

Contents
Lesson Number: 2 .. 3

Step 1 CREATING ALL THE CONSTANTS .. 3

Step 2 CREATING Graphics .. 4

Step 3 GAME STRUCTURES ... 6

Step 4 ALIEN STRUCTURE & ARRAY ... 6

Step 5 INITIALISE ALIENS TO STARTING POINTS ON SCREEN ... 7

Step 6 ALIEN WIDTH ARRAY .. 7

Step 7 VOID SETUP & LOOP ... 8

Step 8 DISPLAYING .. 8

Final Code ... 9

Tutorial by 8BitCADE adapted from the amazing work by Xtronical

The original guide can be followed online at

 https://www.xtronical.com/projects/space-invaders/

CC BY-SA

Xtronical & 8BitCADE

All rights reserved.

https://www.xtronical.com/about-xtronical/
https://www.xtronical.com/projects/space-invaders/

Lesson Number: 1
Lesson Title: Plotting Invaders on a Display

Code: Full Code for Lesson

System: Arduboy + Project ABE

Prerequisites to completing this tutorial

1. Know how to write code in either Arduino IDE or Project ABE online Emulator
2. Know how to draw pixel art by watching Pixel Art Tutorial Space Invader

3. Know how to convert pixel art into hexadecimal code by watching Converting Pixel Art
into Hexadecimal Code

4. Understand For loop, Switch Case, Arrays, Data Types

Step 1 CREATING ALL THE CONSTANTS
Type the following code into line 1-16

Explanation (line 10-15)

Lines 10-15 define some constants that we will use in our code. Defined constants in arduino
don’t take up any program memory space on the chip. #define has two parameters, the
constantName and value. All capital letters and underscores between words help identify the
constants. Note that these are not really constants in a true C programming sense, they are as
you can see “definitions” created with the define keyword. Throughout this tutorial the
word constant will refer to these rather than define. The constants are fairly straight forward to
explain, here is a diagram explaining the alien settings in particular.

See Next Page For Breakdown

Step 2 CREATING Graphics
Type the following code into line 17-31

The screen size is 128 pixels wide by 64 pixels high. 0,0, position is top left.

The constant: NUM_ALIEN_ROWS is used to set the number of rows = 3

The constant : NUM_ALIEN_COLUMNS is used to set the number of columns = 7

The constant: SPACE_BETWEEN_ALIEN_COLUMNS to set the spacing between
columns of aliens = 5 (pixels)
The constant: SPACE_BETWEEN_ROWS to set the spacing between columns of
aliens = 9 (pixels)
The constant: LARGEST_ALIEN_WIDTH is the width of the largest alien = 11 (pixels)
The constant : X_START_OFFSET position of the first alien in X axis = 6

Explanation (line 17-31)
As explained in previous tutorials, graphics are simply definitions of where we want to show a

pixel (or not). For simple black and white images a binary “1” would mean a white pixel and a 0
would mean black. In fact the graphics library used will plot a white pixel where there is a “1”
defined and where there is a “0” it will not do anything – effectively leaving whatever is already

on the screen there. So a white pixel already on screen would remain on screen if it had already

been plotted previously. This can be a very useful behaviour for more advanced games but for

Space Invaders it really doesn’t matter.

Look below at the binary pattern for one of the invaders;

You can see from the binary pattern of 000’s and 111’s that a 0 represents a black (or no pixel)
and a 1 represents a white (or switched on pixel). An important note, although the invader is
physically only 11 pixels wide we must define up to a full byte. 8 bits fits in the first byte across
and then we only use a further (maximum) 3 bits of the second byte but we must pad it out after
the last pixel (last “1”) with 0’s otherwise the image will not look right. Why? Well the compiler if
it sees this line; B10000000 it will correctly see it as the value 128 (which is the decimal
equivalent of this byte). However if we put B1 and no trailing 0’s it will see it as the decimal
value “1” and this is what will be stored, but what does decimal “1” look like when stored as a
byte?

