

Contents
Lesson Number: 3... 2

Step 1 ADDING CONSTANTS ... 2

Step 2 UPDATING GAME STATUS FOR EACH INVADER .. 2

Step 3 DEFINE ACTIVE CONSTANT FOR GAME STATUS ... 3

Step 4 UPDATE GRAPHIC SPRITES FRAME 2.. 3

Step 5 VARIABLES FOR INVADER MOVEMENT ... 3

Step 6 THE LOOP .. 4

Step 7 CONTROLLING ALIENS .. 4

Step 8 ALIEN CONTROL ... 4

Step 9 LEFT & RIGHTMOST POSITIONS... 7

Step 10 UPDATE DISPLAY ... 9

Final Code ... 10

Tutorial by 8BitCADE adapted from the amazing work by Xtronical

The original guide can be followed online at

 https://www.xtronical.com/projects/space-invaders/

CC BY-SA

Xtronical & 8BitCADE

All rights reserved.

https://www.xtronical.com/about-xtronical/
https://www.xtronical.com/projects/space-invaders/

Lesson Number: 3
Lesson Title: Animating Invaders

Code: Full Code for Lesson

System: Arduboy + Project ABE

Prerequisites to completing this tutorial

1. Tutorials 1a,1b,1c,2
2. Know how to write code in either Arduino IDE or Project ABE online Emulator
3. Know how to draw pixel art by watching Pixel Art Tutorial Space Invader
4. Know how to convert pixel art into hexadecimal code by watching Converting Pixel

Art into Hexadecimal Code

5. Understand For loop, Switch Case, Arrays, Data Types

Step 1 ADDING CONSTANTS
Type the following code into line 16-17

Explanation (line 17-31)
We’ve introduced two more constants to support the alien movement on screen.
The INVADERS_DROP_BY definition is how many pixels the Invaders will move down when
they reach the edge of the display. The INVADERS_SPEED is how fast they move across the
screen at the start of a new level, the lower the number the faster they will go, which is kind
of counter-intuitive I know, but the programming is a little easier that way. I’ve used an
initial value of 12, which seems about right. Be warned that values should be between 0
and 127 as we use a counter variable later on in combination with this value which is a
signed byte and the largest value for a signed byte is 127.

Step 2 UPDATING GAME STATUS FOR EACH INVADER
Type the following code into line 45 only

Explanation (line 17-31)
In the vast majority of games something can be destroyed and Invaders is obviously no different

in this respect. As every object in this game can be active or destroyed we need a variable within
the GameObjectStruct structure to identify if this object is “active” or not (destroyed).

Step 3 DEFINE ACTIVE CONSTANT FOR GAME STATUS
Type the following code into line 18-19

Explanation (line 17-31)
We now have a new variable Status that represents an objects current status. To Support this we
have a new #define as well.

Step 4 UPDATE GRAPHIC SPRITES FRAME 2
Type the following code into line 24,25, + 31,32, + 37,38

Explanation (line 24,25, + 31,32, + 37,38)
Space Invaders has very simple animations, for each alien character there are two separate
graphics defined (i.e. two frames of animation) . We change between each one every time
we move the Invaders. We just need to keep track of which one is currently being
displayed. Each extra frame of animation for each Invader is simply named with a “2” at the
end, as shown here for the middle Invader:

Step 5 VARIABLES FOR INVADER MOVEMENT
Type the following code into line 17-31

Explanation (line 17-31)
Line 51:AlienXMoveAmount : The number of pixels that the Invaders will move at a time.
This changes as the game speeds up towards the end of the level. The higher the number
the quicker they appear to move.
Line 52: InvadersMoveCounter : Used in conjunction with INVADERS_SPEED constant. This
counter gets set to INVADERS_SPEED and then is decremented once per game cycle. When
it reaches 0 we move the Invaders and reset back to the INVADERS_SPEED value.
Line 53: The variable that keeps track of which animation to display is this one. If it’s false
we will display one frame of the Invaders animation, if true the other frame. When and how
we toggle this from value to another will be discussed later.

Step 6 THE LOOP
Type the following code into line 17-31

Explanation (line 17-31)

Just two functions, the first Physics() is basically all the game logic and rules, from moving
the Invaders to checking for collisions.

Step 7 CONTROLLING ALIENS
Type the following code into line 17-31

Explanation (line 17-31)
There will be more in this routine in later tutorials but for now the only thing we are
implementing are the Invaders movements with the function AlienControl().

