GRADE 10

Mathematics

FOUNDATIONS \& PRE-CALCULUS

- COMPLEIE GRADE 10 MATH CURRICULUM

$x>$ questions ranging from easy to advanced \$ step by step guided examples * chapter tests included

DYNAMIC

CLASSROOM

THE DYNAMIC MATH PROCRAM

BOOKS

The Dynamic Math workbooks cover the mathematics curriculum for Grades 4 to I2. The books are grade and province specific, covering the same material that is taught in the classroom.

VIDEO LESSONS

Does your child need more help? We have a growing library of math video lessons that will help your child with over-the-shoulder instruction. It's like having your very own "tutor in your pocket"!
math-help.ca/videos

EXTRA ONLINE CONTENT

Our math instructors are always looking for ways to help students achieve greater success in math. Make sure to visit our website where you can find extra resources and the latest updates.

math-help.ca/more

TEACHERS

Teachers and schools can buy class sets of the Dynamic Math books to use in their classrooms as workbooks or textbooks. since the books are specifically aligned with the curriculum in each province, they are a great resource for schools.

WHY DYNAMIC MATH?

Dynamic Math workbooks are written by teachers directly for each province. This ensures that you are getting the exact same material that is being taught in the classroom. Our teachers also produce engaging online content to further support and enhance learning.

MORE THAN JUST A BOOK!

Access extra support online
math-help.ca

Increase understanding and improve your grades \checkmark Get extra help with guided video lessons, and more Learn about our math program at math-help.ca/more

Suite 2078501 162nd Street
Surrey, BC V4N 1B2
604.592.9309
sales-inquiries@dynamic-classroom.ca
www.dynamic-classroom.ca

Contributing Authors: Alan R. Taylor, Ed.D. \& Bill Kokoskin, M.A.

Helping kids understand and apply mathematics knowledge and skills is a collective responsibility of parents, teachers, and principals.

Students need to learn mathematics in a way that will serve them throughout their lives. Understanding mathematics can provide our students with many job and career opportunities.

This is why students need to know why mathematics works the way it does, how to use it with confidence and competence when solving problems.

Understanding mathematics enables us to:

- Solve problems, make sound decisions and perform calculations with ease
- Explain how we solved a problem and why we made a particular decision
- Understand patterns and trends so that we can make predictions
- Understand Financial Literacy to manage time and money
- Handle everyday situations that involve numbers and feel confident Before your child can learn mathematics, he or she needs to believe in his or her ability to do so. That's where you come in!

Parents, you are your child's first role model for learning. When you engage with your child in a supportive, relaxed atmosphere, your child will enjoy exploring the world of mathematics.

Dynamic Math is committed to helping parents and students. We understand that not everyone learns the same way, and not everyone feels the same about math. This is why we are continually working to create math resources that help students of all abilities, while supporting the many learning styles and varying levels of enthusiasm towards math.

From our clear concise instructions and straightforward guided examples to our additional practice material and tests, there's something to suit everyone. Combined with our video tutorials, students will be able to get a tutor-like experience from anywhere and at a fraction of the cost of standard tutoring or after-school help programs.

Table of Contents
 BC Foundations and Pre-Calculus 10

Unit 1 - Factors and Powers

1.1 Multiples and Factors 2
1.2 Least Common Multiple and Greatest Common Factor
1.3 Powers and Exponents
1.4 Negative Exponents
1.5 Laws of Exponents
1.6 Solving Problems Using Exponents

Curriculum Competencies
Aboriginal Applications
Unit 2 - Relationships
2.1 Graphs
2.2 Relations 32
2.3 Representing Data Using Function 43 Models
2.4 Defining a Function
2.5 Domain, Range of a Function 52
2.6 Determining Rules or Relationships in 58 Data
2.7 Function Notation and Relations 66

