. LEARN, = 8
A Sk T T TR
o o o0 e Sl S SR %o o o o

e
CODING
SPACE INVADERS
PART 4

With 8BitCADE

Compatible with:

A,

\ 8Bit€ADE >




Contents
LESSON NUMDEIIA ...ttt ettt et e st e et e e st e s beesbeeneeeneesneenseeneenseenns 3
Step 1 ADDING INPUT BUTTON SETTINGS
Step 2 ADDING PLAYER SETTINGS & CONSTANT FOR TANK GRAPHICS
Step 3 ADDING PLAYER STRUCT
Step 4 PLAYER GLOBAL VARIABLES
Step 5 UPDATING VOID SET_UP
Step 6 UPDATING VOID PHYSICS WITH PLAYER CONTROL
Step 7 PLAYER CONTROL
Step 8 DISPLYING THE PLAYER
Step 9 INITIALISING THE PLAYER
Final Code

Tutorial by 8BitCADE adapted from the amazing work by Xtronical
The original guide can be followed online at

https://www.xtronical.com/projects/space-invaders/

CCBY-SA
Xtronical & 8BitCADE

All rights reserved.

(a7 8B | support@8bitcade.com



https://www.xtronical.com/about-xtronical/
https://www.xtronical.com/projects/space-invaders/

L esson Number:4

Lesson Title: Player & Tank Movement

Code: Full Code for Lesson
System: Arduboy + Project ABE

Prerequisites to completing this tutorial
1. Tutorials 1,1a,1b,2,3
2. Know how to write code in either Arduino IDE or Project ABE online Emulator
3. Know how to draw pixel art by watching Pixel Art Tutorial Space Invader
4. Know how to convert pixel art into hexadecimal code by watching Converting Pixel Art
into Hexadecimal Code
5. Understand For loop, Switch Case, Arrays, Data Types

In this tutorial we will add in the players tank and give them the ability to control it in the left or
right direction. This will require some buttons putting onto our board. First the full source code
(expand and copy as required). Once compiled and uploaded to your Arduino the display should
look like this:

hh sl o

&
g e
o =
d

(a7 8B | support@8bitcade.com




Step 1 ADDING INPUT BUTTON SETTINGS

Type the following code into line 9-11

9. // Input settings
10@. #define FIRE_BUT 7
11. #define RIGHT BUT A1l
12. #define LEFT_BUT A2

Explanation (line 9-11)
We are setting these “constants” to the digital pins 4,5 and 6 of the Arduino. These will be the
pins that our buttons are connected to. The next lines are related to the player:

Step 2 ADDING PLAYER SETTINGS & CONSTANT FOR TANK
GRAPHICS

Type the following code into line 22-27
22. // Player settings

23. #define TANKGFX_WIDTH 13

24. #define TANKGFX HEIGHT 8

25. #define PLAYER_X_MOVE_AMOUNT 1

26. #define PLAYER Y START 56

27. #define PLAYER_X_START @

Explanation (line 22-27)

Lines 23 to 24 define the size of the players “Tank" graphics. The PLAYER_X_MOVE_AMOUNT is
the number of pixels the players tank moves at a time. The X and Y for the player is the players
start position.

Step 3 ADDING PLAYER STRUCT

Type the following code into line 63-64
63. struct PlayerStruct {

64. GameObjectStruct Ord;
65. };

Explanation (line 63-65)
We have added a structure for the player, just like the Invader (AlienStruct) in the previous
episode this at present just holds the position of the players tank.

Step 4 PLAYER GLOBAL VARIABLES

Type the following code into line 69-70
69. // Player global variables
7@. PlayerStruct Player;

Explanation (line 69-70)
Line 70 initialises the player variable as a global variable (accessible to all parts of the code)

(a7 8B | support@8bitcade.com




Step 5 UPDATING VOID SET_UP

Type the following code into line 81-83

76. void setup() { // put your setup code here, to run once:

7.

78. arduboy.setFrameRate(68);

79. InitAliens(e); // See voidInitAliens. initialises the aliens and sets up their X/Y Co-ordinates
8e. InitPlayer();

B81.

82. pinMode(LEFT_BUT, INPUT_PULLUP);

83. pinMode(FIRE_BUT, INPUT_PULLUP);

84. }

Explanation (line 81-83)

The setup routine has been expanded quite a lot. The InitPlayer initialise the player (more on
that shortly) and then we set some pin modes for the Arduino pins that we will connect our
buttons to. We are using the Arduino built in constant INPUT_PULLUP. This means these pins
will be used for inputs and that we will used the Arduinos internal 10K (10,000) Ohm resistors to
connect them (pull them up) to +5V. Why do we do this?...

