

Contents
8BitCADE Project: Calculator ... 4

File Breakdown ... 4

Controller.h ... 4

Controller.h Code .. 5

Controller .. 6

Controller Method Creation Code .. 6

Button Debounce Code .. 7

Sprites.h .. 9

Calculator Mechanism ... 10

Class Math Code .. 11

Void Setup Code ... 12

Calculator Core Loop.. 13

Laying out the Framework for X Movement .. 15

Collision .. 15

Adding a X Boundary/Collision .. 16

Adding Sprites .. 16

Moving Sprites along the X axis .. 17

Adding Y Axis Movement ... 18

Animating the Buttons ... 21

Final Code ... 22

Calculator.ino ... 22

Controller.h ... 26

Controller.ino .. 27

Sprites.h .. 27

Written by the 8BitCADE Team

Support@8bitcade.com

Version 3

© 2020 8BitCADE Limited

CC BY-NC-SA

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/

Note that:

This text showcases a task/challenge that you should attempt – all levels of coders should try

and attempt these without seeing the answer.

This text showcases something that you should be doing, regardless of your coding ability. This
is usually ensuring that your program is exactly like the one presented.

For beginners we recommend ensuring your software is exactly like the one we present. Your

main focus should be on understanding the coding functions, getting use to the coding syntax

and understanding why we use specific functions.

For intermediate to advanced coders, we recommend that you do this tutorial first, then try

writing your own program with the challenges used as roadmaps/guidelines.

The way this booklet is written is:

1. The brief of what we want the code in this section to achieve.

2. Task: Can you code it by yourself? Here are the functions and what the functions mean

3. Code Explanation

4. Final Code, copy this to get a program just like the one we present!

This allows for the beginners to get a grasp on what each function and coding statement means

and dip the deep end by coding some sections by themselves. For intermediate coders it gives a

challenge and for advanced coders it allows the code to be planned out ready for you to write it

up using your own logic – then all levels can check it with the presented code and adjust it

accordingly.

Have fun, if you have any errors with the code. Check your code with the final code, in the final

pages of the booklet.

Bring out the learner in you – with 8BitCADE!

-8BitCADE Team

8BitCADE Project: Calculator
In this tutorial, we are going to be learning how to use Arduino to program a calculator for our

8BitCADE/XL.

To fully understand this tutorial, you need to be able to understand basic Arduino syntax and

Arduino classes. We advise that the following tutorials are completed before starting this

project:

 Arduino Basic’s: Classes

 Arduino Basic’s: Library & Board Setup

File Breakdown

Calculator: The main Arduino file that contains the setup/loop. (when you open Arduino, save

the blank document and name its “Calculator” this will be your main file (the default extension is

.ino hence this would be your Calculator.ino file))

Controller.h: Defines the Class Controller, that will be used to read and process the controls

Controller: Creates all of the class methods of the class Controller

Sprites.h: Used to store all of the sprites used in this program.

Controller.h
The controller class deals with the buttons controls of the 8BitCADE and has methods inside

the class to deal with button debounce. In this header file, we define all attributes and methods

for the class. We use header and .ino files to help organize our code. Header files are for

defining attributes of a class or library and .ino files are for running code or in our case, writing

what does inside the actual methods we define.

Your task is to create a new header file called “Controller.h”

A snippet from the “Classes 101 Booklet”, be sure to look at that before attempting this tutorial.

To create a new file in Arduino, you need to press the toggle menu

on the right of the files bar (under serial monitor) and click “NewTab”

Here we write the file name and then

the file extension: ino is for Arduino

based programs and will be used for

the file that will contain all of the class

When you create this file, it's important

to add the file extension (.h) so the

program knows it isn’t a default .ino file but rather a header file.

Explanation: Upon file creation, you’ll notice that Arduino has not produced any void loops or
setups. This is as there can only be one of each in the program. Also, as this is a header file, we

will only be defining variables and classes.

Note that all attributes and methods need to be defined before we can use them, if you

reference a variable that hasn’t been created, you will get an error. Below are some helpful

definitions before you copy the final code:

point [Variable name] To create a structure with int X and int Y. We defined the structure in the

main section of the code.

bool data type is for true and false (or 1/0)

long data types are like integers but have a larger range.

To create a constructor method, simple write [nameOfClass]();

A point will be defined in the main file and is a structure. A

structure is a defined datatype that holds groups of data, aka int

x and int y in this case. We can access these through using

point.x or point.y and it will return the integer value of x or y

Controller.h Code
Here we can see,

on line 5, we need

a constructor, we

can leave this

blank if we don’t
have any values

to pass through

upon creating an

object. To do this,

use the

[classname]() and

leave the

parameters blank.

See more about

constructors in

the “Classes 101”
booklet.

Line 7: Point
position; defines

an attribute from

the structure

point which we

formed in the

main Calculator

file.

Also note that when defining any variable holding a millis value, ensure you use a data type that

can deal with large amounts of data – as recording the time can amount to a lot of data quickly

if not updated. Here we used long as it has a large plus and minus range. (see lines 37 to 39).

Please copy this code to ensure you have the correct program – this is important as it defines
all the variables we will use. A typo here is usually a major culprit for errors! Copy the code

above.

