.	-35					
16.	$\frac{17}{7}$					
17.	0.15243					

18.	Number 0.7	N	W	I	Ra	Ir
19.	3					
20.	$1\frac{3}{8}$					
21.	-155					
22.	0					
23.	$\sqrt{100}$					
24.	0.83					
25.	$\sqrt{20}$					

 $N = Natural \ Numbers, \ W = Whole \ Numbers, \ I = Integers, \ Ra = Rational \ Numbers, \ Ir = Irrational \ Numbers$

26. Locate the following numbers on the number line.

$$3.2, 2\frac{3}{8}, -\frac{13}{12}, -\sqrt{5}, -\sqrt{16}$$

27. Arrange the following numbers from smallest to largest.

b.
$$3.4, -\frac{11}{3}, -3.4, -3.5$$

c.
$$-\frac{3}{8}$$
, $-\frac{2}{3}$, - 0.6, -0.4

28. Put the correct symbol (>, =, <) between each pair of numbers.

a. $0.16 \frac{7}{40}$

b. -1.8 $-\frac{9}{5}$

c. -2.7 $-\frac{13}{5}$

- 29. Express each term in common fraction form (as a quotient of two integers).
 - a. 0.19

b. $-0.\overline{7}$

c. $-1\frac{2}{5}$

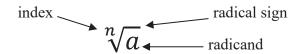
d. 3.09

- 230. Which rational number is greater?
 - a. $-0.\overline{7}$ or -0.7?

b. -0.25 or $-\frac{1}{3}$?

c. $-\frac{2}{3}$ or $-\frac{4}{5}$?

Extra for Experts


- 31. List the set of all Integers greater than -4 and less than $\frac{1}{3}$.
- 32. Is $\sqrt{\frac{4}{25}}$ rational or irrational? Give a reason for your answer.
- 33. Is the sum of the following numbers rational or irrational? Give a reason for your answer. 0.1 + 0.01 + 0.001
- 34. Is the sum of the following numbers rational or irrational? Give a reason for your answer. 0.333... + 0.666... + 0.999...
- 35. If the sum of $3.72 + 12.\underline{ab}$ is an integer, what digits must go in place of \underline{ab} ?
- 36. If the sum of $-12 + -8\frac{1}{2} + n$ is a natural number, what is the smallest number that can replace n?

1.2 Powers and Roots of Numbers

If we raise a number to a **positive integer power**, we multiply it by itself that number of times. For example, 5 to the power 3 is 5^3 is equal to $5 \times 5 \times 5 = 125$, or 7 to the power 2 is 7^2 is equal to $7 \times 7 = 49$.

When we go in the opposite direction, instead of raising a number to a power, we find the **root** of a number. For example, the second or square root of 16 is 4 since 4 is one of its <u>two</u> equal factors. The third or cube root of 27 is 3 because it is one of its three equal factors.

We use the **radical sign** to represent the root of a number. The number under the radical sign is called the **radicand** and the root is called the **index**.

Examples:

 $\sqrt[2]{64}$ - the square (or second) root of 64 The radicand is 64. The index is 2.

Since square roots are very common, we usually

leave the index out so that $\sqrt[2]{64} = \sqrt{64}$

 $\sqrt[3]{1000}$ - the cube (or third) root of 1000 The radicand is 1000. The index is 3.

Raising a number to a Power

The process of **squaring a number** (raising it to the power 2) involves multiplying it by itself for a total of 2 factors.

Examples:
$$5^2 = 5(5) = 25$$
, $(\frac{3}{7})^2 = (\frac{3}{7})(\frac{3}{7}) = \frac{9}{49}$

The process of raising a number to the power 3 involves multiplying it by itself twice for a total of 3 factors.

Examples:
$$2^3 = 2(2)(2) = 8$$
, $7^3 = 7(7)(7) = 343$

Finding the Root of a number

The process of finding the **square root** of a number is to determine one of its <u>two</u> equal factors; for example, $\sqrt{25} = \sqrt{(5)(5)} = 5$. It should be noted that $\sqrt{25} = \sqrt{(-5)(-5)} = -5$ as well; however, in most cases, when finding the square root of a number we will take only the positive square root of a number which is called the **principal square root**.