Curriculum Competencies 73
Aboriginal Applications
Unit 3 - Linear Relations
3.1 Arithmetic Sequences and Series 82
3.2 Graphing Arithmetic Sequences 91
3.3 Characteristics of a Linear Relation 93
3.4 Slope of a Line
3.5 Slopes of Parallel Lines
3.6 Slopes of Perpendicular Lines
3.7 Graphing Using Tables of Values
3.8 Standard Form and Slope-Intercept 115 Form
$\begin{array}{ll}\begin{array}{l}\text { 3.9 Using the Slope-Intercept Form and } \\ \text { Slope-Point Form }\end{array} & 123 \\ \text { Curriculum Competencies }\end{array}$
Aboriginal Applications 131
Unit 4 - Solving Systems of Linear
Relations
4.1 Solving a System by Graphing
4.2 Solving a System by Substitution
4.3 Solving a System by Elimination
4.4 Word Problems Involving 2 Equations 153 in 2 Unknowns
4.5 Problems Involving Systems of Equations
Curriculum Competencies
Aboriginal Applications161
Page
Page
Unit 5 - Multiplying Polynomials
5.1 Constant Terms, Coefficients, and 166
Variables in Polynomial Expressions
5.2 Addition and Subtraction of 170
Polynomials
5.3 Multiplying Polynomials by 172
Monomials
5.4 Dividing Polynomials by Monomials 175
5.5 Multiplying Polynomials 178
Curriculum Competencies 183
Aboriginal Applications 184
Unit 6 - Factoring Polynomials
6.1 Common Factors 189
6.2 Factoring Trinomials of the Form 191
$x^{2}+b x+c$
6.3 Factoring Trinomials of the Form 195
$a x^{2}+b x+c$
6.4 Factoring the Difference of Squares 198
6.5 Solving Quadratic Equations by 200
Factoring
Curriculum Competencies 204
Aboriginal Applications 205
Unit 7 - Trigonometric Ratios
7.1 The Pythagorean Relationship 209
7.2 The Trigonometric Ratios 214
7.3 Finding Sides and Angles of Triangles 218
7.4 Solving Problems Using Trigonometry 221
7.5 Solving More Problems Using 224
Trigonometry
Curriculum Competencies 229
Aboriginal Applications 230
Unit 8 - Financial Literacy
8.1 Salary 236
8.2 Wages 238
8.3 Tips and Commissions 239
8.4 Piecework 242
8.5 Income Tax and Other Deductions 244
Curriculum Competencies 245
Aboriginal Applications 246
Answers to Exercises and Unit Tests 250

UNIT 1

FACTORS AND POWERS

1.1 Multiples and Factors

1.2 Least Common Multiple and Greatest Common Factor

1.3 Powers and Exponents

1.4 Negative Exponents
1.5 Laws of Exponents
1.6 Solving Problems Using Exponents

If you need additional help, there are more resources available at math-help.ca/more.

1.1 Multiples and Factors

A prime number is an integer greater than 1 whose only integer factors are 1 and itself.
Examples:
$2,3,5$, and 7 are prime numbers since their only factors are 1 and themselves.
6 is not prime since it has two different sets of integer factors: 1 and 6 or 2 and 3
A factor of a number is a divisor of that number. It divides evenly into it.
Examples:

1. List all factors of 10 .

- $1,2,5$, and 10 are factors of 10 since they all divide evenly into it.
- Of these factors, only 2 and 5 are prime factors.

2. Show the following numbers as products of prime factors.

- $12=2 \times 2 \times 3$
- $50=2 \times 5 \times 5$

A multiple of a number is the product of that number times another whole number greater than 0 .
Examples: Multiples of 5 are $(5 \times 1)=5 ;(5 \times 2)=10 ;(5 \times 3)=15 ;(5 \times 4)=20$; etc.

A composite number is not a prime number and can be factored in more than one way. All numbers that are not prime are composite (with the exception of 1).

Example: 15 is a composite number since it can be factored as 15×1 or 5×3.

Examples with Solutions:

1. Which of the following numbers are not prime?

$$
1,3,4,5,7,9,11,15
$$

2. List all factors of 20 .

1 is not prime since it is not greater than 1 .
4,9 , and 15 are not prime. They are composite, since they have more than one pair of factors (9 can be factored as 9×1 or 3×3).

Factor 20 as follows $2 \times 2 \times 5$ or $2^{2} \times 5$.
The set of all factors consists of all numbers that divide evenly into 20.
The numbers are 1 plus all combinations of 2, 2, and 5 shown in step 1 .

Answer: 1, 2, 4, 5, 10, and 20.
3. List all multiples of 7 less than 40 .
4. Show 90 as a product of prime factors.