Controller
The controller file deals with the methods for the controller class. It’s important when writing in
this file to call files using the “outside class” calling method, as discussed in the “classes 101”
booklet:

 “void [Classname] :: [Method Name]()”

This file mainly focuses on dealing with button debounce. Your task is to create a new tab file,

name it “Controller” – it will default to .ino

Before we start implementing debounce algorithms, we have to first create the constructor

method, we can utilize this to set the controller.position.x and y position values to 0 (or if we

needed the player to start in the middle, we could, therefore, set these values to the centre x and

centre y position)

Note that when referencing class attributes in a class, we do not need to write “classname.
attribute” we can just write “attribute”. It's only outside of classes where we need to specify the

classname.

The way the controls will work is that we will take in button inputs, and alter the position.x and

position.y values accordingly. Remember that “position” is a structure that contains two integer
variables “x” and “y”

We also use a Serial.print to check that the object was created correctly.

Your task is to write the constructor method for the class Controller() and create an empty

function called “update”. Be sure to use “outside class” method declaration. The below
functions might help:

position.x will access the x position of the controller and replacing the x with a y will access the

y position for the controller.

Serial.print(“Hello World”); Will print to the console the string “Hello World”

Void [Class name] :: [function name]() { [code] } will create a function for the class specified.

Controller Method Creation Code
On the right, is the code you should type in.

What is debounce in a button?

Debounce, in buttons, is when the button input is

read multiple times in a short amount of time.

Without debouncing, the input could be up to 4

times and therefore would alter the position value

too much!

Your task is to write a simple algorithm that takes one button (UP_BUTTON) and ensures that

the button is registered as pressed with a debouncing algorithm. The below functions will come

in handy:

Aboy.pressed(UP_BUTTON) will return either true or false depending on if the up button is

pressed or not (can put any button in LEFT_BUTTON etc)

Millis() will return the time in milliseconds since the program started running

currentTime = Millis(); Will capture that time

Once the button is registered as press, we update the position, use position.y to access the

global y position of the class controller. For up we would add 1, for down we would -1.

Button Debounce Code
Explanation: To stop this from happening, we use the below algorithm (repeated for each

button) to combat this:

Here, if the button is currently being pressed (aboy.pressed(UP_BUTTON)) and it was previously

pressed (previousUPButtonPressed would be 1 if it is turned on and 0 if It is off) and the time

from the last recorded button press is greater than 150 mili seconds, and the button can be

pressed, then change the position accordingly, in this case, add one to the position structure y.

(structures are accessed using [DOT] StructureName.variableName).

aboy.pressed(UP_BUTTON) = gets the current button status of the “UP_BUTTON”.

PreviousUPButtonPressed = Is the status of the button UP, in the last cycle of code (aka the last

reading)

(millis() – A_lastHoldTime) > 150 = This allows us to calculate how much time has passed

since we last took a reading. We can see that as A_lastHoldTime, in the if statement is equal to
milis(); therefore we record the time it was pressed. If it is less than 150 then we know it is the

button bouncing and we know not to record the button.

Note that we have to use separate lastholdtime variables to allow both buttons to be read at the

same time, if we used the same variable, when one is read, the other button cannot be read until

the time limit is over. Hence using A_lastholdtime and B_lastholdtime.

While we do not use the A and B buttons, it's important to note the above code as this

“Controller” class is used for a lot of 8BitCADE projects.

aboy.pressed(A_BUTTON) = Checks if the button is currently pressed

previousAButtonPressed = Checks the status of the button, in the last cycle of code (aka the

last reading)

(millis() – A_lastHoldTime) > 250) = only takes the reading if there has been more then 250

milliseconds from now to the last time we took a button reading.

UPButtonCanBePress is our variable used to deal with collisions and boundaries. We can turn

on and off each button allowing us to have full control over where the sprite is allowed to go. I’ll
go over the function that controls this aspect after this, but for now know that when the player

reaches a boundary, we can turn these on and off to stop movement in one direction and to

allow movement in the opposite direction.

Here we set the previous button pressed variables to the current button press status for the

next loop. This is part of the above algorithm. See the “full code” below to check if your file is
correct.

The full code for the methods of the class in file “Controller” is below:

Please copy this code to ensure you have the correct program.

Copy the code above

Sprites.h
This file is used as an easy way to store the sprites that we use for the up and down arrows of

our calculator. We store them in a header file as they are defined arrays.

Your Task: is to simply create the header file, the code is presented below and should be copied.

Copy the code above. Explanation: of const unsigned char PROGMEM upButtonNoFill[]

PROGMEM = Means the data is stored in the ROM program memory, not the RAM that is the

default storage area. We store spirits in ROM/program memory as they tend to be larger and we

have a small amount of RAM.

Const = Means it cannot change

Unsigned = means it must be positive (cannot be negative)

Char = means it is a character that is of 8 bit (1 byte) size range from -127 to 128

const unsigned char = A character that is an 8bit value that can only hold numbers that cannot

be negative.

upButtonNoFill[] = we are declaring an array of unknown size, however as we are putting the

values inside the array but default, it does not matter. (unlike C++ where you must put the

number of elements that are present inside of that array)

The first two values of the array are the width and height; the rest are the pixels.

The way the above code was produced was through two websites:

https://www.pixilart.com/ - To create pixel art. This was exported as a png.

https://teamarg.github.io/arduboy-image-converter/ - To then convert the png file to the code

you see above.

I use two kinds of arrows: one with just the arrow outline and one that is filled. This is so then

when the user selects the arrow, I can flash the filled arrow so they know it has been pressed.