The process of finding the **cube or third root** of a number is to determine one of its <u>three</u> equal factors; for example, $\sqrt[3]{125} = \sqrt[3]{(5)(5)(5)} = 5$.

ABORIGINAL APPLICATIONS THE MOON

Artist: T. Isaac

Aboriginal people view the moon as the protector of the earth and of people at night. It is a symbol of power and is often used to show esteem or respect.

The moon forms the basis for Aboriginal calendars. Different times of the moon are closely linked to nature and reflect events that occur with the changing of the seasons and the phases of life. There are 13 moons in a typical lunar calendar year, compared to 12 months in the western calendar year. There are 28 days from one full moon to the next.

Math Applications

- 1. The volume of the moon is approximately 2.2×10^{10} km³ and the volume of the earth is approximately 1.08×10^{12} km³.
 - a. Find the ratio of the moon's volume to that of the earth. Round to 4 decimal places.
 - b. The moon is what percent of the volume of the earth? Round to 2 decimal places.
 - c. The equatorial radius of the moon is 1738.1 km. Write this distance as a number rounded to the nearest decimal times ten to a power.

Answers

- 1. a) $(2.2 \times 10^{10}) \div (1.08 \times 10^{12}) = 2.2/108 = 0.0204$
 - b) 2.04%
 - c) 1.7×10^3

ANSWERS TO

EXERCISES AND

UNIT TESTS

UNIT 1

Exercises 1.1 (page 6)

Number	Rational/	Reason
	Irrational	
1. 0.017	Rational	Can be written as
		1000
2. $7\frac{1}{2}$	Rational	Can be written as $\frac{15}{2}$
3. 5.0900134	Irrational	Decimal doesn't
		terminate or repeat
4. 0.333	Rational	Repeating decimal
		equal to $\frac{1}{3}$
5. -9.001	Rational	Can be written as
		10 000
6. $\sqrt{64}$	Rational	Equal to 8
7. 0.14431353	Irrational	Decimal doesn't
		terminate or repeat
8. 0.313131	Rational	Repeating decimal
		equal to $\frac{31}{99}$
9. 510.013	Rational	Terminating decimal
10. $\sqrt{6}$	Irrational	Decimal value
,		doesn't terminate or
		repeat
		2.44948974
115.666	Rational	Decimal repeats and
		can be written as $-\frac{17}{3}$
12. 4.009	Rational	Decimal terminates
		and can be written
		$as \frac{4009}{1000}$
12 2/2	Rational	Can be written as
13. $-343\frac{1}{3}$	1	1030
		3

		Set of Numbers				
	Number	N	W	I	Ra	Ir
14.	0.8					
15.	-35					
16.	17 7					
17.	0.15243					V
18.	0.7					
19.	3	V	V	V	V	
20.	$1\frac{3}{8}$				$\sqrt{}$	
21.	-155			V	V	

22.	0		 	
23.	$\sqrt{100}$	 	 	
24.	0.83			
25.	$\sqrt{20}$		·	$\sqrt{}$

26.

-4	-3	-2	-1	0	1	2	3	4
		^	A					
-4	-1	5	13			$2\frac{3}{2}$	3.2	

b)
$$-\frac{11}{3}$$
, -3.5, -3.4, 3.4 **c**) $-\frac{2}{3}$, -0.6, -0.4, $-\frac{3}{8}$

28. a) < b) = c) < **29.** a)
$$\frac{19}{100}$$
 b) $\frac{7}{9}$ c) $\frac{7}{5}$

d)
$$3\frac{9}{100} = \frac{309}{100}$$
 30. a) -0.7 (it is to the right of

 $-0.\overline{7}$ on the number line) **b)** -0.25

c)
$$-\frac{2}{3}$$
 (change to $-\frac{10}{15}$ and $-\frac{12}{15}$)

32. Rational – can be written as $\frac{2}{5}$ 33. Rational – can be written as $\frac{111}{1000}$

34. Rational – can be written as 2

35. 28 **36.** $21\frac{1}{2}$

Exercises 1.2 (page 11)

