

Contents
Introduction .. 3

Brief Intro to the Arduino IDE ... 6

Libraries, void Setup() & void Loop() ... 7

Creating a new sketch .. 7

Setting Up Your Console.. 8

Board/Library Install .. 8

Using the Library .. 9

Test Code .. 10

Using Serial... 10

8BitCADE XL Wiring Schematic for Reference .. 11

Introduction to the Arduino Language & Syntax .. 12

setup() ... 12

loop() ... 12

Commenting in Arduino ... 13

; Semicolon ... 13

pinMode(pin, mode) ... 14

{} Curly Braces .. 14

Example Sketch 3 Blink LED Circuit... 15

Example Sketch 4 Multiple Colours in a single LED .. 17

Functions .. 18

Example Sketch 5 My First Function ... 18

Example Sketch 6 ‘Multiple LED’s’ using Function ... 19

Variables ... 20

Example Sketch 7 ‘Multiple LED’s’ using Pin Variables.. 20

Variable Scope.. 21

Introduction to Data Types .. 22

If Statement .. 23

Example Sketch 8 Problem Solving Using If Statement ... 24

If else Statement .. 25

Example Sketch 9 Problem Solving Using If Else Statement ... 26

For Statement ... 27

Example Sketch 10 For Statement Loop .. 27

While Loop .. 28

Example Sketch 11 While loop Traffic Lights ... 28

do… while .. 31

digitalRead(pin) .. 31

Example Sketch 12 digitalRead(pin) & digitalWrite(pin) .. 32

analogRead(pin) ... 33

analogWrite(pin, value) .. 33

Example Sketch 13 analogWrite Using PWM ... 34

Example Sketch 14 Creating Different Colours .. 35

delay(ms) .. 36

millis() ... 36

min(x, y) .. 36

max(x, y) ... 36

randomSeed(seed) ... 37

random(max) or random(min, max) .. 37

Example Sketch 15 Random PWM .. 37

Example Sketch 16 Math Operations Using Serial ... 38

Going Further with Arduino .. 39

Compiled & Written by the 8BitCADE Team

Support@8bitcade.com
Version 2

© 2020 8BitCADE Limited
This work is licensed under the Creative Commons

Attribution-Share Alike 2.5 License.

License
This document was inspired by:

Arduino Programming Notebook

Written and compiled by Brian W. Evans

https://archive.org/details/arduino_notebook

With information or inspiration taken from:

http://www.arduino.cc

http://www.wiring.org.co

http://www.arduino.cc/en/Booklet/HomePage

http://cslibrary.stanford.edu/101/

Including material written by:

 Brian W. Evans

 Paul Badger

 Massimo Banzi

 Hernando Barragán

 David Cuartielles

 Tom Igoe

 Daniel Jolliffe

 Todd Kurt

 David Mellis

 and others

Compiled and integrated by 8BitCADE

Additional content has been added by 8BitCADE, and the original content has been adjusted.

https://archive.org/details/arduino_notebook

Introduction
Before we begin, I would like you to congratulate yourself! You’ve taken your first step into
learning programming – with 8BitCADE! This tutorial will introduce you to the Arduino IDE and

the basics of programming.

This booklet does not have to be read from the very beginning to the end. Once you know how

to:

 install the Arduino IDE

 add Mr Blinky’s Homemade Package to the Arduino IDE

 select the correct board settings

 load a sketch onto the 8BitCADE XL using the correct board settings

You can then essentially investigate each programming function one-by-one or use the booklet

as a reference and go on to start programming your first game (learn section). What this booklet

should do is give you a basic experience of the application of the basic programming language

using your 8BitCADE XL Console.

The following video tutorials are also very useful in learning C/C++ language which is used for

Arduino: https://www.youtube.com/playlist?list=PLPK2l9Knytg5s2dk8V09thBmNl2g5pRSr

Most of all, remember to have fun and enjoy!

8BitCADE Team

https://www.youtube.com/playlist?list=PLPK2l9Knytg5s2dk8V09thBmNl2g5pRSr

Brief Intro to the Arduino IDE
In this unit, we will be using the Arduino IDE software – a platform that allows us to program

and upload our code to our consoles. You can download the software from the link below:

https://www.arduino.cc/en/main/software

Video tutorial How to install Arduino IDE: 8bitcade.com/learn/foundation

Follow the installation instructions and open Arduino – you should be met with a new blank

Arduino file:

The 3 buttons we will be using the most are:

 Verify: Checks your code for errors and displays them in the error log

 Upload: Will compile your code and upload it to the connected board. Be sure to check

your board settings with your console required settings (check your console Set up

guide – more details in the next units)

 Serial Monitor: Displays serial data that is passed through between your computer and

your Arduino board – serial transmission will be discussed in another tutorial.

Read more at https://www.arduino.cc/en/Guide/Environment

Serial Monitor

Upload

Verify

Error Log

New ‘Sketch’

https://www.arduino.cc/en/main/software
https://8bitcade.com/learn/foundation
https://www.arduino.cc/en/Guide/Environment

Libraries, void Setup() & void Loop()
The Arduino sketch is broken into 3 sections:

Declaration Area: Is where you

declare all of your variables

and include all your files.

Void setup(): runs once when

the program starts and is used

to initialise variables, pin

modes, libraries and more –

we will go into what each of

those means as we progress

in this tutorial.

Void loop(): Any code here will

loop continuously – this Is

where your main code will go.

You cannot compile an

Arduino sketch without using

these two functions (void

setup and loop) even if they

are left blank, you must

include them.

Libraries provide your sketches with extra functionality. An example of a library is “Wire.h”.
Think of libraries as cookbooks that we can include to utilize the different recipes that the

library, or cookbook, provides. This allows us to use “functions” aka code, to improve our
program – making it easier for us to write.

Creating a new sketch
When you first open Arduino, you create a new empty sketch – you can save this to any location

and give it a name. If you wanted to create a new file, you would click: “File” > “New” and a new,
empty sketch will appear.

Setting Up Your Console
Before we get into programming, it is important that we set up our console first. This tutorial will

guide you into setting up your console and give you a sketch to run to ensure it works correctly.

Don’t worry about what each line of code means, we will go over that in this in other tutorials.

For now, set up your console. Have fun! It won’t take long!

In this tutorial, we will go through the setup required to get the libraries and board settings we

use for the 8BitCADE XL ready.