Try doing something similar. You must, however, create the file with a width of 7 pixels and a
height of 10 pixels. NOTE that this is not compulsory, you should be using the code presented
above. When you have finished this program, you can then personalize.

Now that we have finished the other files, it’s time to piece the puzzle together.

Calculator Mechanism
To create the calculator mechanism, we use a class, within this class, we have a method that

calculates the equation depending on the sign. This will be written in your main “Calculator.ino”
file (containing the void setup and loop) and should be typed above the “void setup{}” code.

Your task is to create the class and see if you can create

the method that does this. Note that we utilize the

constructor to get the parameters of the equation. (covered

in Classes 101). The below functions might be useful:

Switch + case statement: Similar to a bunch of If

statements, a switch and case statement compare a value

with the case value, aka if ValueToBeCompared was 2, then

the 3rd case down would run as that is case 2; and

ValueToBeCompared == 2, therefore a value would be

returned and the look would break. If no value is matched,

then the default block is run. If the breaks are not used, then

any case statement that matches will run and so will the

default block of code. See the example on the right.

https://www.pixilart.com/
https://teamarg.github.io/arduboy-image-converter/

Class Math Code
Explanation: Here we can see, the final

class, called math. In this class, we

have two constructor variables, one for

when we create an object with no

parameters (we always need this one)

and one for when there are parameters

present. The parameters required are

each part of the equation, value 1, the

sign position and value 2. Whatever

this function returns is the final

answer. Hence using return in the

switch statement. The double calculate
() is a method to calculate the final

answer depends on the sign position.

We use double as it has a large range

and deals with decimals. When we

declare a function we must define the

data type of the return values, therefore

writing double means that any value we

return will be double. In the comments,

you can see what each position

represents. The default value is 0

ensuring that something is printed to

the screen no matter what and that we

do not get an error. Hopefully, your
code looks similar to this format, if not
then type in the above code. If not then adjust it accordingly, updating the variables with the
ones presented above. Copy the code above into the Calculator.ino file.

Before we get started on creating the calculator mechanism inside the void loop, we first need

to boot up Arduboy, set pins and setup serial.

Your task is to see if you can write the void setup for this program. The things we need to do is

boot the Arduboy (to initialize the library), set the pin modes as OUTPUTs of the 3 LEDs (10 =

Yellow, 3 = Green, 9 = Red), clear the Arduboy screen and then begin serial. The below functions

might come in handy:

Void setup() { [CODE] } = code that runs once as soon as the program starts running

aboy.boot() = will boot the Arduboy without the Arduboy splash screen, it will also initialize the

library

pinMode([PinNumber],[INPUT/OUTPUT); = Will define if a pin is an input or output if it will be

receiving data or sending out data

aboy.clear(); = In simple terms, this function (clear) will clear the screen. It will clear the screen

buffer and display it. This means it will clear the screen and whatever is on it. Every time we

print something, aboy.print(“Hello World”);, it gets stored in the screen buffer. When we use the
aboy.display() it will display the screen buffer, aka the “Hello World”.

Serial.begin([Frequency]); = will begin the serial and set the rate of transmission (frequency)

we will use 9600.

Void Setup Code

Hopefully, your code looks similar to this format, if not then type in the above code. If not then
adjust it accordingly, updating the variables with the ones presented above. Copy the code

above.

Now we can move onto the loop.

Your task is to write the code to be able to do the following:

 Prepare the Arduboy for printing/print to screen. This involves clearing/displaying the

screen, setting the cursor and text size.

 Calculate and print the equation and result on the screen

o A challenge: If the sum is an integer, then remove the ‘.00’ on the end of the
double, else keep it.

Useful functions that might come in handy:

aboy.setCursor([X coord] , [Y coord]); = This will set the cursor ready to print text. It requires

two parameters.

Aboy.setTextSize(); = Will multiply the current text size by a scale factor. The value must be

greater than or equal to 1. Current text size is 6x8 pixels. A multiplier of 2 would mean the

characters become

([Data Type]) [Variable] = will attempt to turn the variable to the specified data type, this is called

Cast. E.g. (int) DecimalNumber would turn the decimal number into an integer.

Aboy.print(); = similar to Serial.print(); will display the content at the set cursor position, if its

text it will display it at the text size specified before (default 1).

Aboy.display(); = Displays the screen buffer, aka if you have a print statement without the

display, nothing will be shown on the screen – this is used to display the content onto the

screen.

Calculator Core Loop
In this section, the final code is presented on this page, the explanation for this code is on the
next page. Ensure you understand this “unit” before moving on.

Copy the code below:

Uploading the below code should give you a simple 0+0=0 on your screen.

These are the new define variables. Typed in before the void setup()

Update your void loop()

Its important to declare the “struct point” before
we include the controller.h and create the object

as the struct point is referenced inside of the file

controller.h – if we were to swap these around

then we would get a declaration error. This is

the same for any other variables that are

referenced in another file – we must first

declare the variable and then include the file.

Explanation:

The first statements are simple to prepare the program for printing.

If your cursor positions are different, please update them to the

ones presented above. To ensure your program looks like the one

we have, and as the program is designed for these values.

Lines 76 to 78 prepare the equation array (Ill show you the newly defined arrays that we need to

update after this) with the new digits. We store the whole equation in an array for easy storage.

