Inequalities

Basic Practice

1. In each of the following, determine whether the specified value of x is a solution of the given inequality.

(a)
$$x > 10$$
; $x = 19$

(c)
$$x < -12$$
; $x = -2$

(e)
$$x \ge 34$$
; $x = 34$

(g)
$$5x > 7$$
; $x = 1.2$

(i)
$$\frac{x}{2} \ge -5$$
; $x = -11$

(b)
$$x < 5;$$
 $x = 5$

(d)
$$x > -23$$
; $x = -6$

(f)
$$4x \le 20$$
; $x = -1$

(h)
$$3x \ge -2$$
; $x = -\frac{1}{2}$

(j)
$$\frac{3}{5}x < 9$$
; $x = -\frac{3}{5}$

2. Solve the following inequalities.

(a)
$$2x > 12$$

(c)
$$3x < -18$$

(e)
$$6x \ge 27$$

(g)
$$16x \le 36$$

(b)
$$4x > 32$$

(d)
$$5x < 22.5$$

(f)
$$8x \ge -30$$

(h)
$$24x \le -64$$

- 3. (a) List all the positive even integers that are smaller than or equal to 20.
 - **(b)** Find all possible values of x in each of the following inequalities if x is a positive even integer that is smaller than or equal to 20.

(i)
$$x < 10$$

(iii)
$$x \leq 9$$

(v)
$$2x < 8$$

(vii)
$$5x \le 21$$

(ii)
$$x > 12$$

(iv)
$$x \ge 14$$

(vi)
$$3x > 51$$

(viii)
$$4x \ge 71$$

- **4.** (a) List all the prime numbers that are smaller than or equal to 30.
 - **(b)** Find all possible values of *x* in each of the following inequalities if *x* is a prime number that is smaller than 30.

(i)
$$x < 15$$

(iii)
$$x < 13$$

(v)
$$4x < 28$$

(vii)
$$2x \le 7$$

(ii)
$$x > 23$$

(iv)
$$x \ge 22$$

(vi)
$$5x > 45$$

(viii)
$$3x \ge 43$$

Further Practice

- 11. (a) A wire is bent into a square of area 81 cm². Find
 - (i) the length of a side of the square,
- (ii) the perimeter of the square.
- **(b)** Suppose the same wire is bent into an equilateral triangle. Find the length of a side of the equilateral triangle.
- 12. (a) The length and width of rectangle ABCD are 25 cm and 32 cm respectively. Find
 - (i) the perimeter of the rectangle,
- (ii) the area of the rectangle.
- (b) A square is formed when the sides of ABCD are extended. If the length of ABCD is extended by 60%, find
 - (i) the length of the square,
 - (ii) the percentage increase in the width of the rectangle.
- (c) Express the area of the square as a percentage of the area of the rectangle.
- **13.** Two small circles are cut out from a large circle of diameter 48 cm. The point *O* is the center of the large circle and the diameters of the small circles are *OX* and *OY* respectively. The points *X* and *Y* are on the circumference of the large circle.

Find, in terms of π ,

- (a) the area of the resulting plane figure,
- (b) the perimeter of the resulting plane figure.

- **14.** (a) Plot each of the following points in the given diagram.
 - (i) A(-3, -4), B(2, -4), and C(4, 1)
 - (ii) P(-4, 1), Q(-4, -2), and R(2, 3)
 - (b) Hence, find the area of
 - (i) $\triangle ABC$,
 - (ii) $\triangle PQR$.
 - (c) The points *D* and *S* lie on the *x*-axis and *y*-axis respectively. Find the area of
 - (i) $\triangle ABD$,
 - (ii) $\triangle PQS$.

Enrichment

- **26.** In the diagram, three cubical building blocks are stacked up on a table. The lengths of the sides of the blocks are 5 cm, 10 cm, and 15 cm respectively.
 - (a) Find the total area of the exposed surfaces of the stack, excluding the contact surface with the table.
 - **(b)** If a cylinder of height 30 cm has volume equal to the total volume of the blocks, find the base radius of the cylinder.

27. Six cubes of side 1 cm are glued together to form a solid. Three possible solids P, Q, and R are shown below.

- (a) Determine the total surface area of solid
 - (i) P,
 - (ii) Q,
 - (iii) R.
- **(b)** Form a solid with the least total surface area.
- (c) Form a solid with the greatest total surface area.

28.

A developer builds a row of identical semi-detached huts along a beach as shown in the diagram above. ABCDE is the cross-section of a hut. $\triangle ABE$ is a right-angled triangle with AB = 1.5 m, AE = 2 m, and $m \angle BAE = 90^{\circ}$. BCDE is a rectangle with CD = 2.5 m and BC = 1.5 m. The length of each hut is 3 m. The thickness of each side wall is 30 cm.

- (a) Find the total surface area of each hut, excluding the floor.
- (b) Find the volume of space of each hut (ignore the thickness of the walls).
- (c) If n huts are in a row, find, in terms of n,
 - (i) the total roof area,
 - (ii) the total volume of the side walls.

Challenging Practice

- **30.** Let ξ be the set of employees in a company,
 - $P = \{\text{employees in the company who earn more than } 2,000 \text{ a month}\}\$
 - and $Q = \{\text{employees in the company who earn at least } \$3,000 \text{ a month}\}.$
 - (a) Describe the sets P' and Q'.
 - (b) Describe using 'c', the relationship between
 - (i) P and Q,
 - (ii) P' and Q'.
- 31. The frequency table below shows the number of dogs owned by a group of children.

Number of dogs	0	1	2	3	4	5
Number of children	7	10	5	5	x	1

- (a) The mean number of dogs owned by each child is 1.6. Form an equation in x and solve it.
- (b) Hence, find the number of children in the group.
- (c) A child is randomly selected. Find the probability of selecting a child with more than 3 dogs.
- (d) A dog is randomly selected. Find the probability of selecting a dog that belongs to a child who has at most 3 dogs.
- 32. A box contains 200 buttons that are either blue or green. A button is randomly selected from the box.
 - (a) Find the number of each type of button if the probability of selecting a blue button is $\frac{11}{25}$.
 - (b) How many blue buttons must be removed from the 200 buttons so that the probability of selecting a green button will become $\frac{8}{13}$?
 - (c) How many blue buttons must be added to the 200 buttons so that the probability of selecting a green button will become $\frac{14}{27}$?
 - (d) When x blue buttons are added and x green buttons are removed from the 200 buttons, the probability of selecting either a blue or green button is the same. Find the value of x.
- **33.** Jeffrey bought a grey (G), a red (R), a blue (B), and a yellow (Y) T-shirt. He also bought a blue (B), a white (W), and a grey (G) pair of jeans. Suppose that Jeffrey randomly matches a shirt with a pair of jeans.
 - (a) List all the possible ways of matching a shirt with a pair of jeans.
 - (b) Find the probability of Jeffrey wearing
 - (i) a yellow T-shirt,
 - (ii) a white pair of jeans.
 - (c) Let M be the event that Jeffrey matches a shirt with a pair of jeans of the same color. Find P(M) and P(M').