Board/Library Install
Before we write code, we need to include a specific

library that will make programming your 8BitCADE much

easier. The Arduboy2 Library. To begin this setup, we

must first head on over to preferences in Arduino and

add a link to allow us to access important board and

library files. Firstly, click “File” on the top left taskbar of
your screen, then click “preferences”. A window like the
one shown should appear. Where it says “Additional
Boards Manager URLs” Click the icon

And type in, on a new line:

https://raw.githubusercontent.com/MrBlinky/Arduboy-

homemade-

package/master/package_arduboy_homemade_index.json

This will allow us to access the board and library information.

Next, we need to install the board and all of its libraries. To do

this, exit the current window and click “Tools” and select “Board:

[…]” > “Boards Manager”

The below window should pop up (it will take some time as all

your libraries are being checked/updated if need be).

 Next type in “Arduboy” and install the

“Arduboy Homemade Package” By “Mr

Blinky”.

https://raw.githubusercontent.com/MrBlinky/Arduboy-homemade-package/master/package_arduboy_homemade_index.json
https://raw.githubusercontent.com/MrBlinky/Arduboy-homemade-package/master/package_arduboy_homemade_index.json
https://raw.githubusercontent.com/MrBlinky/Arduboy-homemade-package/master/package_arduboy_homemade_index.json

Next, we need to head on over to select the board we just

downloaded. To do this head over to the toolbar and click

“Tools” and select “Board: […]” > “Home Made Arduboy”

The next step is important, and you should double-check

your settings. Check and change your board values to be

exactly like the photo below:

The port will be set to whatever “COM” your console is connected too.

Using the Library
Whenever you are using a library in Arduino, it's

important to include it in your sketch. To

include a library simply write:

#include <LibraryName.h>

In this case, we are including the ArduBoy2 Library, one of 6 library’s that we can use. After
including the Arduboy library, we can redefine its name. Instead of writing

“Arduboy2.[Function]()” etc, we can type “aboy. [Function] ();”

Test Code
#include <Arduboy2.h>
Arduboy2 arduboy;

void setup() {
 // put your setup code here, to run once:
 arduboy.begin();
 arduboy.clear();
 arduboy.print("I Love DT!");
 arduboy.display();
}

void loop() {
 // put your main code here, to run repeatedly:

}

The above code should run without any errors and produce the above output. Be sure to run this
to test that both your screen is working and that the library is correctly installed and that you
can use Arduboy Functions correctly

Using Serial
Before we go any further – it’s important to understand how to use a command called ‘Serial’,
and many functions such as begin and print.

 Serial is a way for our computer to communicate with our Arduino – all Arduino boards have at

least one ‘Serial Port’ which consists of both an RX pin (used to receive data) and a TX pin
(used to transmit data). To communicate with our Arduino, we must first use the

Serial.begin(Speed) command – where we define the rate of bits per second at which we will

transmit data, this is known as a baud rate – for those interested in more, check out this link

here.

In our case, we will be using 9600. Once the Serial has been initialized viz the being command,

we can use various commands to transmit or receive data from our Arduino – in this case, we

will use Serial.print() (or Serial.println() if you want to print on a new line) to display the data in

our classes. Another use for serial is for debugging. Print variables to serial so you can analyse

the variables and ensure they are the correct expected values.

Write the code shown on the left. Here you can

see how we use serial to print out a similar

message to what we printed on the actual

screen.

Now we printed to serial, but how do we even

see this data? Where did we print it too? Well, we

use something called “Serial Monitor” that can
be accessed by clicking the icon shown on the

right (this can only be opened if an Arduino is

plugged in).

https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/

Open the serial monitor and check your monitor to mine on the next

page!

Your monitor should look like this:

In the Serial Monitor, we have options

such as:

Toggle AutoScroll: Use this if the data

being printed is being printed too fast

and you need to stop and view a certain

bit of data (via scrolling up and down)

Toggle Timestamp: Will allow you to see

when something was printed to serial.

The clear output allows you to clear the

current serial monitor.

Finally, we can adjust the Serial Monitor speed/baud rate– this MUST be the same value as the

one specified in the Serial.begin().

8BitCADE XL Wiring Schematic for Reference

Introduction to the Arduino Language & Syntax

As previously stated, the basic structure of the Arduino programming language is fairly simple

and runs in at least two parts. These two required parts, or functions, enclose blocks of

statements.

void setup()

{

statements;

}

void loop()

{

statements;

}

Where setup() is the preparation, loop() is the execution. Both functions are required for the

program to work.

The setup function should follow the declaration of any variables at the very beginning of the

program. It is the first function to run in the program, is run only once, and is used to set

pinMode or initialize serial communication.

The loop function follows next and includes the code to be executed continuously – reading

inputs, triggering outputs, etc. This function is the core of all Arduino programs and does the

bulk of the work.

setup()

The setup() function is called once when your program starts. Use it to initialize pin modes,

libraries or begin serial. It must be included in a program even if there are no statements to run.

void setup() //set-up function, only called once

{

pinMode(pin, OUTPUT); // sets the 'pin' as output

}

loop()

After calling the setup() function, the loop() function does precisely what its name suggests, and

loops consecutively, allowing the program to change, respond, and control the Arduino board.

void loop() // loop function, called repeatedly.

{

digitalWrite(pin, HIGH); // turns 'pin' on

delay(1000); // pauses for one second (1000 milliseconds = 1 second)

digitalWrite(pin, LOW); // turns 'pin' off

delay(1000); // pauses for one second

} // these are curly braces

Commenting in Arduino
/*… */ block comments

Block comments, or multi-line comments, are areas of text ignored by the program and are

used for large text descriptions of code or comments that help others understand parts of the

program. They begin with /* and end with */ and can span multiple lines.

/* this is an enclosed block comment don’t forget the closing comment - they have to

be balanced!

*/

Because comments are ignored by the program and take no memory space they should be used

generously and can also be used to “comment out” blocks of code for debugging purposes.

Note: While it is possible to enclose single line comments within a block comment, enclosing a

second block comment is not allowed.

// line comments

Single line comments begin with // and end with the next line of code. Like block comments,

they are ignored by the program and take no memory space.

// this is a single line comment

Single line comments are often used after a valid statement to provide more information about

what the statement accomplishes or to provide a future reminder.