Like this:
B00000001
Which is dramatically different to what we actually intended. Why must it store as a byte (8
bits)? Well that is the fundamental unit of memory from basically the massive growth in micro-
computers from the late 1970’s to the early 80’s. And it’s this value that has kind of stuck as the
basic unit of memory. So all 8 bits of a byte are always used to store a value. So a B1 is the
number 1 and the number 1 as an 8bit byte is 00000001. So if you intend it to be the left most
bit that is a 1 then you must explicitly put in the remaining 0’s to give B10000000.

For this project the image was created in www.pixilart.com and then converted into
hexadecimal code using http://javl.github.io/image2cpp/ for image conversion.

Like this:
0x98

static const unsigned char PROGMEM
InvaderMiddleGfx []=
{
 B00100000,B10000000,
 B00010001,B00000000,
 B00111111,B10000000,
 B01101110,B11000000,
 B11111111,B11100000,
 B10111111,B10100000,
 B10100000,B10100000,
 B00011011,B00000000
};

http://www.pixilart.com/

Step 3 GAME STRUCTURES
Type the following code into line 1-6

Explanation (line 33-37)
In this tutorial we introduce the concept of structures. It enables the programmer to create a
variable that structures a selected set of data, often other variables which might be related, in
simple terms, these are just convenient ways of grouping related data together to make the
program more readable/maintainable and easier to write in the first place. Struct has a variable
name and members (other variables/data). Line 35 and 36 defines two variables X and Y, which
stores the X and Y position of a character and are members of struct.

Note: You might ask why a “signed int”, why not a byte as the screen is only 128 pixel positions
across and 64 pixel positions down. Initially it was like that in the first draft of the game, but as
the program developed there was a requirement to have some objects partially or wholly off
screen, the mothership for example and missiles and bombs etc. This meant we needed signed
numbers so we can store negatives and numbers above 127 (last pixel position of the screen,
goes 0-127). This meant that bytes were no longer an option despite taking up half the space as
an int. An unsigned byte can only store 0-255, a signed byte only -128 to +127.

Step 4 ALIEN STRUCTURE & ARRAY
Type the following code into line 38-44

Explanation (line 38-44)
Line 38 – 40: struct AlienStruct { with struct GameObjectStruct Ord{ links this structure to the
previous structure line 34 and its members. This structure as presented, consists of just the

AlienStruct at the moment. As the game develops, additional struct code will be added to and

linked to GameObjectStruct and its members.

At present the code up to this point would only enable us to display a single Invader, perhaps on
each row but we need several on screen all at once. What is needed as an array of aliens and so

we use an array to store many of these aliens.

Line 44: AlienStruct Alien[NUM_ALIEN_COLUMNS][NUM_ALIEN_ROWS]; This

creates NUM_ALIEN_COLUMNS across by NUM_ALIEN_ROWS down and in our case that’s 7
columns across by 3 rows down. At present though the X and Y values could contain random

0’s or at best all be set to 0, which is not what we want, we need a routine to initialise the aliens
to their starting positions on screen.

Step 5 INITIALISE ALIENS TO STARTING POINTS ON SCREEN
Type the following code into line 77-84

Explanation (line 77-84)
Line77: void InitAliens(int YStart) { A void function simply means that it runs some code (like any
other function). The function must have a name, InitAliens and declares a local variable,
int YStart, which can only be used in this function. This function is used in Void setup, Line 49:
InitAliens(0); // See voidInitAliens. Initialises the aliens and sets up their X/Y Co-ordinates.
Line 78 is a for statement, which declares an integer across = 0. Then 0 is compared to
Num_ALIEN_COLUMNS (which is define in line 10 as 7). across++ increases across by 1 until it
is equal to Num_ALIEN_COLUMNS. The same approach is used in line 79 but instead of using a
predefined value the value 3 is included, to help centralise the graphics.
The above code essentially give the across (X) and down (Y) position for each individual Alien.