Multiples of 7 consist of numbers that are the product of 7 times $1,2,3,4, \ldots$
We want multiples of 7 less than 40 .
$7 \times 1,7 \times 2,7 \times 3,7 \times 4,7 \times 5,(7 \times 6$ is 42 , which is larger than 40).
Answer: 7, 14, 21, 28, 35
Factor 90 until all factors are broken down into prime factors.

$$
90=9 \times 10=3 \times 3 \times 2 \times 5 \text { or } 3^{2} \times 2 \times 5
$$

Sometimes a factor tree can help in breaking down a number into prime factors.
Example:

The prime factors of 90 are $3 \times 3 \times 2 \times 5$.

Exercises 1.1

1. Identify whether or not each number is prime. Give a reason for your answer.
Number
Yes/No
Reason
a. 22
b. 31
c. 77
d. 57
e. 43
f. 51
2. List all factors of each number. Then list the prime factors.

Number
All Factors
Prime Factors
a. 30
b. 100
c. 75
d. 90
e. 135
f. 38
3. List all multiples of the following numbers that meet each condition.

Number
Multiples of the Number
a. All multiples of 11 that are greater than

40 and less than 100
b. All multiples of 5 between 11 and 41
c. All multiples of 9 less than 100
d. All multiples of 20 less than 200
e. All multiples of 13 less than 100 that are odd numbers.
4. Write each number as a product of prime factors.
a. 30
b. 12
c. 26
d. 36
e. 250
f. 1000
g. 90
h. 216
i. 196
j. 242
5. List all factors that are common to both 9 and 30 .
6. List all factors that are common to 10,14 , and 70 .
7. List all numbers less than 100 that are multiples of both 15 and 10 .
8. List all numbers less than 50 that are multiples of both 3 and 5 .
9. I am a multiple of both 9 and 15 . I am less than 200 and more than 150 . Who am I?
10. I am a multiple of 3,5 , and 10 . I am less than 100 . Who am I?
11. I am a multiple of 3,5 , and 7 between 300 and 400 . Who am I?
12. I am a number less than 50 . If I am a multiple of both 2 and 14 , who am I?

1.2 Least Common Multiple and Greatest Common Factor

The greatest common factor (GCF) of two or more numbers is the largest factor that is common to each of them. To find the GCF of two numbers, use the following steps.

1. Write each number as a product of prime factors.
2. Select all of the prime factors common to both.
3. The product of those factors is the greatest common factor.

Examples:

1. Find the GCF for 20 and 28.

- $20=\underline{2} \times \underline{2} \times 5 \quad 2 \times 2$ is common to both numbers
- $28=\underline{2} \times \underline{2} \times 7 \quad \therefore 4$ is the GCF

2. Find the GCF for 30 and 45.

- $30=\underline{3} \times 2 \times \underline{5} \quad 3 \times 5$ is $\underline{\text { common to both numbers }}$
- $45=\underline{3} \times 3 \times \underline{5} \quad \therefore 15$ is the GCF

The least common multiple (LCM) is the smallest multiple of each number that is common to both. To find the LCM of two numbers, use one of the following methods.

1. Write multiples of each number.
2. Select the smallest multiple common to both.

OR

1. Write each number as the product of prime factors
2. Select all of the prime factors from the first number and then select only those prime factors from the second that are not already there.
3. Find the product of those factors.

Examples:

Method 1

Find the LCM of 15 and 10

- Multiples of 15 are $15, \underline{30}, 45,60,75, \ldots$
- Multiples of 10 are $10,20, \underline{30}, 40,50,60,70, \ldots$
- 30 is the smallest multiple of both numbers.

Method 2

Find the LCM of 15 and 10

- $15=3 \times 5$ Write as the product of prime factors.
- $10=2 \times 5$ Write as the product of prime factors.
- $3 \times 5 \times \underline{2}$ Select all factors of the first and then add factors not there from the $2^{\text {nd }}$ number.
- $\mathrm{LCM}=30$ The product of the above factors (the smallest number that both 10 and 15 divide into).