Line 77 also demonstrates how we are going to use and present math symbols. Below shows

the array mentioned. We will have an array that will store all of the signs

(For beginners, to create an array, we must first DefineDataType ArrayName [Array size] =

{“Element 1”,”Element 2”}; E.g.

We then use a variable called “signOption” that will be updated with the user input and change
the printed sign.

Line 79 creates an object called math with the parameters of the equation. We then call the

method to calculate(); on line 80 and, as we used returns, can make Sum equal to the result of

the equation.

The challenge: Here we check the sum, if int_sum is equal to Sum then it is an integer as they

are equal (35 is the same as 35.00). In the If statement, we make int_sum equal to the converted

value of the sum using a cast function “(int) Sum”. Therefore, if the answer is 35.5, int_sum

would equal 35 but Sum would still equal 35.5, therefore the else part of the statement runs and,

as we don’t want to lose data and want to display the decimal points, we append (add to the
array) the Sum. If they are equal, we make int_sum = (int)Sum, if it isn’t already, and append the
integer version of the Sum (without the .00) to the equation to be printed.

We then get each element in the array equation, and add them together (create a single string

from the array) using the plus icon (simply “one-string” + “two-string” adds the strings together

“one stringtwo string”). Allowing us to print the whole equation in one print statement and then
display it with aboy.display();

Next, we need to add the special arrows and allow the user to move the “cursor”/arrows around
and change the characters.

Laying out the Framework for X Movement
The movement utilizes the controller.position.x and .y. In this unit we lay the framework for the

movement. The x movement will move between each digit in the equation: our equation will look

like “0+0=0” with the 3 digits, 0+0, being altered to the users need.

Your task is to create the structure for the x movement. When the position is 0, something

needs to happen. For now, write a comment saying the name of each digit. Aka, for 0, simply

write // the First digit. For 1, //Sign. For 2, //Second Digit. Useful functions that might help are

below:

Switch Case: See explanation from before.

Controller.position.x = will store the x value, and is updated when the user changes it (with the

LEFT and RIGHT buttons.

Explanation: Type this switch case after printing “mystring” in the void loop

The Controller.position.x value will control the movement with the LEFT and RIGHT buttons, aka

movement along the x-axis. For us, that is cycling between 3 options, the first value, sign and

second value. To achieve this, we use a basic switch statement that compares the

Controller.position.x that will change when the user clicks the LEFT or RIGHT button. We can

then put the code for each element in the equation based on if it is currently selected or not

We also need to update the position each loop, therefore

we need to call the Controller method update. Write this
after clearing the aboy screen (aboy.clear();)

Collision
Your Task: However, the current code means that we can move the controller.position.x, yes

between 0 and 2, but also doesn’t stop us when we reach the boundary (aka move too far),

meaning the player can go off-screen. Write code that will restrict the player from exceeding

controller.positon.x between 0 and 2 (3 values, for each digit). The functions below might be

useful:

Void [FunctionName] (int ArgOne, int ArgTwo){ [Code] } = Allows us to create a function with

parameters, in this case, we created a function that has no returns (as void means there is no

return, therefore, no need to specify a data type). Here we have two parameters that must be

met upon using this function.

Controller.LEFTButtonCanBePress; = was a Boolean variable we defined earlier that switches

the movement in a certain direction on/off.

Adding an X Boundary/Collision
Explanation: For this specific program, we only have one boundary, that is the X boundary of

only being able to move between updating the 3 digits of the calculator. To achieve this, we use

the below function that can easily be duplicated for the Y coordinates in other programs

however in this program, we want the user to be able to type any number and therefore do not

have a boundary,

Hopefully, your code looks similar to this
format, if not then type in the above code. It

should be placed after the void loop. Copy

the code.

Here you can see, when we define the

function we require two numbers, this help

makes the function dynamic and be able to

be used in many different situations. Here

we require that we get the range

parameters – aka lowest range and highest

range. This is then used in the if statement.

If the current position is lower than the range, then we turn off movement going even lower (left

button) as we want the player to stop moving, stopping the movement also stops the player if

the player is holding down the right button and moving into a boundary, this function checks it

and therefore stops ALL movement. We only allow movement on the X-axis to be done via the

right button, aka to get back in range. The next statement uses a similar format, however, it’s
the higher range, therefore, we turn off the movement for the right button, and only allow the

position to be updated when the user moves back into range (aka only allow the user to press

the left button).

Be sure to write this section of code inside the void loop!

Here you can see we run it in the main loop before we update the position values (aka before we

check the button controls). This is so we can check if the player is in range, and therefore only

allow the correct buttons to be read (I say read because the user can still press the button,

however as we set the “ButtonCanBePress” value to false/0, we choose to ignore it regardless.

This ensures that the user can never exceed the values 0, 1 or 2. There are simpler ways to

achieve this, however, by simply writing an if statement as shown below:

If (Controller.position.x == 0 or Controller.position.x == 1 or Controller.position.x == 3) { [CODE] }

However, this introduces us to algorithmic design and is a common way to deal with larger

boundaries. As, if the boundary was between 0 and 100, we could easily change this.

Adding Sprites
While we can currently cycle between each digit, we cannot see this change (you can always

add a Serial.print(Controller.position.x); to demonstrate this). To show this, we will use the

sprites we added in the sprites.h header file. These will also come in handy when we want to

show the y movement.