Line 80 Alien[across][down] is an array used to locate each individual Alien, .Ord.X give the Alien
its X co-ordinate which is calculated from the following variables (defined in constant line 10-
15) = X_START_OFFSET + (across * (LARGEST_ALIEN_WIDTH + SPACE_BETWEEN_ALIEN_COLU
MNS)) - down;
Line 81 Alien[across][down] is an array used to locate each individual Alien .Ord.Y give the Alien
its Y co-ordinate which is calculated from the following variables (defined in Function (line 49
and defined constant line 10-15) = = YStart + (down * SPACE_BETWEEN_ROWS);

All the above code does is set the original positions on screen for all the invaders using a
combination of the constants defined earlier in the code, some new variables and an array.

Step 6 ALIEN WIDTH ARRAY
Type the following code into line 1-6

Explanation (line 1-6)
The AlienWidth Array Linked to Update Display Code for Spacing the Bitmaps
All Invaders have a height of 8, so this can be fixed in code. However their width varies on their
type but every row is the same type. We could have stored within the alien structure a variable
that stated the width of this particular alien/Invader and normally I would do it that way.
However with an eye on the limited variable storage we have on the Arduino processor, we can
see that each row of Invaders is of the same type, so we only need to store the width
information for an invader on a per row basis. So this 3 item array is populated with the 3 width
values for each row saving around 18 bytes for our particular number of aliens. If you had more
columns you would save more. This array was defined and populated here:

Step 7 VOID SETUP & LOOP
Type the following code into line 47-54

Explanation (line 47-54)
Line 48 arduboy.begin(). Is used to initialize the arduboy library, you must call

its begin() function. This is usually done at the start of the sketch's setup() function.

Line 49 InitAliens(0) is a function to initialise/organise the aliens and set up their X/Y Co-

ordinates. InitAliens is the function name and 0 in the brackets is a variable value. Segmenting

code into functions allows a programmer to create modular pieces of code that perform a

defined task and then return to the area of code from which the function was "called".

Line 53 UpdateDisplay() { is a function which is used to constantly update the display by

drawing the aliens in their respective positions, updating them frame by frame..

Step 8 DISPLAYING
Type the following code into line 56 -74

Explanation (line 1-6)
Line 56: Void UpdateDisplay() { is the function with its accompanying code, within the curly
brackets to execute.
Arduboy.clear, clears the screen each loop.
Line 58 – 60 The first for statement correctly plots the invaders, incrementing the position until
the condition in the statement is false, that 0 is the same as NUM_ALIEN_COLUMNS or the next
line ROWS.
Line 62 Introduces a Switch Case Statement. Switch Case statements allow you to choose
between several discrete options based on information received. Line 62 uses a Switch
Statement but only with 3 options and they are switched between them in order. Line 62 is a
switch statement (down) means move down along the switch statement in order, executing the
code, case by case (Case 0. Case 1, Default).
Line 65-71 arduboy.drawBitmap, a function to draw in the arduboy library, the variable Alien,
using the spacing across and down on the OLED screen starting at co-ordinates Ord.X and
Ord.Y, the graphic InvaderTopGfx, which is variable AlienWidth (wide) and 8, high, coloured
white.

Showing them on the screen is a relatively simple matter of just looping through the alien array
and plotting them at their XY coordinates. The code above achieves this and is called in the
main Arduino loop. The code plots invaders from left to right and then top to bottom, so the top
left Invader is plotted first then the next one along until we reach the right most Invader. We
then move down to the next row and start from the left again. Within the loop a decision is made

as to which invader to actually plot. We have three rows and a different Invader per row so all
we do within the plotting part of the code is check which row we are plotting and plot the
appropriate Invader. The switch statement does this.

Final Code

1. /* Delete code from lesson 1 int XPos = 0; // integer for the initial position of t

he sprite + All of Void Loop
2. www.pixilart.com for sprite generation

3. http://javl.github.io/image2cpp/ for image conversion

4. This code displays 3 types of space invader

5. */
6. //libraries for graphics/display

7. #include <Arduboy2.h>

8. Arduboy2 arduboy;
9. //Sprite settings see graphic for explanation. We have 3 aliens

10. #define NUM_ALIEN_COLUMNS 7 //Columns of aliens going across

11. #define NUM_ALIEN_ROWS 3 //Rows of aliens going down

12. #define SPACE_BETWEEN_ALIEN_COLUMNS 5 //Space in pixels between each alien in t
he columns

13. #define SPACE_BETWEEN_ROWS 9 //Space in pixels between each alien in t

he rows
14. #define LARGEST_ALIEN_WIDTH 11 //Size in pixels of the largest allien wi

dth

15. #define X_START_OFFSET 6 //Position of the first alien from in X,f

rom the 0 position
16.