Step 8 ALIEN CONTROL
Type the following code into line 80-107

Explanation (line 80-107)
This entire routine exists just to move the invaders on screen, that is to say alter their X and
Y positions, it does not plot them to the display, that is done separately by
the UpdateDisplay() which is called just after the Physics routine. It is normal and good
practice to separate out your game physics/ logic/rules from the final display to screen. It
makes code easier to read, more manageable and disconnects any internal coordinate units
we may use from the actual display. What do I mean by that? Well, what if we were suddenly

blessed with a screen display of 256×128 (twice the resolution). It would be relatively trivial
in the display routine to make our game work on the new display without changing any of
the physics code at all. That could be all the same and we just scale to the new display in our
display code. If you have plotting to screen all intertwined with your game logic it becomes
an unmanageable mess even without considering different displays, so keep them separate.
If you remember (hopefully, it was only a few lines ago!)

InvadersMoveCounter is basically controlling the speed of the Invaders across the screen.
Looking at the line its value is first decremented by 1 and then a check is made to see if it is
less than 0. If so then the Invaders are moved else we basically do nothing and exit the
routine ready to be called again. At the beginning this variable is set to INVADERS_SPEED ,
which itself is set to 12. So every 12 cycles of the main loop we update the Invaders position.
At least at the start of the level that is the case for their speed.
As an aside this line “if((InvadersMoveCounter–)<0)” may have some “C” purists shouting
that it could have been written in a different slightly more compact way and in by-gone days
it may have been a little faster executing. However modern compilers should ensure there is
no speed penalty and for beginners the way the line is written is more approachable for
beginners or those more used to strongly typed programming languages. So if it is time to
update the Invaders positions (InvadersMoveCounter is less than 0) then we go on to line
145 and create a local variable:

84 bool Dropped=false;

Dropped is an indicator of whether the Invaders have reached the end of the screen and are
dropping down. We need to know this as if it is true we only move down and do not update
the X positions in this current Invader position update. The next three lines check if we are
at the edge of screen and set and change some variables if we are

 if((RightMostPos()+AlienXMoveAmount>=SCREEN_WIDTH)
|(LeftMostPos()+AlienXMoveAmount<0)) // at edge of screen
 {
 AlienXMoveAmount=-AlienXMoveAmount; // reverse direction
 Dropped=true; // and indicate we are dropping
 }

The first line may look a little complex but it can be broken down into two parts, the check
for the Invaders going beyond the right edge of the screen and the check for them going
beyond the left edge. This is the check for the right:

(RightMostPos()+AlienXMoveAmount>=SCREEN_WIDTH)

The function (which we will look at shortly) RightMostPos returns the right most Invaders X
position. Obviously the right most Invader changes as the game progresses as some are
destroyed, so this routine simply scans the Invaders for the rightmost one that is still active
and returns that X position. We then add to that, the amount we would like them to move
by, AlienXMoveAmount. If this total is more than or equal to the screen width
(SCREEN_WIDTH) we have therefore hit the right hand edge. The left hand edge check is very
similar, (LeftMostPos()+AlienXMoveAmount<0)
If the left most Invader + AlienXMoveAmount is less than 0 we have hit the left hand edge of
the screen. But… some of you may be wondering how that could possibly work, how could
adding the left most position which must be 0 or above to a movement amount ever be a
value less than 0? Well if we are moving to the left the AlienXMoveAmount will actually be a

negative number, i.e. if move to the right it would be, i.e. +2 (or just 2), if to the left it would
be -2. So if the LeftMostPos was 0 we would have the following sum to be worked out of we
were moving left:
0+AlienXMoveAmount and if AlienXMoveAmount is -2 then the line becomes 0+-2. Adding
a minus number to a positive ends up subtracting it from that positive number. So the
answer would be -2 and less than 0 so we know we’ve hit the left hand edge. OK, so if we
have gone beyond the left or right edge we will execute the following code:

AlienXMoveAmount=-AlienXMoveAmount; // reverse direction
Dropped=true; // and indicate we are dropping

Whichever edge we have reached the code is the same as we need to indicate we are
dropping, Dropped=true. We then need to reverse the direction of movement, the line
AlienXMoveAmount=-AlienXMoveAmount. Does this reverse of direction by changing the
mathematical sign of the movement value. Let’s look at a couple of examples,
if AlienXMoveAmount was 2 then the line above (if we filled in the numbers) would be:
AlienXMoveAmount=-2 and so we have swapped a +2 to a -2. But what if it is already -2, well
let’s put the numbers in again: AlienXMoveAmount=–2 We now have a minus minus 2 (–2) ,
one thing learnt from school is that if you minus a minus number you get a positive number
so the above becomes AlienXMoveAmount=2 and we’ve swapped the direction of
movement.