Your task is to show movement, display the arrow sprites above each digit when it is selected.

We will later animate these to fill when we press up and down - however, for now, simply move

the arrows between each digit. The below functions might be useful:

Sprites::drawOverwrite(Xpos, Ypos, SpriteName, 0); = This will display the sprite at the specified

x and y position. The 0 simply means what frame to show, for this project, we only use one

frame animation, therefore this will always be 0.

break; = will exit out of the loop when it is executed.

Tip, the up arrow should be printed with a y value of 15 and the down arrow should be printed

with an x value of 42.

Challenge: When the calculator has 2 digits, we need to relocate the arrow to be centred. Write a

simple math statement in the X Position of the drawOverwrite function that relocates the arrow

accordingly based on the number of digits present. Functions that might come in handy:

String.length(); = will return the amount of characters in a string. E.g. “10” has 2 characters
while “hello” has 6.

(string) Variable = is a cast function that converts the variable to a string.

Moving Sprites along the X-axis

Hopefully, your code looks similar to this format, if not then type in the above code. This should
update your current switch statement. Copy the code above.

Explanation: The main focus is whats inside the Position X position value. Note that I introduce

a new function I coded called ‘numOfDigits();’

This function takes an input integer and

returns the number of digits that integer

has. Aka input 10, return 2. We do this by

utilizing the [StringVar].length() function

that returns the number of characters in a

string. To do this, the line before we simply declare a new string variable called string and make

it equal to the integer but in string form, therefore 10 becomes “10”. Allowing us to use the

.length() function

Why do we use this? As you can see, we use this to calculate the number of digits and therefore

adjust the x position to centre the arrow correctly. Below is each x position equation for each

case section. The other parameters are all the same: all upButtons are on the same 15 y value

and down buttons on the same 42 y value.

Case 0:

X_Constant + (6 * numOfDigits(FirstDigit)) – 5

X_Constant = 9 and is simply the offset from the screen (when we print the text we print is at an

x coord of 9. This is constant for all case position X values.

 (6 * numOfDigits(FirstDigit)) = This finds the midpoint of the digit (each character has a width

of 12 pixels), therefore by multiplying by 6 we can add on the centre of each digit present.

– 5 = as the sprites are 10 pixels wide, we minus 5 from the new centre point as the sprites are

drawn from the top left corner. This is constant for all case position X values, as we always

calculate the centre point and then have to shift it over by -5 to print the sprite.

Case 1:

X_Constant + (12 * numOfDigits(FirstDigit)) + (6 * numOfDigits(signOption)) – 5

 (12 * numOfDigits(FirstDigit)) = Adds the number of digits present in the first digit to the

position, here we multiply it by 12 as we are using a text size of 2, which has a width of 12. This

ensures that when we add the centre point of the signOption digits, it is at the correct offset –

regardless of how many digits come before it.

(6 * numOfDigits(signOption)) = calculates the midpoint of the signOption. This allows it to be

dynamic

We then -5 to ensure it prints correctly

Case 2

X_Constant + (12 * numOfDigits(FirstDigit)) + (12 * numOfDigits(signOption)) + (6 *
numOfDigits(SecondDigit)) – 5

The case 3 must take into consideration all leading digits. Therefore, we add all of the digits

leading up to it (+ (12 * numOfDigits(FirstDigit)) + (12 * numOfDigits(signOption))) and then find

the midpoint of the current digits, (6 * numOfDigits(SecondDigit)), then we -5 to ensure it prints

correctly.

This allows the printing of the arrows to be dynamic and always be centred.

Be sure to write this value before the void setup.

Adding Y Axis Movement
Now that we have each case statement for each digit. We can start allowing the user to set the

numbers for the sum. The first and second digit will have the same movement system, while the

signOption case will need to be restricted to be move between only the 4 signs.

Your Task: In each case statement, write code that will update the FirstDigit, signOption and

SecondDigit value according to the users Controller.position.y. Note that we will need to apply a

boundary to the signOption as it should only change/update its value if it is between 0 and 3 (4

values, 1 for each sign). The below functions might come in handy:

Switch + Case: See above explanation

Controller.posotion.y = will allow you to access the position value for y that updates with the UP

and DOWN buttons.

Explanation:

Case 0 and 2:

For the digits, we use the same code. Here we have a switch statement that first checks to see

if the controller.position.y has changed. We can see if it has changed by comparing it with the

last value, aka minus it from the LastYPos. We will ONLY get 3 results: -1, 0 & 1. Using a switch

statement, we can decide if we need to either increase the first digit or decrease the first digit –

this means that each button press will change the FirstDigit by one and therefore allow the user

to control the equation digits. If the case is 0, then there is no change and we can just break out

of the switch loop. This code is used for both cases, changing the appropriate digits.

Case 1:

The case 1 uses the same switch statement, however, we have an if statement before it to only

change the digit if it’s between the range of 0 to 3 (as there are only 4 signs).

(signOption + (Controller.position.y - LastYPos)) >= 0 and (signOption + (Controller.position.y -
LastYPos)) <= 3

Here we almost predict the value, we add the resultant of Controller.position.y – LastYPos to

the signOption and see if it is in range (aka if it is greater than or equal to 0 or less than or equal

to 3), if it is within range, then we can go ahead and make that calculation. If it isn’t then do not
change the value.

The full switch statement is below, copy the code.