Examples with Solutions:

1. Find the GCF of 40 and 50.
2. Find the LCM of 15 and 20.

Write each number as the product of prime factors: $\quad 40=\underline{2} \times 2 \times 2 \times \underline{5}$

$$
50=\underline{2} \times 5 \times \underline{5}
$$

Select those factors that are common to both.
Answer: $2 \times 5=10$.
10 is the greatest factor common to both numbers.

Method \#1

Write multiples of each number until you find the smallest one that is common to both.

Multiples of $15=15,30,45,60,75, \ldots$
Multiples of $20=20,40,60, \ldots$
Answer: 60 is the smallest number that is a multiple of both.

Method \#2

Factor each number as a product of prime factors:

$$
\begin{aligned}
& 15=5 \times 3 \\
& 20=2 \times 2 \times 5
\end{aligned}
$$

Use all of the factors of the first number and then add those from the second number that you do not already have.
Start with 5×3, add 2×2.
The LCM $=5 \times 3 \times 2 \times 2=60$
3. Find (a) the GCF and (b) the LCM of the following numbers:

44, 66

GCF
$44=2 \times 2 \times 11$
$66=2 \times 3 \times 11$
Factors common to both are 2×11
$\mathrm{GCF}=22$ (largest factor that divides into both numbers)

LCM

$2 \times 2 \times 11$ (all prime factors of the $1^{\text {st }}$)
$2 \times 2 \times 11 \times 3$ (factors of $1^{\text {st }}$ plus factors in the $2^{\text {nd }}$ not already listed)
$\mathrm{LCM}=132$ (smallest multiple that both numbers divide into)

Exercises 1.2

1. Find the greatest common factor (GCF) for each set of numbers.
a. 20, 70
b. 27,54
c. 40,72
d. 14,42
e. $30,45,60$
f. $120,80,200$
g. 580,145
h. $10,30,50,90$
2. Find the least common multiple (LCM) for each set of numbers.
a. 9,5
b. 14,35

ABORIGINAL APPLICATIONS THE DRUM

BT Collection
The drum is an essential component in the songs and prayers of Aboriginal people. It represents the voice of the Creator and gives power and resonance to the voices of the singers. It is thought to reflect the heartbeat of "mother earth."

Large drums, usually played by men, are about a metre across and about 0.7 metres high. They consist of a hide stretched across a circular wooden frame. Smaller drums are played by both men and women. They range from 20 to 50 centimetres across and are about 12 cm high.

Mathematical Applications

The face of the drum is circular. The area of a circle is equal to πr^{2} and its circumference is equal to 2π r. (Let $\pi \approx 3.14$.)

1. If the circumference of a drum is 66.602 cm , what is its radius?
2. If the radius of a drum is 15.2 cm , what is its area?

Answers

1. $\approx 10.6 \mathrm{~cm}$

$$
\text { 2. } \approx 725.4656 \mathrm{~cm}^{2}
$$

ANSWERS TO

EXERCISES AND

UNIT TESTS

UNIT 1

Exercises 1.1 (page 3)

1. a) No; Factors are 1×22 and 2×11
b) Yes; Only factors are 1 and 31
c) No; Factors are 1×77 and 7×11
d) No; Factors are 1×57 and 3×19
e) Yes; Only factors are 1 and 43
f) No; Factors are 1×51 and 3×17
2. a) All factors: $1,2,3,5,6,10,15,30$; Prime factors: 2, 3, 5 b) All factors: $1,2,4,5,10,20$, 25, 50, 100; Prime factors: 2,5 c) All factors: 1, 3, 5, 15, 25, 75; Prime factors: 3, 5 d) All factors: $1,2,3,5,6,9,10,15,30,18,45,90$; Prime factors: 2, 3, 5 e) All factors: 1, 3, 5, 9 , 15, 27, 45, 135; Prime factors: 3, 5
f) All factors: 1, 2, 19, 38; Prime factors: 2, 19
3. a) $44,55,66,77,88,99$ b) $15,20,25,30$,