Floating Inputs

On most electronics inputs, whether they are microprocessors (like the Arduino) or other types
of chips, they should always be connected to something if you intend to use them in some way.
If they are left “floating” i.e. with no connection to anything then they can give false values. That
is to say they could report a 1 (+v) or 0 (gnd) input when actually the pin has not been set to any
value by the user. Now traditionally in these situations you simply add a 10K resistor (although
any high value resistor will usually be OK) to the input pin and connect it to either the positive or
negative voltage. If connected to the positive then the pin will always report a “1" unless you
deliberately connect it to the negative supply rail (gnd for our purposes). If connected to the OV
then it will always report a 0" unless we deliberately connect it to the +v rail. In either case the
input value is most definitely a 1 or a 0. If you do not do this then you could get spurious 1's or 0's
on the input pin when itis not deliberately connected to a voltage rail. The designers of the Atmel
processor used by the Arduino spoilt us by putting some 10K resistors inside the chip, nice © So
we don't need to add them ourselves, to use them we just need to use INPUT_PULLUP setting to
enable this and the pin will automatically be connected to the +ve rail via a 10K resistor.

So this pin will always report a “1" when we read it unless we connect it to the 0V rail. This is
important to note when we come to wire up our pins to the push switches and when we come to
read the values from the pins and make sense of »

them.

Wiring the buttons

We have three buttons to wire up, Left,

Right and Fire to Arduino pins D7,A1, A2
respectively. An example diagram and real life
wiring below. When a button is pressed it
connects that pin to ground (0V). When we look
at that pins value it will read a 0 of pressed and
alifnot pressed.

(a7 8B | support@8bitcade.com



https://i1.wp.com/www.xtronical.com/wp-content/uploads/2017/06/Button-Connections.jpg

Step 6 UPDATING VOID PHYSICS WITH PLAYER CONTROL

Type the following code into line 97
95. void Physics() {

96. AlienControl();

97. PlayerControl();
98. }

Explanation (line 97)
So where do we scan for these button presses, within the Physics routines mentioned in the last
episode, here is the function again with an important addition:

Step 7 PLAYER CONTROL

Type the following code into line 172-178

72 void PlayerControl() {
173. // user input checks

174. if ((digitalRead(RIGHT_BUT) == @) & (Player.Ord.X + TANKGFX_WIDTH < SCREEN_WIDTH))
175. player.Ord.X += PLAYER_X_MOVE_AMOUNT;

176. if ((digitalRead(LEFT_BUT) == @) & (Player.Ord.X > 0))

177. Player.ord.X -= PLAYER_X_MOVE_AMOUNT;

178. }

Explanation (line 172-178)

We scan for two button presses at present (as fire is not yet implemented). If

the RIGHT_BUT pin is 0 then we've pressed the right move button, BUT we only update the
players X position if the end of the tank is still on screen

— (Player.Ord.X+TANKGFX_WIDTH<SCREEN_WIDTH), If it is we simply increase the players X
position by the amount of pixels the player moves per move (PLAYER_X_MOVE_AMOUNT).
Similarly, the LEFT_BUT is scanned and if the pressed and the players X position is still on
screen then the X position will be decremented by the player movement amount. This all
ensures that the tank cannot go off the ends of the screen.

Step 8 DISPLYING THE PLAYER

Type the following code into line 208-211
2e8. // player
2e9. arduboy.drawBitmap(Player.Ord.X, Player.Ord.Y, TankGfx, TANKGFX_WIDTH, TANKGFX_HEIGHT, WHITE);

210. arduboy.display();
211. }

Explanation (line 208-211)
Added to the UpdateDisplay function is just one line that plots the players tank.

Step 9 INITIALISING THE PLAYER

Type the following code into line 213-216

213, void InitPlayer() {

214, Player.Ord.Y = PLAYER_Y START;

215, Player.Ord.X = PLAYER_X_START;

216. }

Explanation (line 213-216)

At present it doesn't do much apart from set the players initial start position.

(a7 8B | support@8bitcade.com




Final Code

[ay

/* Animating Invaders, www.pixilart.com for sprite generation, http://javl.github.i
o/image2cpp/ for image conversion,

VWoOoNOOTUVTDh WN

-}
. const unsigned char
S
. const unsigned char

-1
S
. const unsigned char
S
. const unsigned char
¥
. const unsigned char
-1
. // Player grafix

. const unsigned char
- )
. // Game Structures
. struct GameObjectStruct {

*/

//libraries for grap
#include <Arduboy2.h
Arduboy2 arduboy;

// DISPLAY SETTINGS
#tdefine SCREEN_WIDTH
#tdefine SCREEN_HEIGH
// Input settings