Full Switch Statement:

The full code for the switch statement. Please copy to ensure your program is kept up to date
with ours. Be sure to also copy the code below.

Don’t forget to define the new variables we use before the void setup:

We also need to ensure we update the

LastYPos and LasrtXPos variables each

loop, this part of the code goes to the end

of the loop, before the display command.

Animating the Buttons
Now that we have the basics of the program, it feels very static. To make it feel more dynamic

and responsive, we can animate the buttons to help the user see/feel like they have virtually

clicked the button.

Your task is to write an “UpButton” and “DownButton” Function that we can reuse for every
button. This function will, when the button is pressed: fill the arrow and move the arrow (e.g. if

up arrow pressed, move arrow up by -2 to the y coordinate). The Below functions might come in

handy:

Millis(); = returns current runtime in milliseconds from the Arduino is turned on.

Sprites::drawOverwrite(xpos, ypos, sprite, 0); = to draw a sprite, requires the x and y position and

then the sprite name. the 0 simply means what frame to print. In our case, this will always

remain 0.

Explanation: Here we have two

similar functions. buttonUp,

takes two inputs, the x and y

position for the arrow (this will

be a copy of what we used

before when we printed the

first arrow). Then we use 3 if

statements to decide if the

arrow should be filled or not.

The first is if the button has

been pressed. We can derive

this from a change in the Y

position (by minusing the

current position by the last Y

position, if it equals one, then

the button is being pressed up

and therefore should be filled.

We can see how that the

buttonDown uses a

Controller.position.y – LastYPos == -1. A minus 1 instead as it indicates that the position is

decreasing therefore the down button is being pressed. If the y position does change, then we

set the UPLastPressedTime, ready to compare for the next if statement, and then use the local

parameters of the function to draw the arrow in the correct place. Note that we use ypos – 2 (for

the up button) and ypos + 2 (for the down button). This adds a slight jump to the button. Also,

note that we are displaying the upButtonFill. However, upon just uploading this, you'll release

that it switches too fast and the moving animation does not flow well. To fix this, we use milis in

the next statement. The next statement is an else if statement, if the button isn't being pressed,

then essentially fill the button for 150 milliseconds (as we compare the LastPressedTime to the

current time). This helps with debounce and makes each press the same length. If both of these

are false, then write the ButtonNoFill at the xpos and ypos.

Add these functions after the void loop. Please copy to ensure your program is kept up to date
with ours. Copy the code above

We, of course, need to declare the variables we use in

this function before the void setup before we can

upload the code. To integrate these functions, we simply replace the

Sprites::drawOverwrite(xpos, ypos, sprite,0); with the new functions. Copying in the x and y

parameters we used on the arrows to the functions. The below code shows how we would

implement these new functions:

Implementation of the functions below, replace the sprite::drawOverwrite functions with the

below functions - Copy the code below

Now that we have the core functional aspects of the calculator, the below code shows what you

should have so far – go through it and compare what you have written to ensure you have the

correct code.

Final Code
Congratulations on completing this course! Now you have a calculator on your 8BitCADE. Now

is your chance to play around with it and see what you can add. Why not add a splash screen,

your name or see what else you can do! The world is yours!

Calculator.ino

1. // BSD 3-Clause License

2. //

3. // Copyright (c) 2020, Jack Daly (@8bitcade)
4. // All rights reserved.

5. //

6. // Redistribution and use in source and binary forms, with or without
7. // modification, are permitted provided that the following conditions are met:

8. //

9. // 1. Redistributions of source code must retain the above copyright notice, this

10. // list of conditions and the following disclaimer.
11. //

12. // 2. Redistributions in binary form must reproduce the above copyright notice,

13. // this list of conditions and the following disclaimer in the documentation

14. // and/or other materials provided with the distribution.
15. //

16. // 3. Neither the name of the copyright holder nor the names of its

17. // contributors may be used to endorse or promote products derived from

18. // this software without specific prior written permission.
19. //

20. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

21. // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22. // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

23. // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

24. // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

25. // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26. // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

27. // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

28. // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

30. //

31. #include <Arduboy2.h>

32. Arduboy2 aboy;
33. #include "sprites.h"

34.

35. typedef struct point {
36. int x;

37. int y;

38. };

39.
40. #include "controller.h"

41. Controller Controller;

42.
43. int X_Constant = 9;

44.

45. //Values for Equation
46. int FirstDigit = 0;

47. int signOption = 0;

48. String Sign[4] = {"+", "-", "x", "/"};

49. int SecondDigit = 0;
50. double UPlastPressedTime;

51. double DOWNlastPressedTime;

52. double Sum;
53. int int_sum;

54.

55. int Option = 0;

56. int LastYPos;
57. int LastXPos;

58.

59.
60. String mystring;

61. String equation[5] = {"0", "+", "0", "=", "0"};

62.

63. class math {
64. public:

65. math();

66. double a;
67. double b;

68. int sign;

69. math(int temp_a, int temp_sign, int temp_b) {

70. a = temp_a;
71. b = temp_b;

72. sign = temp_sign;

73. }
74. double calculate() {

75. switch (sign) {

76. case 0: //"+"

77. return a + b;
78. break;

79. case 1://"-"

80. return a - b;
81. break;

82. case 2://"*"

83. return a * b;

84. break;
85. case 3://"/"

86. return a / b;

87. break;
88. default:

89. return 0;

90. }

91. }
92. };

93.