35,40 c) $9,18,27,36,45,54,63,72,81,90$,
99 d) $20,40,60,80,100,120,140,160,180$
$\begin{array}{ll}\text { e) } 13,39,65,91 & 4 \text {. a) } 2 \times 3 \times 5 \\ \text { b) } 2 \times 2 \times 3\end{array}$
c) 2×13 d) $2 \times 2 \times 3 \times 3$ e) $2 \times 5 \times 5 \times 5$
f) $2 \times 2 \times 2 \times 5 \times 5 \times 5$ g) $3 \times 3 \times 2 \times 5$
h) $2 \times 2 \times 2 \times 3 \times 3 \times 3$ i) $2 \times 2 \times 7 \times 7$
j) $2 \times 11 \times 11$ 5.1,3 6. 1, 2 7.30, 60, 90
8. $15,30,45 \quad 9.180 \quad \mathbf{1 0 . 3 0 ,} 60,90 \quad \mathbf{1 1 .} 315$
12. $14,28,42$

Exercises 1.2 (page 8)
$\begin{array}{llllll}\text { 1. a) } 10 & \text { b) } 27 & \text { c) } 8 & \text { d) } 14 & \text { e) } 15 & \text { f) } 40\end{array}$
$\begin{array}{lllll}\text { g) } 145 & \text { h) } 10 & \text { 2. a) } 45 & \text { b) } 70 & \text { c) } 75\end{array} \quad$ d) 80
$\begin{array}{lll}\text { e) } 70 & \text { f) } 60 \quad 3 . & \text { a) } 8\end{array}$
$\begin{array}{llll}\text { b) } 3 & \text { c) } 9 & \text { d) } 21 & \text { e) } 5\end{array}$
f) 7 4. 60 minutes $\mathbf{5 . 3 5 , 7 0} \mathbf{6 . 7} \quad$ 7. Sue 12 , Jack 9 8. 9:00 am

Exercises 1.3 (page 12)

1. $3 \times 2^{5}=96 \quad 2.7 \times(-2) 3=-56$
$\begin{array}{llll}\text { 3. } & 5 \times 104=50000 & \text { 4. }-6 \times 83=-3072 & \text { 5. a) } 8\end{array}$
b) $4 \quad \mathbf{6}$. a) $4 \quad$ b) -12
2. 35 8. $180 \quad 9.70$
3. 535
4. -392
5. -54
6. -54
7. -8
8. 1

Exercises 1.4 (page 13)
$\begin{array}{llllll}\text { 1. } \frac{1}{9} & \text { 2. } \frac{9}{4} & \text { 3. } \frac{10000}{81} & \text { 4. }-\frac{1}{32} & \text { 5. } 125 & \text { 6. } \frac{625}{1296}\end{array}$
7. $-\frac{1}{9} \quad 8 . \frac{1}{9} \quad$ 9. $-\frac{1}{27} \quad$ 10. $-\frac{1}{27} \quad$ 11. $\frac{1}{5^{3}} \quad$ 12. $\frac{1}{7^{2}}$
13. 2^{2} 14. $\left(\frac{5}{2}\right)^{3}$
15. $\left(\frac{5}{7}\right)^{4}$

Exercises 1.5 (page 18)
$\begin{array}{lllll}\text { 1. } 35 x & \text { 2. } \frac{-2}{3} x^{4} y^{7} & \text { 3. } a^{4} b^{4} c^{4} & \text { 4. } r^{4} s t^{2} & \text { 5. } n^{5} m^{3}\end{array}$
6. $\frac{0.25}{x^{6}}$ 7. $\frac{6 y^{4}}{r z^{3}}$ 8. $x^{25} \quad$ 9.1 \quad 10. $\frac{r^{6}}{8 t^{9}}$ 11.27
12. $\frac{x^{6}}{4}$ 13. $\frac{1}{4 x^{6}}$ 14. $\frac{-27 a^{9} b^{12}}{c^{6}}$ 15. $y^{19} \quad$ 16. $81 b^{32}$
17.324 18.56 19.180 20. 99900
21. $a=2, b=-1$
22. $a=-12, b=-7$
23. $y=\frac{1}{625}$
24. $t=25$ 25. All are incorrect.
26. a) $3^{2} \times 3^{3}=3^{5}$ b) $3 x^{0}=3 \times 1=3$
c) $\left(3 x^{2}\right)^{2}=3^{2} \times x^{4}=9 x^{4}$ d) $\left(x^{4}\right)^{5}=x^{20}$
e) $x^{-1}=\frac{1}{x}$ f) $\left(3 x^{2}\right)\left(4 x^{3}\right)=3 \times 4 x^{5}=12 x^{5}$
$\begin{array}{ll}\text { g) } \frac{10 x^{6}}{5 x^{4}}=\frac{10}{5} x^{2}=2 x^{2} & \text { h) } \frac{x^{20}}{x^{4}}=x^{20-4}=x^{16}\end{array}$
i) $\frac{x^{4}}{x^{5}}=\frac{1}{x}$ j) $\sqrt{9^{2}+16^{2}}=\sqrt{81+256}=\sqrt{337}$