. #define FIRE_BUT 7

. #define RIGHT_BUT Al
. #define LEFT_BUT A2
. //Sprite settings see graphic for explanation. We have 3 aliens
. #define NUM_ALIEN_CO
. #define NUM_ALIEN_RO
. #define SPACE_BETWEE

he columns

. #define SPACE_BETWEE

he rows

. #define LARGEST_ALIE

dth

. #define X_START_OFFS

rom the @ position

0x98, ©x5c, Oxb6,

0x58, ©Oxbc, 0x16,

oxle, Oxb8, 0x7d,

ox78, 0x18, 0x7d,

oxlc, Ox5e, Oxfe,

0x9c, Oxde, Ox7e,

oxfo, oxf8, oxf8,

signed int X;
signed int V;

hics/display
>

128
T 64

LUMNS 7

WS 3
N_ALIEN_COLUMNS 5
N_ROWS 9

N_WIDTH 11

ET 6

. #define INVADERS_DROP_BY 4
. #define INVADERS_SPE
. // Player settings

. #define TANKGFX_WIDTH 13
. #define TANKGFX_HEIG
. #define PLAYER_X_MOVE_AMOUNT 1
. #define PLAYER_Y_START 56

. #define PLAYER_X_START ©

. // Status of a game
. #define ACTIVE ©

. // Invader Sprites
. const unsigned char

ED 12

HT 8

object constants
InvaderTopGfx [] PROGMEM = {
Ox5f, Ox5f, Oxb6, Ox5c, Ox98

InvaderTopGfx2 [] PROGMEM = {
ox1f, ox1f, ox16, Oxbc, Ox58

PROGMEM InvaderMiddleGfx [] =
0x36, Ox3c, Ox3c, Ox3c, 0Ox36, Ox7d,

PROGMEM InvaderMiddleGfx2 [] = {
Oxb6, Oxbc, Ox3c, Oxbc, Oxb6, 0x7d,

PROGMEM InvaderBottomGfx [] = {
Oxb6, Ox37, Ox5f, Ox5f, Ox37, Oxbe6,

PROGMEM InvaderBottomGfx2 [] = {
0x36, 0x37, Ox5f, Ox5f, Ox37, 0x36,

PROGMEM TankGfx [] = {
oxf8, oxf8, oxfe, oxff, Oxfe, Oxfs8,

(a7 8B | support@8bitcade.com

//Columns of aliens going across
//Rows of aliens going down

//Space in pixels between each alien in t
//Space in pixels between each alien in t

//Size in pixels of the largest allien wi

//Position of the first alien from in X,f

ox5e, Oxlc

Oxde, ©x9c

oxf8, 0xf8, Oxfo




58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.

69.
70.
71.
2%
73.

74.
75.
76.
77.
78.
79.

80.
81.
82.
83.
84.
85.
86.

88.
89.
90.
91.
92.
93.
94.
95.
96.

98.
99.

100.
l1e01.
102.
103.
104.
105.

106.
107.

108.

109.
110.
111.
112.
113.
114.
115.
116.

unsigned char Status; //© active, 1 exploding, 2 destroyed
s
struct AlienStruct {
GameObjectStruct Ord;
s
struct PlayerStruct {
GameObjectStruct Ord;
s
char AlienXMoveAmount = 1; // norm is 2 , this is pixel movement in X
signed char InvadersMoveCounter; // counts down, when © move invaders, s
et according to how many aliens on screen
bool AnimationFrame = false; // two frames of animation, if true show one if false
show the other
// Player global variables
PlayerStruct Player;
//Alien Global Veriables
// create an 2D array of aliens across the screen
AlienStruct Alien[NUM_ALIEN_COLUMNS][NUM_ALIEN_ROWS]; // columns and rows relate to
the define code above so 7 and 3.
byte Alienwidth[] = {8, 11, 12}; // top middle and bottom widths of the graphics

void setup() { // put your setup code here, to run once:
arduboy.begin();
arduboy.setFrameRate(60);
InitAliens(@); // See voidInitAliens. initialises the aliens and sets up their X/
Co-ordinates
InitPlayer();
pinMode (RIGHT_BUT, INPUT_PULLUP);
pinMode (LEFT_BUT, INPUT_PULLUP);
pinMode (FIRE_BUT, INPUT_PULLUP);
}

void loop()

87. {

if (larduboy.nextFrame()) {
return;
}
Physics();
UpdateDisplay();
}

void Physics() {
AlienControl();
PlayerControl();
}

void AlienControl()

if ((InvadersMoveCounter--) < 0)
{
bool Dropped = false;
if ((RightMostPos() + AlienXMoveAmount >= SCREEN_WIDTH) | (LeftMostPos()
+ AlienXMoveAmount < @)) // at edge of screen
{
AlienXMoveAmount = -
AlienXMoveAmount; // reverse direction
Dropped = true; // and indicate we a
re dropping
}
// update the alien postions
for (int Across = @; Across < NUM_ALIEN_COLUMNS; Across++)
{
for (int Down = ©@; Down < 3; Down++)
{
if (Alien[Across][Down].Ord.Status == ACTIVE)
{