94. void setup() {
95. aboy.boot();

96. //Allows us to prepare the arduboy library without the arduboy splashscreen

97. pinMode(10, OUTPUT); //Yellow

98. pinMode(3, OUTPUT); //Green
99. pinMode(9, OUTPUT); //Red

100.

101. aboy.clear(); // Clear screen
102. Serial.begin(9600); // begin serial

103. }

104.

105. void loop() {
106. aboy.clear();

107.

108. Check_Range_X(0, 2);
109. Controller.update();

110.

111. aboy.setCursor(9, 24);
112. aboy.setTextSize(2);

113.

114. equation[0] = FirstDigit; //update the array with current First Digit

115. equation[1] = Sign[signOption];//Update Equation with the Sign symbol
116. equation[2] = SecondDigit; //update the array with current Second Digit

117. math math(FirstDigit, signOption, SecondDigit); //create an object of math with t

he parameters
118. Sum = math.calculate(); //Calculate the sum of the current values + sign

119.

120. //the below if statement checks if the value is a decimal

121. if ((int_sum = (int)Sum) == Sum) {
122. int_sum = (int)Sum;

123. equation[4] = int_sum;

124. }
125. else {

126. equation[4] = Sum;

127. }

128.
129. mystring = equation[0] + equation[1] + equation[2] + equation[3] + equation[4];

130. //convert all digits to strings ready to be printed to the screen

131. aboy.print(mystring);
132.

133.

134. switch (Controller.position.x) { //X SHIFT

135. case 0: //First Digit
136. switch (Controller.position.y - LastYPos) {

137. case -1: FirstDigit -= 1; break;

138. case 0: break;
139. case 1: FirstDigit += 1; break;

140. }

141. buttonUp(X_Constant + (6 * numOfDigits(FirstDigit)) - 5, 15);

142. buttonDown(X_Constant + (6 * numOfDigits(FirstDigit)) - 5, 42);
143. break;

144.

145. case 1: //Sign
146. if ((signOption + (Controller.position.y - LastYPos)) >= 0 and (signOption +

 (Controller.position.y - LastYPos)) <= 3) {

147. switch (Controller.position.y - LastYPos) {

148. case -1: signOption -= 1; break;
149. case 0: break;

150. case 1: signOption += 1; break;

151. }
152. }

153.

154. buttonUp(X_Constant + (12 * numOfDigits(FirstDigit)) + (6 * numOfDigits(signO

ption)) - 5, 15);
155. buttonDown(X_Constant + (12 * numOfDigits(FirstDigit)) + (6 * numOfDigits(sig

nOption)) - 5, 42);

156. break;
157.

158. case 2: //Second Digit

159. switch (Controller.position.y - LastYPos) {

160. case -1: SecondDigit -= 1; break;
161. case 0: break;

162. case 1: SecondDigit += 1; break;

163. }
164.

165. buttonUp(X_Constant + (12 * numOfDigits(FirstDigit)) + (12 * numOfDigits(sign

Option)) + (6 * numOfDigits(SecondDigit)) - 5, 15);

166. buttonDown(X_Constant + (12 * numOfDigits(FirstDigit)) + (12 * numOfDigits(si
gnOption)) + (6 * numOfDigits(SecondDigit)) - 5, 42);

167. break;

168. }
169. LastYPos = Controller.position.y;

170. LastXPos = Controller.position.x;

171.
172. aboy.display();

173. }

174.

175. void buttonUp(int xpos, int ypos) {
176. if (Controller.position.y - LastYPos == 1) {

177. UPlastPressedTime = millis();

178. Sprites::drawOverwrite(xpos, ypos - 2, upButtonFill, 0);
179. }

180. else if ((millis() - UPlastPressedTime) < 150) {

181. Sprites::drawOverwrite(xpos, ypos - 2, upButtonFill, 0);

182. }
183. else {

184. Sprites::drawOverwrite(xpos, ypos, upButtonNoFill, 0);

185. }
186. }

187.

188. void buttonDown(int xpos, int ypos) {

189. if (Controller.position.y - LastYPos == -1) {
190. DOWNlastPressedTime = millis();

191. Sprites::drawOverwrite(xpos, ypos + 2, downButtonFill, 0);

192. }
193. else if ((millis() - DOWNlastPressedTime) < 150) {

194. Sprites::drawOverwrite(xpos, ypos + 2, downButtonFill, 0);

195. }

196. else {
197. Sprites::drawOverwrite(xpos, ypos, downButtonNoFill, 0);

198. }

199. }
200.

201.

202.

203. void Check_Range_X(int lowrange, int highrange)
204. {

205. if (Controller.position.x <= lowrange) {

206. Controller.LEFTButtonCanBePress = 0;
207. Controller.RIGHTButtonCanBePress = 1;

208. }

209. else if (Controller.position.x >= highrange) {

210. Controller.LEFTButtonCanBePress = 1;
211. Controller.RIGHTButtonCanBePress = 0;

212. }

213. else {
214. Controller.LEFTButtonCanBePress = 1;

215. Controller.RIGHTButtonCanBePress = 1;

216. }

217. }
218.