Updating the Invaders positions

// update the alien postions
 for(int Across=0;Across<NUM_ALIEN_COLUMNS;Across++)
 {
 for(int Down=0;Down<3;Down++)
 {
 if(Alien[Across][Down].Ord.Status==ACTIVE)
 {
 if(Dropped==false)
 Alien[Across][Down].Ord.X+=AlienXMoveAmount;
 else
 Alien[Across][Down].Ord.Y+=INVADERS_DROP_BY;
 }
 }
 }

Here we just loop through every single Invader and the key lines are these:

if(Alien[Across][Down].Ord.Status==ACTIVE)
{
 if(Dropped==false)
 Alien[Across][Down].Ord.X+=AlienXMoveAmount;
 else
 Alien[Across][Down].Ord.Y+=INVADERS_DROP_BY;
}

If the invader is active (i.e. not destroyed) we update its position. If we are currently dropping
(remember this is set above) we update its Y position only else we update its X position,
which will move it either to the left or right depending on the mathematical sign
of AlienXMoveAmount, discussed earlier. The last two lines of this routine reset the Invader
Speed Counter back to its default and flip the animation frame to the next ready for the
display routine.

 InvadersMoveCounter= INVADERS_SPEED;
AnimationFrame=!AnimationFrame; ///swap to other frame

The ! symbol in C (and other languages) means simply “invert” or make opposite and applies
only to True and false expressions (Boolean values). So false would become true and true
would become false etc.

Step 9 LEFT & RIGHTMOST POSITIONS
Type the following code into line 108-150

Explanation (line 108-150)
The Left and Right most positions
In the previous routine we needed to know the left or right most positions of the Invaders
and introduced two routines called LeftMostPos and RightMostPos, lets have a look at the
code for LeftMostPos.

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

int LeftMostPos() {
 //returns x pos of left most alien
 int Across=0;
 int Down;
 int Smallest=SCREEN_WIDTH*2;
 while(Across<NUM_ALIEN_COLUMNS){
 Down=0;
 while(Down<NUM_ALIEN_ROWS){
 if(Alien[Across][Down].Ord.Status==ACTIVE)
 if(Alien[Across][Down].Ord.X<Smallest)
 Smallest=Alien[Across][Down].Ord.X;
 Down++;
 }
 if(Smallest<SCREEN_WIDTH*2) // we have found smallest for this coloum
 return Smallest;
 Across++;
 }
 return 0; // should never get this far
}

We set up two counters Across and Down to loop through all the Invaders and also we set a
variable (Smallest) to store the currently smallest X position currently found which we
initialise to a massive number of twice the screen width, which will be bigger than any current
X position. Now we could have gone through every single Invader comparing their X position
with the smallest X position and if that value was smaller storing it in the
variable Smallest. Then at the end of the routine just return that variable, however there is a
more efficient way. The smallest value for X will always be in the left most Invader column
as all the other columns occur after this then they must be higher and thus cannot be smaller.
So within the loop we go from the left column (Across=0) to the right column. We then scan
down each invader in this column (Down=0 to last row). If the Invader is active we check if
there X value is less than the current Smallest X value

if(Alien[Across][Down].Ord.X<Smallest)

If it is then we store this as the current smallest value

Smallest=Alien[Across][Down].Ord.X

When we’ve checked all the rows in a column we check if the Smallest variable has
changed from what it was initially set at if(Smallest<SCREEN_WIDTH*2). If so we know we
have now found the smallest X position for the left most Invader and we exit the routine
with return Smallest.

The RightMostPos function is very similar with just the small matter of having to also
include an Invaders width into the calculation, so I won’t go over that but leave it for the
reader to examine.

Step 10 UPDATE DISPLAY
Update the following code to include additional graphics/sprite images

Explanation (line 152-181)

This was discussed in part 2 and has been altered only slightly with the addition of a
decision as to which animation frame to display, for example for the top Invader (row 0)
these are the lines that accomplish this:

161
162
163
164

if(AnimationFrame)
 display.drawBitmap(Alien[across][down].Ord.X,
Alien[across][down].Ord.Y, InvaderTopGfx, AlienWidth[down], 8,WHITE);
else
 display.drawBitmap(Alien[across][down].Ord.X,
Alien[across][down].Ord.Y, InvaderTopGfx2, AlienWidth[down], 8,WHITE);

So if AnimationFrame is true draw the normal InvaderTopGfx graphic else
draw InvaderTopGfx2 graphic (which of course it the other frame of the animation.