; Semicolon
A semicolon must be used to end a statement and separate elements of the program. A

semicolon is also used to separate elements in a for loop.

int x = 13; // declares variable 'x' as the integer 13

Note: Forgetting to end a line in a semicolon will result in a compiler error. The error text may be

obvious, and refer to a missing semicolon, or it may not. If an impenetrable or seemingly

illogical compiler error comes up, one of the first things to check is a missing semicolon, near

the line where the compiler complained.

pinMode(pin, mode)
Used in void setup() to configure a specified pin to behave either as an INPUT or an OUTPUT.

pinMode(pin, OUTPUT); // sets ‘pin’ to output

Arduino digital pins default to inputs, so they don't need to be explicitly declared as inputs with

pinMode(). Pins configured as INPUT are said to be in a high-impedance state.

There are also convenient 20KΩ pullup resistors built into the Atmega chip that can be
accessed from software. These built-in pullup resistors are accessed in the following manner:

pinMode(pin, INPUT_PULLUP); // set ‘pin’ to input and turn on pullup resistors

Pullup resistors would normally be used for connecting inputs like switches. Notice in the above

example it does not convert pin to an output, it is merely a method for activating the internal

pull-ups.

Pins configured as OUTPUT are said to be in a low-impedance state and can provide 40 mA

(milliamps) of current to other devices/circuits. This is enough current to brightly light up an

LED (don't forget the series resistor), but not enough current to run most relays, solenoids, or

motors.

Short circuits on Arduino pins and excessive current can damage or destroy the output pin, or

damage the entire Atmega chip. It is often a good idea to connect an OUTPUT pin to an external

device in series with a 470Ω or 1KΩ resistor.

{} Curly Braces

Curly braces (also referred to as just "braces" or "curly brackets") define the beginning and end

of function blocks and statement blocks such as the void loop() function and the for and if

statements.

type function()

{

statements;

}

An opening curly brace { must always be followed by a closing curly brace }. This is often referred

to as the braces being balanced. Unbalanced braces can often lead to cryptic, impenetrable

compiler errors that can sometimes be hard to track down in a large program.

The Arduino environment includes a convenient feature to check the balance of curly braces. Just

select a brace, or even click the insertion point immediately following a brace, and its logical

companion will be highlighted.

Example Sketch 3 Blink LED Circuit

RGB LED Arduino ProMicro Pins Colour

Pin 1 - SHORT LEG D9 VIA 330 OHM RESISTOR Blue

Pin 2 - SHORT LEG D3 VIA 330 OHM RESISTOR Green

Pin 3 + LONG LEG VCC pin on Pro Micro (Anode) 5V (USB) or 3.7-4.2V (lipo Batt)

Pin 4 - SHORT LEG D10 VIA 330 OHM RESISTOR Red

Description of the circuit.

An RGB LED is a package containing 3 separate LEDS coloured

Red, Green and Blue. Your 8BitCADE XL provides voltage to your

RGB LED from the VCC pin of your Pro Micro. If plugged into the

USB connector and your PC, this voltage is about 5.0V. If voltage

is provided by your lipo battery, then the voltage will be about 3.7-

4.2 Volts. The voltage goes from VCC pin to the RGB LED + leg.

When the circuit is operational (current flowing), the current goes

through R,G or B LED and to 330 ohm resistors. These regulate the

current flow through each individual LED to about 20mA to protect

it from being destroyed. The LED cannot emit light unless a

ground is provided to close the circuit and enable current to flow

through it. The Pro Micro provides the ground signal internally (Atmega 32U4 chip) by switching

a transistor on (electronic switch) based on instructions from your RGB LED sketch, providing a

ground path, an internal connection to a ground pin (GND). This allows your RGB LED to light up!

Type in the following code into your Arduino IDE and upload it to your 8BitCADE XL and watch

the RGB LED flash on and off by providing a ground path (LOW) to each leg of it. Please make

sure you set the board up correctly BEFORE you upload the sketch, otherwise you can ‘Brick’
your console (stop it from taking anymore sketches without a special reset).

SKETCH CODE

/* Arduino IDE Console set-up 8BitCADE XL

Board: Homemade Arduboy

Based 0n: Sparkfun Promicro 5V Alternative Wiring

Core: Arduboy Optimised Core

Display: SSD1309

Bootloader: Cathy 3K

Flash Select:Pin0/D2/RX

Port:

*/

// blue LED is on pin 9, Red LED is on Pin 10, Green LED is on Pin 3

void setup() //set-up function, only called once

{

pinMode(3, OUTPUT); // sets the 'pin3' as output

}

void loop() // loop function, called repeatedly.

{

digitalWrite(3, LOW); // turns 'pin 3' to low, to ground, to switch on the LED

delay(1000); // pauses for one second

digitalWrite(3, HIGH); // turns 'pin 3' high, turns LED off as no ground is provided

delay(1000); // pauses for one second

}

Key point:

In this sketch you can

adjust the time delay

(1000) to other values to

check the effect on

flashing. You can change

the pin value in all the

parts of the sketch from 3

to 9 or 10 to flash different

colours – for red, type 10,

for blue, type 9 & for green,

type 3.

Example Sketch 4 Multiple Colours in a single LED
Type in the following code into your Arduino IDE and upload it to your 8BitCADE XL and watch

the RGB LED flash different colours as we turn on each individual LED inside of the RGB LED

(Note that this LED is made up of 3 LEDS – red, green & blue – here we are activating each

individual LED. Read more in the 8BitCADE XL Make Guide Part Dictionary). Please make sure

you set the board up correctly BEFORE you upload the sketch, otherwise you can ‘Brick’ your
console (stop it from taking anymore sketches without a special reset).

SKETCH CODE

// blue LED is on pin 9, Red LED is on Pin 10, Green LED is on Pin

3

void setup() //set-up function, only called once

{

pinMode(3, OUTPUT); // sets the 'pin3' as output

pinMode(9, OUTPUT); // sets the 'pin3' as output

pinMode(10, OUTPUT); // sets the 'pin3' as output

}

void loop() // loop function, called repeatedly.

{

digitalWrite(3, LOW); // turns 'pin 3' on by providing a ground

delay(1000); // pauses for one second

digitalWrite(3, HIGH); // turns 'pin 3' off

delay(1000); // pauses for one second

digitalWrite(10, LOW); // turns 'pin 10' on by providing a ground

delay(1000); // pauses for one second

digitalWrite(10, HIGH); // turns 'pin 10' off

delay(1000); // pauses for one second

digitalWrite(9, LOW); // turns 'pin 3' on by providing a ground

delay(1000); // pauses for one second

digitalWrite(9, HIGH); // turns 'pin9' off

delay(1000); // pauses for one second

}

Key point:

In this sketch you can see

each LED is turned on

and off in a sequence. On

is achieved by providing a

ground path to the LED

and not a voltage.