1. a) index = 3; radicand = 27 **b)** index = 2; radicand = $\frac{4}{9}$ c) index = 4; radicand = 625

d) index = 2; radicand = $\frac{4}{121}$ e) index = 3; radicand = 3.375 f) index = 5;

radicand = 0.0032 **2. a)** $\sqrt{81}$ **b)** $\sqrt[3]{216}$

c)
$$\sqrt[4]{625}$$
 d) $\sqrt{0.09}$ e) $\sqrt[5]{32}$ f) $\sqrt[3]{\frac{27}{125}}$

3. a) 243 **b)** 0.000027 **c)** $\frac{8}{27}$ **d)** $\frac{81}{4}$

e) 0.00032 f) 0.00000081 4. a) 3 b) $\frac{2}{3}$ c) 5

d)
$$\frac{2}{11}$$
 e) 0.1 f) 0.2 g) $\frac{1}{3}$ h) $\frac{2}{5}$ i) 12 j) 4

k) 0.3 **l)** 1 **5.** 4 **6.** $\frac{2}{3}$ **7.** $\frac{2}{3}$ **8.** $\frac{2}{3}$

Exercises 1.3 (page 15)

1. a) $\sqrt{5}$, 3, $\sqrt{11}$, 4 b) $\sqrt{3}$, $\sqrt{3.5}$, 2, 3

c)
$$\sqrt{5}$$
, $\sqrt{6}$, 2.5, 4 d) $\sqrt{\frac{1}{8}}$, $\frac{1}{2}$, $\sqrt{2}$, 2

e) $\sqrt[3]{25}$, 3, $\sqrt[3]{60}$, 4 f) 1, $\sqrt[3]{2}$, $\sqrt[3]{7}$, 2 2. a) 3.16

Dynamic Math Resources

Dynamic Classroom has created resources that align with the provincial curriculum for Grades 3 to 12. The following resources are available in British Columbia.

Math Workbooks

ELEMENTARY					
Grade 3 Mathematics					
Grade 4 Mathematics					
Grade 5 Mathematics					
Grade 6 Mathematics					
Grade 7 Mathematics					

HIGH SCHOOL
Grade 8 Mathematics
Grade 9 Mathematics
Grade 10 Foundations and Pre-Calculus
Grade 11 Pre-Calculus
Grade 12 Pre-Calculus

Orders can be placed online at www.dynamicmath.ca.

Video Subscriptions

	Monthly - \$9.95 per month		
Access to all videos for Grades 4-10	6 Months - \$49.95		
	12 Months - \$79.95		

Orders for videos can be placed online at www.dynamicmath.ca.

If you would like to order Dynamic Math resources for your school, please email us at: info@dynamic-classroom.ca

Resources from Dynamic Classroom

BC and Yukon

Order Books - https://www.math-help.ca/dynamic-math-store

Enhance learning and results!

Dynamic Math Videos

Get Started with a free trial https://www.math-help.ca/math-videos

Coming Soon!

Grade 3

Ontario

Grade 9 Ontario French Editions Gr 4 - 8

вс

AB/SK/MB

Atlantic Canada

K to Grade 2

BC

AB/SK/MB

Atlantic Canada

Sign up for your free account! https://www.math-help.ca/free

www.ClassroomReady.com - Reading Comprehension

Monthly News

Weekly News

Science News

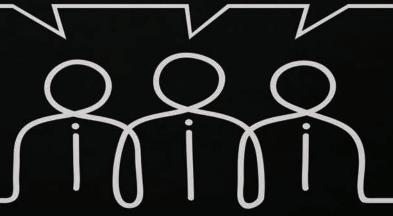
MORE THAN JUST A BOOK!

Guided video lessons that align directly with the curriculum. Learn more and gain access at: math-help.ca/videos

Extra content available online. Visit our website for all the resources and updates: math-help.ca/more

Students learn more and get better grades with the full Dynamic Math program. Get started today!

LEARN MORE >> math-help.ca/more



My son would never have passed grade 10 without Dynamic Math. Thank you!

My daughter loves your math books because she can work through them on her own. We'll definitely be buying the next grade in the fall.

I was so happy to finally find a math workbook that was exactly what my son was doing in class.

BC Grade 11 Mathematics

SKU# 2894630 4 00028 94630

\$34.95 CAD