17. // Sprites

18. static const unsigned char PROGMEM InvaderTopGfx [] = {
19. //8x8

20. 0x98, 0x5c, 0xb6, 0x5f, 0x5f, 0xb6, 0x5c, 0x98

21. };

22.
23. static const unsigned char PROGMEM InvaderMiddleGfx [] = {

24. // 11, 8, // width, height,pixel size of image

25. 0x1e, 0xb8, 0x7d, 0x36, 0x3c, 0x3c, 0x3c, 0x36, 0x7d, 0xb8, 0x1e
26. };

27.

28. static const unsigned char PROGMEM InvaderBottomGfx [] = {

29. //12x8
30. 0x1c, 0x5e, 0xfe, 0xb6, 0x37, 0x5f, 0x5f, 0x37, 0xb6, 0xfe, 0x5e, 0x1c

31. };

32.
33. // Game Structures

34. struct GameObjectStruct {

35. signed int X;

36. signed int Y;
37. };

38. struct AlienStruct {

39. GameObjectStruct Ord;
40. };

41.

42. //Alien Global Variables
43. // create an 2D array of aliens across the screen

44. AlienStruct Alien[NUM_ALIEN_COLUMNS][NUM_ALIEN_ROWS]; // columns and rows relate to

 the define code above so 7 and 3.

45. byte AlienWidth[] = {8, 11, 12}; // top middle and bottom widths of the graphics
46.

47. void setup() { // put your setup code here, to run once:

48. arduboy.begin();
49. InitAliens(0); // See voidInitAliens. initialises the aliens and sets up their X/

Y Co-ordinates

50. }

51.

52. void loop() { // put your main code here, to run repeatedly:
53. UpdateDisplay(); // a function to constantly update the display

54. }

55.

56. void UpdateDisplay() {
57. arduboy.clear();// clears the display every time

58. for (int across = 0; across < NUM_ALIEN_COLUMNS; across++)

59. {
60. for (int down = 0; down < NUM_ALIEN_ROWS; down++)

61. {

62. switch (down)

63. {
64. case 0:// top row

65. arduboy.drawBitmap(Alien[across][down].Ord.X, Alien[across][down].Ord.Y,

InvaderTopGfx, AlienWidth[down], 8, WHITE); // goes to Alien width [down]for 8,11,1
2, the 8 is height.

66. break;

67. case 1: // middle row

68. arduboy.drawBitmap(Alien[across][down].Ord.X, Alien[across][down].Ord.Y,
InvaderMiddleGfx, AlienWidth[down], 8, WHITE);

69. break;

70. default: // bottom row
71. arduboy.drawBitmap(Alien[across][down].Ord.X, Alien[across][down].Ord.Y,

InvaderBottomGfx, AlienWidth[down], 8, WHITE);

72. }

73. }
74. }

75. arduboy.display();

76. }
77. void InitAliens(int YStart) {

78. for (int across = 0; across < NUM_ALIEN_COLUMNS; across++) { // plots all 21 alie

ns using the array by ploting each alien across repeatedly
79. for (int down = 0; down < 3; down++) { //plots each alien

down repeatedly.....we add down to centralise the aliens

80. Alien[across][down].Ord.X = X_START_OFFSET + (across * (LARGEST_ALIEN_WIDTH +

 SPACE_BETWEEN_ALIEN_COLUMNS)) - down; // this spaces each alien in the array on x
axis get in correct position using #defineOFFSETs, -down helps centrilse them

81. Alien[across][down].Ord.Y = YStart + (down * SPACE_BETWEEN_ROWS); // calculat

ion to space aliens on Y axis
82. }

83. }

84. }