Final Code

1. /* Animating Invaders, www.pixilart.com for sprite generation, http://javl.github.i
o/image2cpp/ for image conversion,

2. */
3. //libraries for graphics/display
4. #include <Arduboy2.h>
5. Arduboy2 arduboy;
6. // DISPLAY SETTINGS
7. #define SCREEN_WIDTH 128
8. #define SCREEN_HEIGHT 64
9. //Sprite settings see graphic for explanation. We have 3 aliens
10. #define NUM_ALIEN_COLUMNS 7 //Columns of aliens going across
11. #define NUM_ALIEN_ROWS 3 //Rows of aliens going down
12. #define SPACE_BETWEEN_ALIEN_COLUMNS 5 //Space in pixels between each alien in t

he columns
13. #define SPACE_BETWEEN_ROWS 9 //Space in pixels between each alien in t

he rows
14. #define LARGEST_ALIEN_WIDTH 11 //Size in pixels of the largest allien wi

dth
15. #define X_START_OFFSET 6 //Position of the first alien from in X,f

rom the 0 position
16. #define INVADERS_DROP_BY 4
17. #define INVADERS_SPEED 12
18. // Status of a game object constants
19. #define ACTIVE 0
20. // Invader Sprites
21. const unsigned char InvaderTopGfx [] PROGMEM = {
22. 0x98, 0x5c, 0xb6, 0x5f, 0x5f, 0xb6, 0x5c, 0x98
23. };
24. const unsigned char InvaderTopGfx2 [] PROGMEM = {
25. 0x58, 0xbc, 0x16, 0x1f, 0x1f, 0x16, 0xbc, 0x58
26. };
27. const unsigned char PROGMEM InvaderMiddleGfx [] =
28. {
29. 0x1e, 0xb8, 0x7d, 0x36, 0x3c, 0x3c, 0x3c, 0x36, 0x7d, 0xb8, 0x1e
30. };
31. const unsigned char PROGMEM InvaderMiddleGfx2 [] = {
32. 0x78, 0x18, 0x7d, 0xb6, 0xbc, 0x3c, 0xbc, 0xb6, 0x7d, 0x18, 0x78
33. };
34. const unsigned char PROGMEM InvaderBottomGfx [] = {
35. 0x1c, 0x5e, 0xfe, 0xb6, 0x37, 0x5f, 0x5f, 0x37, 0xb6, 0xfe, 0x5e, 0x1c
36. };
37. const unsigned char PROGMEM InvaderBottomGfx2 [] = {
38. 0x9c, 0xde, 0x7e, 0x36, 0x37, 0x5f, 0x5f, 0x37, 0x36, 0x7e, 0xde, 0x9c
39. };
40.
41. // Game Structures
42. struct GameObjectStruct {
43. signed int X;
44. signed int Y;
45. unsigned char Status; //0 active, 1 exploding, 2 destroyed
46. };
47. struct AlienStruct {
48. GameObjectStruct Ord;
49. };
50.
51. char AlienXMoveAmount = 1; // norm is 2 , this is pixel movement in X
52. signed char InvadersMoveCounter; // counts down, when 0 move invaders, s

et according to how many aliens on screen
53. bool AnimationFrame = false; // two frames of animation, if true show one if false

show the other
54.
55. //Alien Global Veriables

56. // create an 2D array of aliens across the screen
57. AlienStruct Alien[NUM_ALIEN_COLUMNS][NUM_ALIEN_ROWS]; // columns and rows relate to

 the define code above so 7 and 3.
58. byte AlienWidth[] = {8, 11, 12}; // top middle and bottom widths of the graphics
59.
60. void setup() { // put your setup code here, to run once:
61. arduboy.begin();
62. arduboy.setFrameRate(60);
63.
64. InitAliens(0); // See voidInitAliens. initialises the aliens and sets up their X/

Y Co-ordinates
65. }
66.
67. void loop()
68. {
69. if (!arduboy.nextFrame()) {
70. return;
71. }
72. Physics();
73. UpdateDisplay();
74. }
75.
76. void Physics() {
77. AlienControl();
78. }
79.
80. void AlienControl()
81. {
82. if ((InvadersMoveCounter--) < 0)
83. {
84. bool Dropped = false;
85. if ((RightMostPos() + AlienXMoveAmount >= SCREEN_WIDTH) | (LeftMostPos() + Alie

nXMoveAmount < 0)) // at edge of screen
86. {
87. AlienXMoveAmount = -AlienXMoveAmount; // reverse direction
88. Dropped = true; // and indicate we are drop