Functions
A function is a block of code that has a name and a block of statements that are executed when

the function is called. The functions void setup() and void loop() have already been discussed.

Custom functions can be written to perform repetitive tasks and reduce clutter in a program.

Functions are declared by first declaring the function type. This is the type of value to be

returned by the function such as 'int' for an integer type function. If no value is to be returned

the function type would be void. After type, declare the name given to the function and in

parenthesis any parameters being passed to the function.

type functionName(parameters)

{

statements;

}

Example Sketch 5 My First Function
Let's create a simple program with a simple function:

SKETCH CODE

Firstly, I set up serial in the void

setup(). This allows us to test to see if

our function works.

If we look at line 9, we can see I have

defined a function called

myAdditionFunction();

Functions have 3 main parts:

The function

parameters are how we store data passed through when we create the function. In our case, it

would be the two values we want to add together. Think of the parameters as local variables

that only the function can use. In this mini piece of code, we add the parameters together, to

Datatype of the data returned, if nothing is returned used void. In our case we return an

integer value so we use int
Function Name Function parameters.

Same

Datatype

store the result, we create a variable called result. As we create it in the function, every time we

run the function, the old result will be overwritten.

We then use the return function to return the result. In this code, we can put the function inside

of a Serial.println(); command, only because we have the return. Think of the return, as replacing

the function with the value. So in this case, it would return the result of 10 + 7, meaning 17

would be printed to serial as seen below:

This is called “calling the function”. As
this function requires two parameters (a value of integer a and a value for integer b) we must

place these inside the brackets.

Note that functions using void would leave the brackets empty e.g. myVoidFunction();

When we call the function myAdditionFunction, it looks in the code for a function definition with

the same name. When it finds one, it places the parameters and runs the code.

Functions allow us to reuse code, makes code easier to read, reduces the length of the sketch

as repeated lines of code are written once and makes the code more modular

Example Sketch 6 ‘Multiple LED’s’ using Function
Type in the following code into your Arduino IDE and upload it to your 8BitCADE XL and watch

the LED flash the different colours.

SKETCH CODE

void setup() {

 pinMode(3, OUTPUT); // sets the 'pin3' as output

 pinMode(10, OUTPUT);

 pinMode(9, OUTPUT);

}

void loop() { // loop function, called repeatedly.

 blink(3, 500); //Green // uses function name ‘blink’ with 2 parameters (pin number) and (delay)

 blink(10, 1000); //Red

 blink(9, 1500); //Blue

}

void blink(int pin, int waitTime) { //Function ‘blink’ integer ‘pin number’ and ‘waitTime’ (delay)

 digitalWrite(pin, LOW); // pin number is taken from the integer pin in the function blink

 delay(waitTime); // delay is taken from the integer waitTime in the function blink

 digitalWrite(pin, HIGH);

 delay(waitTime);

}

Variables
A variable is a way of naming and storing a numerical value for later use by the program. As their

namesake suggests, variables are numbers that can continually change as opposed to constants

whose value never change. A variable needs to be declared and optionally assigned to the value

needing to be stored. If the value of a variable never changes the programmer can add to the type

of variable ‘const’. This will save memory in the programme.

The following code declares a variable name ‘greenLed’ and then assigns it the value 3 which is

later used as pin 3. Because const is placed before the type of variable, it is expected that the

value of this variable will not change throughout the program and because the variable is before

the void setup() part of the program, the variable can be used by any part of the programme.

Example Sketch 7 ‘Multiple LED’s’ using Pin Variables
Type in the following code into your Arduino IDE and upload it to your 8BitCADE XL and watch

the LEDS flash.

SKETCH CODE

const int redLED=10; // const integer, a global variable that never changes, returns pin 10

const int greenLED=3;

const int blueLED=9;

void setup() {

 pinMode(greenLED, OUTPUT); // Pin number comes from variable greenLed which returns 10

 pinMode(redLED, OUTPUT);

 pinMode(blueLED, OUTPUT);

}

void loop() {

 blink(greenLED, 500); //Green

 blink(redLED, 1000); //Red

 blink(blueLED, 1500); //Blue

}

void blink(int pin, int waitTime) {

 digitalWrite(pin, LOW);

 delay(waitTime);

 digitalWrite(pin, HIGH);

 delay(waitTime);

}

Note: Variables should be given descriptive names, to make the code more readable. Variable

names like tiltSensor or pushButton help the programmer and anyone else reading the code to

understand what the variable represents. Variable names like var or value, on the other hand, do

little to make the code readable and are only used here as examples. A variable can be named

any word that is not already one of the keywords in the Arduino language.

All variables must be declared before they can be used. Declaring a variable means defining its

data type, as in int, long, float, etc., setting a specified name, and optionally assigning an initial

value. This only needs to be done once in a program but the value can be changed at any time

using arithmetic and various assignments.

The following example declares that inputVariable is an int, or integer type, and that its initial

value equals zero. This is called a simple assignment.

int inputVariable = 0; // a variable called inputVariable with the initial value of 0

 //the data type is integer and can store data from 32,767 to -32,768.

Variable Scope
A variable can be declared at the beginning of the program before void setup(), locally inside of

functions, and sometimes within a statement block such as for loops. Where the variable is

declared determines the variable scope, or the ability of certain parts of a program to make use

of the variable. A global variable is one that can be seen and used by every function and

statement in a program. This variable is declared at the beginning of the program, before the

setup() function. A local variable is one that is defined inside a function or as part of a for loop.

It is only visible and can only be used inside the function in which it was declared. It is therefore

possible to have two or more variables of the same name in different parts of the same program

that contain different values. Ensuring that only one function has access to its variables

simplifies the program and reduces the potential for programming errors.