(a7 8B | support@8bitcade.com




if (Dropped == false)

Alien[Across][Down].Ord.X += AlienXMoveAmount;
else

Alien[Across][Down].Ord.Y += INVADERS_DROP_BY;

¥
}

}
InvadersMoveCounter = INVADERS_SPEED;

AnimationFrame = !AnimationFrame; ///swap to other frame
}

}
int RightMostPos() {

//returns x pos of right most alien
int Across = NUM_ALIEN_COLUMNS - 1;
int Down;
int Largest = 0;
int RightPos;
while (Across >= 0) {

Down = 9;

while (Down < NUM_ALIEN_ROWS) {

if (Alien[Across][Down].Ord.Status == ACTIVE)

{
// different aliens have different widths, add to x pos to get right

RightPos = Alien[Across][Down].Ord.X + AlienWidth[Down];
if (RightPos > Largest)
Largest = RightPos;
}
Down++;
¥
if (Largest > @) // we have found largest for this coloum
return Largest;
Across--;
}
return @; // should never get this far
}
int LeftMostPos() {
//returns x pos of left most alien
int Across = 0;
int Down;
int Smallest = SCREEN_WIDTH * 2;
while (Across < NUM_ALIEN_COLUMNS) {
Down = 0O;
while (Down < 3) {
if (Alien[Across][Down].Ord.Status == ACTIVE)
if (Alien[Across][Down].Ord.X < Smallest)
Smallest = Alien[Across][Down].Ord.X;
Down++;

}
if (Smallest < SCREEN_WIDTH * 2) // we have found smalest for this colou

return Smallest;
ACross++;

}

return @; // should never get this far

}

void PlayerControl() {
// user input checks
if ((digitalRead(RIGHT BUT) == @) & (Player.Ord.X + TANKGFX_WIDTH < SCREEN
_WIDTH))
Player.Ord.X += PLAYER_X_MOVE_AMOUNT;
if ((digitalRead(LEFT_BUT) == @) & (Player.Ord.X > 90))
Player.Ord.X -= PLAYER_X_MOVE_AMOUNT;

(a7 8B | support@8bitcade.com




180. void UpdateDisplay()

181. {

182. arduboy.clear();

183. for (int across = ©; across < NUM_ALIEN_COLUMNS; across++)

184. {

185. for (int down = ©; down < NUM_ALIEN_ROWS; down++)

186. {

187. switch (down) {

188. case 0:

189. if (AnimationFrame)

190. arduboy.drawBitmap(Alien[across][down]. 5 Alien[across][down
1. . InvaderTopGfx, AlienWidth[down], 8, WHITE);

191. else

192. arduboy.drawBitmap(Alien[across][down]. . Alien[across][down
1. 5 InvaderTopGfx2, AlienWidth[down], 8, WHITE);

193. break;

194. case 1:

195. if (AnimationFrame)

196. arduboy.drawBitmap(Alien[across][down]. g Alien[across][down
1. . InvaderMiddleGfx, AlienWidth[down], 8, WHITE);

197. else

198. arduboy.drawBitmap(Alien[across][down]. . Alien[across][down
1. o InvaderMiddleGfx2, AlienWidth[down], 8, WHITE);

199. break;

200. default:

201. if (AnimationFrame)

202. arduboy.drawBitmap(Alien[across][down]. o Alien[across][down
1. . InvaderBottomGfx, AlienWidth[down], 8, WHITE);

203. else

204. arduboy.drawBitmap(Alien[across][down]. . Alien[across][down
1. . InvaderBottomGfx2, AlienWidth[down], 8, WHITE);

205. }

206. }

207. }

208. // player

209. arduboy.drawBitmap(Player.Ord.X, Player.Ord.Y, TankGfx, TANKGFX_WIDTH, TA
NKGFX_HEIGHT, WHITE);

21e. arduboy.display();

211. }

212.

213, void InitPlayer() {

214. Player.Ord.Y = PLAYER_Y_START;

215. Player.Ord.X = PLAYER_X_START;

216. }

217.

218. void InitAliens(int YStart) {

219. for (int across = @; across < NUM_ALIEN_COLUMNS; across++) { // plots all
21 aliens using the array by ploting each alien across repeatedly

220. for (int down = ©; down < 3; down++) { //plots each
alien down repeatedly we add down to centralise the aliens

221. Alien[across][down].Ord.X = X_START_OFFSET + (across * (LARGEST_ALIEN_
WIDTH + SPACE_BETWEEN_ALIEN_COLUMNS)) - down; // this spaces each alien on x axis
define OFFSETs-down helps centralise them

222. Alien[across][down].Ord.Y = YStart + (down * SPACE_BETWEEN_ROWS); // c
alculation to space aliens on Y axis

223. }

224. }

225. }

(a7 8B | support@8bitcade.com