ping
89. }
90. // update the alien postions
91. for (int Across = 0; Across < NUM_ALIEN_COLUMNS; Across++)
92. {
93. for (int Down = 0; Down < 3; Down++)
94. {
95. if (Alien[Across][Down].Ord.Status == ACTIVE)
96. {
97. if (Dropped == false)
98. Alien[Across][Down].Ord.X += AlienXMoveAmount;
99. else
100. Alien[Across][Down].Ord.Y += INVADERS_DROP_BY;
101. }
102. }
103. }
104. InvadersMoveCounter = INVADERS_SPEED;
105. AnimationFrame = !AnimationFrame; ///swap to other frame
106. }
107. }
108. int RightMostPos() {
109. //returns x pos of right most alien
110. int Across = NUM_ALIEN_COLUMNS - 1;
111. int Down;
112. int Largest = 0;
113. int RightPos;
114. while (Across >= 0) {
115. Down = 0;
116. while (Down < NUM_ALIEN_ROWS) {
117. if (Alien[Across][Down].Ord.Status == ACTIVE)

118. {
119. // different aliens have different widths, add to x pos to get right

pos
120. RightPos = Alien[Across][Down].Ord.X + AlienWidth[Down];
121. if (RightPos > Largest)
122. Largest = RightPos;
123. }
124. Down++;
125. }
126. if (Largest > 0) // we have found largest for this column
127. return Largest;
128. Across--;
129. }
130. return 0; // should never get this far
131. }
132. int LeftMostPos() {
133. //returns x pos of left most alien
134. int Across = 0;
135. int Down;
136. int Smallest = SCREEN_WIDTH * 2;
137. while (Across < NUM_ALIEN_COLUMNS) {
138. Down = 0;
139. while (Down < 3) {
140. if (Alien[Across][Down].Ord.Status == ACTIVE)
141. if (Alien[Across][Down].Ord.X < Smallest)
142. Smallest = Alien[Across][Down].Ord.X;
143. Down++;
144. }
145. if (Smallest < SCREEN_WIDTH * 2) // we have found smalest for this colou

m
146. return Smallest;
147. Across++;
148. }
149. return 0; // should never get this far
150. }
151.
152. void UpdateDisplay()
153. {
154. arduboy.clear();
155. for (int across = 0; across < NUM_ALIEN_COLUMNS; across++)
156. {
157. for (int down = 0; down < NUM_ALIEN_ROWS; down++)
158. {
159. switch (down) {
160. case 0:
161. if (AnimationFrame)
162. arduboy.drawBitmap(Alien[across][down].Ord.X, Alien[across][down

].Ord.Y, InvaderTopGfx, AlienWidth[down], 8, WHITE);
163. else
164. arduboy.drawBitmap(Alien[across][down].Ord.X, Alien[across][down

].Ord.Y, InvaderTopGfx2, AlienWidth[down], 8, WHITE);
165. break;
166. case 1:
167. if (AnimationFrame)
168. arduboy.drawBitmap(Alien[across][down].Ord.X, Alien[across][down

].Ord.Y, InvaderMiddleGfx, AlienWidth[down], 8, WHITE);
169. else
170. arduboy.drawBitmap(Alien[across][down].Ord.X, Alien[across][down

].Ord.Y, InvaderMiddleGfx2, AlienWidth[down], 8, WHITE);
171. break;
172. default:
173. if (AnimationFrame)
174. arduboy.drawBitmap(Alien[across][down].Ord.X, Alien[across][down

].Ord.Y, InvaderBottomGfx, AlienWidth[down], 8, WHITE);
175. else

176. arduboy.drawBitmap(Alien[across][down].Ord.X, Alien[across][down
].Ord.Y, InvaderBottomGfx2, AlienWidth[down], 8, WHITE);

177. }
178. }
179. }
180. arduboy.display();
181. }
182.
183. void InitAliens(int YStart) {
184. for (int across = 0; across < NUM_ALIEN_COLUMNS; across++) { // plots all

21 aliens using the array by ploting each alien across repeatedly
185. for (int down = 0; down < 3; down++) { //plots each

 alien down repeatedly.....we add down to centralise the aliens
186. Alien[across][down].Ord.X = X_START_OFFSET + (across * (LARGEST_ALIEN_

WIDTH + SPACE_BETWEEN_ALIEN_COLUMNS)) - down; // -down helps centrilse them
187. Alien[across][down].Ord.Y = YStart + (down * SPACE_BETWEEN_ROWS); // c

alculation to space aliens on Y axis
188. }
189. }

190. }