The following example shows how to declare a few different types of variables and

demonstrates each variable’s visibility:

int value; // 'value' is visible to any function

void setup() // no setup needed

{

}

void loop()

{

for (int i=0; i<20;) // 'i' is only visible inside the for-loop i++;

{

}

float f; // 'f' is only visible inside loop

}

Introduction to Data Types
We must choose the correct data type for the type and size of data we want to store. An

example is if we were to store pi, an infinite number:

(pi = 3.141592653589793238462…)

As an integer we would store: int pi = 3;

As a float we would store: float pi = 3.1415927;

As a double we would store: double pi = 3. 141592653589793;

Therefore, to create variables in our sketch, we use the below format:

DataType, VariableName = AssignedValue;

byte:
Byte stores an 8-bit numerical value without decimal points. They have a range of 0-

255.

byte someVariable = 180; // declares 'someVariable' as a byte type

integers (int):
Integers are the primary datatype for storage of numbers without decimal points and store a

16-bit value with a range of 32,767 to -32,768.

int someVariable = 1500; // declares 'someVariable' as an integer type

Note: Integer variables will roll over if forced past their maximum or minimum values by an

assignment or comparison. For example, if x = 32767 and a subsequent statement adds 1 to x,

x = x + 1 or x++, x will then rollover and equal -32,768.

long:
Extended size datatype for long integers, without decimal points, stored in a 32-bit value with a

range of 2,147,483,647 to -2,147,483,648.

long someVariable = 90000; // declares 'someVariable' as a long type

float:
A datatype for floating-point numbers, or numbers that have a decimal point. Floating- point

numbers have greater resolution than integers and are stored as a 32-bit value with a range of

3.4028235E+38 to -3.4028235E+38.

float someVariable = 3.14; // declares 'someVariable' as a floating-point type

Note: Floating-point numbers are not exact, and may yield strange results when compared.

Floating point math is also much slower than integer math in performing calculations, so should

be avoided if possible.

double:
double is similar to a float but can store more decimal places (64 bit value), therefore making it

more accurate.

double num = 45.352 ;// declaration of variable with type double and initialize it with 45.352

character (Char):
A data type that takes up one byte of memory that stores a character value. Characters are

written in single quotes like this: 'A' and for multiple characters, strings use double quotes:

"ABC". However, characters are stored as numbers. You can see the specific encoding in the

ASCII chart. This means that it is possible to do arithmetic operations on characters, in which

the ASCII value of the character is used. For example, 'A' + 1 has the value 66, since the ASCII

value of the capital letter A is 65.

Char chr_a = ‘a’ ;//declaration of variable with type char and initialize it with character a

Char chr_c = 97 ;//declaration of variable with type char and initialize it with character 97

string (string):
Is used to store anything, usually words. E.g. “you can store both characters and numbers such

as 213.451” storing each letter or number in ASCII. Note while you can store a number as a
string “312” you could not do maths with that number as it is a string data type. Hence using an
integer.

char my_str[] = "Hello";

boolean (bool):
Is either true or false. It’s similar to binary as it can be either 1 or 0.

boolean val = false ; // declaration of variable with type boolean and initialize it with false

If Statement
The if statement is very useful when you need to make decisions within code need to take
place. It takes a condition in parenthesis and a statement or block of statements. If the
condition is true then the statement or block of statements gets executed otherwise these
statements are ignored.

Syntax block of statements in curly brackets
if (condition)
{
 block of statement(s)
}

Syntax single statement

if (condition)
 statement;

Example Sketch 8 Problem Solving Using If Statement
Programs use logic and algorithms to solve a problem. All programs run line by line and can be

seen as recipes – with each statement being steps in creating the program. The process of

writing programs can be divided into three basic sections:

 Flow Diagram: All programs can be written in a flow diagram style. It is a schematic of the

program that displays the steps a program takes to achieve a goal.

In the programs we have

 Variables: Names that hold values – these can stay constant or change depending on the

conditions.

 Algorithms: The recipes which take the necessary steps to achieve a goal.

An algorithm can be defined as a set of instructions or procedures, like a recipe, that will help to

calculate or solve a problem.

Let's say we are coding a program that has to calculate the grade boundaries for an exam. A

simple program that decides if a student has passed or if a student has failed – with 55% being

the boundary. If the student has a result less then 55%, then the student has failed. If the student

has a result greater than or equal to 55%, then the student has passed. Let's say we have a

student called Daniel with a result of 67% - the below flow diagram shows how the basic program

would work

1. Start

2. Enter students name

3. Enter students grade

4. If the grade is less than 55%, the student has FAILED

5. If the grade is greater than or equal to 55%, the student has PASSED

6. End

This is known as an algorithm. We can see we also have two commands called start and stop to

tell our program when to start and stop. Here each line would run line by line.

The most common statements to use for this are If statement.

REVIEW: If (this is TRUE) then RUN { THIS }

If statements run certain parts of code depending on a condition, if the condition is true then the

if statement will run the specified code, if it is false, it will not.

Previously we made a basic algorithm that checked if the student either passed or failed:

1. If the grade is less than 55%, the student has FAILED

2. If the grade is greater than or equal to 55%, the student has PASSED

To write this in a code format would be:

This might not make much sense at the moment, but note that the if

statement follows the below format:

If (this is TRUE) then RUN { whatever code is in these brackets }

The (StudentsGrade < 55) is known as the condition of the if statement,

for the if statement to run this must be true. Aka the variable

StudentsGrade must be a value that is greater than 55 like 67 – if it

isn’t, the code does not run and misses the line “Result = ‘FAIL’;”. We

If(StudentsGrade < 55){

 Result = ‘FAIL’;

}

If(StudentsGrade >= 55){

 Result = ‘PASS’;

}

use logic operations, a unit we will go into later, to create these conditions. < is a logic

operation.

If else Statement
An if statement can be followed by an optional else statement, which

executes when the expression is false.

Syntax
if (condition1) {
 // do Thing A
}
else if (condition2) {
 // do Thing B
}
else {
 // do Thing C
}

Conditions use simple logic (those familiar with logic gates will be

familiar with this):

Note that if the result of any of the logic “equations” is true, then the if statement will run -think

of these like equations if the result of x == y is true, then the statement will run. Also notice how

we use two equal signs for “equal to” – as writing one (x = y) would simply assign the value of y

to x – be careful!

We can also utilize brackets and logical operators to expand our conditions:

AND returns true if the two inputs are both true – otherwise, it returns false:

True and true = true, anything else is false, aka true and false = false or false and false = false

OR returns true if one of the inputs is true – otherwise, it returns false:

false or false = false, anything else is true, aka true or false = true or true or true = true

Example Sketch 9 Problem Solving Using If Else Statement

REVIEW: If (Condition) {Do Something} else {Do something else}

Let’s create the code below in the Arduino IDE:

SKETCH CODE

Firstly, we define the variables at the start of the code

(before the void setup. For their grade score, we don’t
need to store any decimals, therefore, we use the (int) for

integer, data type. To store the result, we want to store the

words either Pass or Fail, therefore we use a string data

type. Note two things: to declare a string you need a

capital S & you don’t need to give the variable a value,

simply writing String Result; will create an empty variable

that we can then assign a value to later.