Exercises 1.6 (page 21)

1. $294 \mathrm{~cm}^{2}$
2. a) 400
b) 1600
c) $200(2)^{\mathrm{h}}$
3. a) 400π or $1256.64 \mathrm{~cm}^{2} \quad$ b) 900π or 2827.43 cm^{2} 4. a) $84.375 \mathrm{~m} \quad$ b) $281.25 \mathrm{~m} \quad$ 5. $\$ 1817.02$

Unit 1 Test (page 24)

1. a) $3 \times 3 \times 2 \times 5$ b. $2 \times 2 \times 3 \times 3 \times 3 \times 3$
2. a) $32,36,40,44,48$
b) $45,90 \quad$ 3. a) 10
b) 15
3. a) 60
b) 180
4. $-3(2)^{5}$
5. a) -216
b) -36
c) -18
d) 9
e) $1 \frac{21}{25} \quad$ f) $24 \quad 7$. a) $\frac{1}{(-8)^{3}}$
b) $\left(\frac{2}{3}\right)^{2}$
6. a) $-\left(\frac{1}{125}\right)$
b) $625 \quad 9$. a) $5 x^{3} y^{5}$
b) $\frac{m^{5}}{n}$
7. 12150

UNIT 2

Exercises 2.1 (page 29)

1. Novel D has more pages and more words than Novel C. 2. Hockey players E and F played the same number of games, but player F scored more goals. Player K played more games than player F but scored the same number of goals. 3. Building M has the least number of storeys, but its cost per storey is the highest. Building P has more storeys than building N , but its cost per storey is the same as building N .

Dynamic Math Resources

Dynamic Classroom has created resources that align with the provincial curriculum for Grades 3 to 12. The following resources are available in British Columbia.

Math Workbooks

ELEMENTARY
Grade 3 Mathematics
Grade 4 Mathematics
Grade 5 Mathematics
Grade 6 Mathematics
Grade 7 Mathematics

HIGH SCHOOL
Grade 8 Mathematics
Grade 9 Mathematics
Grade 10 Foundations and Pre-Calculus
Grade 11 Pre-Calculus
Grade 12 Pre-Calculus

Orders can be placed online at www.dynamicmath.ca.

Video Subscriptions

Access to all videos for Grades 4-10	Monthly $-\$ 9.95$ per month
	6 Months $-\$ 49.95$
	12 Months $-\$ 79.95$

Orders for videos can be placed online at www.dynamicmath.ca.

If you would like to order Dynamic Math resources for your school, please email us at: info@dynamic-classroom.ca

Resources from Dynamic Classroom

BC and Yukon

Order Books - https://www.math-help.ca/dynamic-math-store

Enhance learning and results!

Dynamic Math Videos
Get Started with a free trial
https://www.math-help.ca/math-videos

Coming Soon!

Grade 3
Ontario
Grade 9
Ontario

$\underline{\text { French Editions }}$
BC -8
$\mathrm{AB} / \mathrm{SK} / \mathrm{MB}$
Atlantic Canada

Sign up for your free account! https://www.math-help.ca/free

www.ClassroomReady.com - Reading Comprehension

Weekly News

MORE THAN JUST A BOOK!

 Guided video lessons that align directly with the curriculum. Learn more and gain access at: math-help.ca/videos
 Extra content available online. Visit our website for all the resources and updates: math-help.ca/more

Students learn more and get better grades with the full Dynamic Math program. Get started today!

LEARN MORE > math-help.ca/more

30 My son would never have passed grade 10 without Dynamic Math. Thank you!

My daughter loves your math books because she can work through them on her own. We'll definitely be buying the next grade in the fall.

I was so happy to finally find a math workbook that was exactly what my son was doing in class.

BC Grade 10 Mathematics