We then begin serial in the void setup by typing

Serial.begin(9600);

If statements use a condition, in this case, the condition is

the result of Grade >= 55, aka comparing the value of the

variable Grade with the value of 55, if it is greater than or

equal to 55, the Result will be assigned the value “pass” –

we then print the Result variable so we can see the

change. Experiment by changing the Grade value and

opening the serial monitor.

Conditions work on true or false bases – if the above

condition is TRUE then the if statement will run (if you

were to write if(true){} you will see how the if statement

will always run. If you were to write if(false){} the if

statement will never run).

What would the value result end up being?

If you said Pass, then you are correct! Because 68 IS greater than 55 and that condition,

therefore, equals true – therefore the variable Result gets overwritten with the value “pass”.

For Statement
The for statement is used to repeat a block of statements enclosed in curly braces a specified

number of times. An increment counter is often used to increment and terminate the loop.

There are three parts, separated by semicolons (;), to

the for loop header:

for (initialization; condition; expression)

{

doSomething;

}

The initialization of a local variable, or increment

counter, happens first and only once. Each time

through the loop, the following condition is tested. If

the condition remains true, the following statements

and expression are executed and the condition is

tested again. When the condition becomes false, the

loop ends.

Example Sketch 10 For Statement Loop
The following example starts the integer i at 0, tests to see if i is still less than 20 and if true,

increments i by 1 and executes the enclosed statements:

SKETCH CODE

const int redLED = 10; // const integer, a global variable that never changes, returns pin 10

void setup() { // put your setup code here, to run once:

pinMode(redLED, OUTPUT); // Pin number comes from variable redLED which returns 10

}

void loop() {

 for (int i = 0; i < 20; i++) // declares i, tests if less than 20, increments i by 1

 {

 digitalWrite(redLED, LOW); // turns pin 10 on

 delay(250); // pauses for 1/4 second

 digitalWrite(redLED, HIGH); // turns pin 10 off

 delay(250);

 }

}

Note: The C for loop is much more flexible than for loops found in some other computer

languages, including BASIC. Any or all of the three header elements may be omitted, although

the semicolons are required. Also the statements for initialization, condition, and expression

can be any valid C statements with unrelated variables. These types of unusual for statements

may provide solutions to some rare programming problems.

While Loop
while loops will loop continuously, and infinitely, until the

expression inside the parenthesis becomes false.

Something must change the tested variable, or the while

loop will never exit. This could be in your code, such as

an incremented variable, or an external condition, such

as testing a sensor.

while (someVariable ?? value)

{

doSomething;

}

The following example tests whether ‘someVariable’ is
less than 200 and if true executes the statements

inside the brackets and will continue looping until

‘someVariable’ is no longer less than 200.

while (someVariable < 200) // tests if less than 200

{

doSomething; // executes enclosed statements

someVariable++;// increments variable by 1

}

Example Sketch 11 While loop Traffic Lights
REVIEW: while(condition is true){run this, once ran, check condition is true if it is loop}

While statements loop through a certain part of code while the condition is true. It's important

to note that, when the code is run, the code checks the condition again (hence being called a

loop). An example would be traffic lights:

1. While the lights are green, let traffic pass

2. While the lights are red, stop traffic

To rewrite this in a code format would be:

This might not make much sense at the moment, but note

that the statement follows the below format:

while (this is TRUE) then RUN { THIS } once run, check the

condition again

Here we have another basic logic operation ‘==’ which means
equal to. So to translate, allow traffic to pass when the light

state is equal to green. When this runs, before moving on to

the next block of code it will recheck the condition – if the

condition is true then it will loop through again. It will keep looping until the condition is false.

for (Current State, Condition, New State) RUN { THIS }

For statements loop through a certain part of code for a specific amount of iterations/loop

cycles. An example would be flashing a LED (or light):

while(lightState == Green){

 Traffic = ‘PASS;

}

while(lightState == Red){

 Traffic = ‘STOP;

}

1. When x < 5

2. Turn On light

3. Wait

4. Turn Off light

5. Wait

6. Increase X value by 1 (loop to 1)

To rewrite this in a code format would be:

This might not make much sense at the moment, but note

that the if statement follows the below format:

for (Current State, Condition, New State) RUN { THIS }

Notice how in the loop code we don’t increase the X value
by one – this is as the for loop does it automatically via the

‘new state’ section of the for loop.

While VS For: A simple differentiator is: use WHILE loops when you don’t know the number of
loop iterations (aka let traffic through until a condition is met), while we use for loops for when

we know the definite amount of loop iterations, e.g. flash the light FIVE times.
Let’s look at the traffic light example:

SKETCH CODE

Firstly, we must define the variables

we use:

We create a string for the Traffic

Light Colour, assigning it to be red.

We create a Boolean variable, either

true or false, to control if traffic

should pass or not.

We then begin serial in the void

setup by typing Serial.begin(9600);

We then create a while loop, if the

traffic light colour is green, then

assign LetTrafficPass as true, and print too serial that traffic is currently passing.

Experiment by changing the Traffic light

colour too red and see what happens in

serial.

for(x=0; x < 5, x = x + 1){

 Turn Light On

Wait

Turn light off

wait

}

Let’s create a simple program to count to 10

SKETCH CODE

 for (Current State, Condition, New State) { RUN THIS }

We then begin serial in the void setup by typing

Serial.begin(9600);

We then create a for loop with the 3 attributes

(current State, condition, new state)

Int i = 0; is the start state, notice how we don’t have

to create this variable beforehand (define it before

the void setup). This demonstrates, how we can

create variables anywhere in the sketch, but if we

want them to be ‘global’ (aka accessed anywhere
in the program) then we need to define them before void setup().

i < 10; Is the condition, the for loop will run WHILE i is less than

10.

i++ is the same as writing i = i + 1 , meaning each iteration of the

loop will increase the i value by one.

It will keep iterating until the condition is false. We then Serial

print the i value so we can see this increase. Note that the serial

result goes from 0 to 9 as we started on i = 0 and the for loop

runs 10 times.

do… while
The do while loop is a bottom driven loop that works in the

same manner as the while loop, with the exception that the

condition is tested at the end of the loop, so the do loop will

always run at least once.

do

{

doSomething;

} while (someVariable ?? value);

SKETCH CODE

void setup() {

 int sum = 0;

 Serial.begin(9600);

 do {

 sum = sum + 1;

 Serial.print("sum = ");

 Serial.println(sum);

 delay(500); // 500ms delay

 } while (sum < 25);

}

void loop() {

}

digitalRead(pin)
Reads the value from a specified digital pin with the result either

HIGH or LOW. The pin can be specified as either a variable or constant (0-13).

value = digitalRead(Pin); // sets 'value' equal to the input pin

digitalWrite(pin, value)

Outputs either logic level HIGH or LOW at (turns on or off) a specified digital pin. The pin can be

specified as either a variable or constant (0-13).

digitalWrite(pin, HIGH); // sets 'pin' to high

The sketch takes variable sum,

adds 1 in a loop, prints the result

in serial, pauses for 0.5 seconds

and then continues to loop until

the sum reaches 25.

Example Sketch 12 digitalRead(pin) & digitalWrite(pin)
The following example reads a pushbutton connected to a digital input and turns on an LED

connected to a digital output when the button has been pressed:

SKETCH CODE

/*

 Pushbutton sketch to test A0, A1, A2, A3, D7, D8

*/

const int Red_LED = 10; // The red LED has a defined Arduino pin numbered 10

const int Green_LED = 3;

const int Blue_LED = 9;

const int inputUp_1 = A0; // Up button

const int inputRight_2 = A1; // Right button

const int inputLeft_3 = A2; // Left button

const int inputDown_4 = A3; //Down button

const int inputButA_5 = 7; // Button A

const int inputButB_6 = 8; // Button B

void setup() {

 pinMode(Red_LED, OUTPUT); // choose the pin for the LED

 pinMode(Green_LED, OUTPUT); // choose the pin for the LED

 pinMode(Blue_LED, OUTPUT); // choose the pin for the LED

 pinMode(inputUp_1, INPUT_PULLUP);

 pinMode(inputRight_2, INPUT_PULLUP);

 pinMode(inputLeft_3, INPUT_PULLUP);

 pinMode(inputDown_4, INPUT_PULLUP);

 pinMode(inputButA_5, INPUT_PULLUP);

 pinMode(inputButB_6, INPUT_PULLUP);

}

void loop() {

 int val1 = digitalRead(inputUp_1); // read input value

 if (val1 == LOW)

 {

 digitalWrite(Red_LED, LOW);

 } else

 {

 digitalWrite(Red_LED, HIGH);

 }

 int val2 = digitalRead(inputRight_2); // read input value

 if (val2 == LOW)

 {

 digitalWrite(Red_LED, LOW);

 } else

 {

 digitalWrite(Red_LED, HIGH);

 }

 int val3 = digitalRead(inputLeft_3); // read input value

 if (val3 == LOW)

 {

 digitalWrite(Red_LED, LOW);

 } else

 {

 digitalWrite(Red_LED, HIGH);

 }

 int val4 = digitalRead(inputDown_4); // read input value

 if (val4 == LOW)

 {

 digitalWrite(Red_LED, LOW);

 } else

 {

 digitalWrite(Red_LED, HIGH);

 }

 int val5 = digitalRead(inputButA_5); // read input value

 if (val5 == LOW)

 {

 digitalWrite(Green_LED, LOW);

 } else

 {

 digitalWrite(Green_LED, HIGH);

 }

 int val6 = digitalRead(inputButB_6); // read input value

 if (val6 == LOW)

 {

 digitalWrite(Blue_LED, LOW);

 } else

 {

 digitalWrite(Blue_LED, HIGH);

 }

}

analogRead(pin)
Reads the value from a specified analog pin with a 10-bit resolution. This function only works

on the analog in pins. The resulting integer values range from 0 to 1023.

value = analogRead(pin); // sets 'value' equal to 'pin'

Note: Analog pins unlike digital ones, do not need to be first declared as INPUT or OUTPUT.

analogWrite(pin, value)
Writes a analog value using hardware enabled pulse width modulation (PWM) to an output pin

marked PWM. The value can be specified as a variable or constant with a value from 0-255.

analogWrite(pin, value); // writes 'value' to analog 'pin'

Depending on how your LED is wired up:

VCC switched: a value of 0 generates a steady 0 volts output at the specified pin, so the LED is

off; a value of 255 generates a steady 5 volts output at the specified pin so the LED is fully on.

GND switched (same as 8BitCADE XL): a value of 0 generates a steady ground signal so the LED

is fully on; a value of 255 generates no ground, so the LED is fully off.

For values in between 0 and 255, the pin rapidly alternates between 0 and 5 volts – for VCC

switched, the higher the value, the more often the pin is HIGH (5 volts). For example, a value of 64

will be 0 volts threequarters of the time, and 5 volts one quarter of the time; a value of 128 will be

at 0 half the time and 255 half the time; and a value of 192 will be 0 volts one quarter of the time

and 5 volts three-quarters of the time. Because this is a hardware function, the pin will generate

a steady wave form after a call to analogWrite in the background until the next call to analogWrite

(or a call to digitalRead or digitalWrite on the same pin). Analog pins unlike digital ones, do not

need to be first declared as INPUT or OUTPUT.

Example Sketch 13 analogWrite Using PWM
The following example uses ‘Ground Switched’ LEDS so 1 = bright and 254 very dim!

analogWrite(led,0); // Fully on

analogWrite(led,255); // Fully off

analogWrite(led,1); // Very bright

analogWrite(led,254); // Very dim

analogWrite(led,128); // half brightness (half voltage 2.5V)

SKETCH CODE Manual Brightness

int led = 9; // pin 9 blue led

void setup(){
 pinMode(led, OUTPUT);
}
 void loop(){
analogWrite(led,1); // 1(Bright) - 254 (Dim)

SKETCH CODE Auto Brightness

/*
 Fade
*/

int led = 9; // the PWM pin the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by

void setup() { // the setup routine runs once when you press reset:

 pinMode(led, OUTPUT); // declare pin 9 to be an output:
}

void loop() {// the loop routine runs over and over again forever:
 analogWrite(led, brightness); // set the brightness of pin 9:
 brightness = brightness + fadeAmount; // change the brightness for next time through the loop:

 if (brightness <= 0 || brightness >= 255)
 {
 fadeAmount = -fadeAmount;// reverse the direction of the fading at the ends of the fade:
 }
 delay(30); // wait for 30 milliseconds to see the dimming effect
}

Example Sketch 14 Creating Different Colours
The following example uses ‘Ground Switched’ LEDS so 1 = bright and 254 very dim!

We can further use this in combination with the 2 other built in LEDS in the RGB LED to create

different colours – by carrying there brightness and turning different LEDS on at the same time.

Let’s take a look at an example:

NOTE: You can display any RGB colour on your LED, simply type in colour picker on google and

the below ‘app’ will show up. Select the colour you wish to use and take the values of the RGB

section (see RED box).

However, if you want to use this,

you need to adjust the RGB values.

We need to get the values and

minus them by 255 as our values

are inverted (where 255 = off and 0

= On) if we were to use this value

directly, we would get a different

colour.

For pink, the new value would be:

255-201 = 54, so Red = 54

255-11 = 244, so Green = 244

255-232 = 23, so Blue = 23

If you take a look at the code below, and check out the //pink line of code, youll see I have

placed our calculated values inside. Upload the code and take a look! Be sure to search up your

own colour and try it!

//Create Variables for the pins

const int Red_LED = 10;

const int Green_LED = 3;

const int Blue_LED = 9;

void setup() {

 //Set pins to OUTPUT to send data out

 pinMode(Red_LED, OUTPUT);

 pinMode(Green_LED, OUTPUT);

 pinMode(Blue_LED, OUTPUT);

}

void loop() {

 //Use our function to easily set each LED pins value

 RGB_LED(0, 255, 255); // Red

 delay(1000);

 RGB_LED(255, 0, 255); // Green

 delay(1000);

 RGB_LED(255, 255, 0); // Blue

 delay(1000);

 RGB_LED(54, 244, 23); // Pink

 delay(1000);

 RGB_LED(255, 0, 0); // Cyan

 delay(1000);

 RGB_LED(0, 255, 0); // Magenta

 delay(1000);

 RGB_LED(0, 0, 255); // Yellow

 delay(1000);

 RGB_LED(0, 0, 0); // White

 delay(1000);

}

//This function allows us to easily set the 3 LEDs inside of the RGB led values

//allowing us to get a variety of different colours

void RGB_LED(int Red_Val, int Green_Val, int Blue_Val)

 {

 analogWrite(Red_LED, Red_Val);

 analogWrite(Green_LED, Green_Val);

 analogWrite(Blue_LED, Blue_Val);

}

Further Reading on PWM

More information on PWM and other electronic signals can be found in the Make Guide, under

the Parts Dictionary section.

delay(ms)
Pauses a program for the amount of time as specified in milliseconds, where 1000 equals 1

second.

delay(1000); // waits for one second

millis()
Returns the number of milliseconds since the Arduino board began running the current program

as an unsigned long value.

value = millis(); // sets ‘value’ equal to millis()

Note: This number will overflow (reset back to zero), after approximately 9 hours.

min(x, y)
Calculates the minimum of two numbers of any data type and returns the smaller number.

value = min(value, 100);

// sets 'value' to the smaller of 'value' or 100, ensuring that it never gets above 100.

max(x, y)
Calculates the maximum of two numbers of any data type and returns the larger number.

value = max(value, 100);

// sets 'value' to the larger of 'value' or 100, ensuring that it is at least 100.

randomSeed(seed)
Sets a value, or seed, as the starting point for the random() function.

randomSeed(value); // sets ‘value’ as the random seed

Because the Arduino is unable to create a truly random number, randomSeed allows you to

place a variable, constant, or other function into the random function, which helps to generate

more random "random” numbers.

random(max) or random(min, max)
The random function allows you to return random numbers within a range specified by min and

max values.

value = random(100, 200); // sets 'value' to a random number between 100-200

Note: Use this after using the randomSeed() function.

Example Sketch 15 Random PWM
The following example creates a random value between 0-255 and outputs a PWM signal on a

PWM pin equal to the random value: It does this for each pin (Red, Green & Blue) to create

random colours.

SKETCH CODE

//Create Variables for the pins

const int Red_LED = 10;

const int Green_LED = 3;

const int Blue_LED = 9;

void setup() {

 //Set pins to OUTPUT to send data out

 pinMode(Red_LED, OUTPUT);

 pinMode(Green_LED, OUTPUT);

 pinMode(Blue_LED, OUTPUT);

}

void loop() {

 randomSeed(millis()); // sets millis() as seed

 int randRed = random(255); // random number from 0-255

 int randGreen = random(255); // random number from 0-255

 int randBlue = random(255); // random number from 0-255

 analogWrite(Red_LED, randRed); // outputs PWM signal

 analogWrite(Green_LED, randGreen); // outputs PWM signal

 analogWrite(Blue_LED, randBlue); // outputs PWM signal

 delay(500); // pauses for half a second

}

Example Sketch 16 Math Operations Using Serial
Another core part of Arduino is math operations. The four main operations are:

+ = addition

- = subtraction

* = times

/ = divide

Create the following sketch and upload it to your 8BitCADE XL

 SKETCH CODE

Explanation

Here we create two integers, one called ‘a’ that is 6, and one called ‘b’ that is ‘3’. We then begin
serial in the void setup by typing ‘Serial.begin(9600);’ In the void loop, we then Serial print the four

different operations. If we look at the serial monitor, you can see the result of these equations.

Experiment by altering the a and b values or by using brackets to create more complex equations.

Note, we defined ‘a’ and ‘b’ as integers, if we were to reassign ‘a’ as ‘7’ and do a
‘/ b’ or ‘7/3’ which equals ‘2.3333333….’ recurring. However, when we serial print
this we get 2. This is due to both ‘a’ and ‘b’ being integers - remember integers

do not take decimal values, therefore if we wanted to show the recurring value,

we would have to rewrite our program and change the datatype to something

like double:

Now when we look at serial, we can see that we get a value of 2.33

We can utilize brackets to create more complex equations like ((a + b) / (a*b)) * (a – b)

More advanced functions consist of:

Going Further with Arduino
You have completed the Arduino Basics! Now its time to go to your console-specific area and

learn more about your console-specific code! Be sure to also check out the other foundation

courses to broaden our knowledge.

Check out the Arduino reference page to learn about each function.

Check out our other tutorials at 8bitcade.com/learn We recommend:

1. 8Bit-Etch-A-Sketch

2. Calculator

3. Build your first game

4. Dino Smash

5. Space Invaders!

Thank you for following along with this tutorial. If you have any 8BitCADE XL related issues,

please email us at 8BitCADE@support.com.

https://www.arduino.cc/reference/en
https://8bitcade.com/learn/
mailto:8BitCADE@support.com