219. int numOfDigits(int integer) {

220. String string = (String)integer;
221. return string.length();

222. }

Controller.h

1. class Controller

2. {

3. public:

4. //CONSTRUCTOR
5. Controller();

6. //Create from the point structure a position varaible. This will be used to move th

e cursor
7. point position;

8. //Define the method UPDATE used to update the controls every loop

9. void update();

10.
11. //BOOLEAN VARIABLES THAT STORES WHETHER BUTTON PRESSED IS A/B

12. bool AButtonPressed;

13. bool BButtonPressed;
14.

15. //BOOLEAN VARIABLE THAT STORES WHETHER THE PREVIOUS BUTTON WAS PRESSED

16. bool previousUPButtonPressed;

17. bool previousDOWNButtonPressed;
18. bool previousLEFTButtonPressed;

19. bool previousRIGHTButtonPressed;

20. bool previousAButtonPressed;
21. bool previousBButtonPressed;

22.

23. //BOOLEAN VARIABLES THAT CHECKS IF THE BUTTON PRESS IS UPDATED (A/B PRESSED)

24. bool AButtonWasPressed;
25. bool BButtonWasPressed;

26.

27.
28. //BOOLEAN VARIABLES THAT CHECKS IF THE BUTTON CAN BE PRESSED. USED FOR COLLISION/RE

STRICTION

29. bool UPButtonCanBePress = 1;

30. bool DOWNButtonCanBePress = 1;
31. bool LEFTButtonCanBePress = 1;

32. bool RIGHTButtonCanBePress = 1;

33.
34. //HOLDS POSITION OF 'CURSOR' OR CHARACTER

35. int pos;

36.

37. long debounceDelay = 75; //TIME WAITED UNTILL NEXT BUTTON IS INPUTTED
38. long currenttime = 0; //CURRENT TIME

39. long lastHoldTime = 100; //TIME, IN MILLIS, OF LAST BUTTON PRESS

40.

41. };

Controller.ino

1. Controller::Controller()

2. {

3. Serial.print("BUTTON TEST BUTTON TEST");

4. position.x = 0;
5. position.y = 0;

6. }

7.
8. void Controller::update()

9. {

10. if (aboy.pressed(UP_BUTTON) and previousUPButtonPressed == 1 and (millis() - lastHold

Time) > 150 and UPButtonCanBePress) {
11. lastHoldTime = millis();

12. position.y += 1;

13. }
14. if ((aboy.pressed(DOWN_BUTTON) == 1 and previousDOWNButtonPressed == 1 and (millis()

- lastHoldTime) > 150) and DOWNButtonCanBePress) {

15. lastHoldTime = millis();
16. position.y -= 1;

17. }

18. if (aboy.pressed(LEFT_BUTTON) and previousLEFTButtonPressed == 1 and (millis() - last

HoldTime) > 150 and LEFTButtonCanBePress) {
19. lastHoldTime = millis();

20. position.x -= 1;

21. }
22. if ((aboy.pressed(RIGHT_BUTTON) == 1 and previousRIGHTButtonPressed == 1 and (millis(

) - lastHoldTime) > 150) and RIGHTButtonCanBePress) {

23. lastHoldTime = millis();

24. position.x += 1;
25. }

26. if (aboy.pressed(A_BUTTON) and previousAButtonPressed == 1 and (millis() - lastHoldTi

me) > 250) {
27. lastHoldTime = millis();

28. AButtonPressed = true;

29. }

30. else {
31. AButtonPressed = false;

32. }

33. if ((aboy.pressed(B_BUTTON) == 1 and previousBButtonPressed == 1 and (millis() - last
HoldTime) > 250)) {

34. lastHoldTime = millis();

35. BButtonPressed = true;

36. }
37. else {

38. BButtonPressed = false;

39. }
40. previousUPButtonPressed = aboy.pressed(UP_BUTTON);

41. previousDOWNButtonPressed = aboy.pressed(DOWN_BUTTON);

42. previousLEFTButtonPressed = aboy.pressed(LEFT_BUTTON);

43. previousRIGHTButtonPressed = aboy.pressed(RIGHT_BUTTON);
44. previousAButtonPressed = aboy.pressed(A_BUTTON);

45. previousBButtonPressed = aboy.pressed(B_BUTTON);

46. }

Sprites.h

1. const unsigned char PROGMEM downButtonFill[] =

2. {

3. // width, height,

4. 10, 7,
5. 0x06, 0x0f, 0x1f, 0x3f, 0x7f, 0x7f, 0x3f, 0x1f, 0x0f, 0x06,

6. };

7.

8. const unsigned char PROGMEM downButtonNoFill[] =
9. {

10. // width, height,

11. 10, 7,
12. 0x06, 0x09, 0x11, 0x21, 0x41, 0x41, 0x21, 0x11, 0x09, 0x06,

13. };

14.

15. const unsigned char PROGMEM upButtonFill[] =
16. {

17. // width, height,

18. 10, 7,
19. 0x30, 0x78, 0x7c, 0x7e, 0x7f, 0x7f, 0x7e, 0x7c, 0x78, 0x30,

20. };

21. const unsigned char PROGMEM upButtonNoFill[] =

22. {
23. // width, height,

24. 10, 7,

25. 0x30, 0x48, 0x44, 0x42, 0x41, 0x41, 0x42, 0x44, 0x48, 0x30,

26. };

Thank you for following along with this tutorial. If you have any programming questions, we

strongly advise that you check out the Arduboy community. If you have any 8BitCADE related

issues, please email us at 8BitCADE@support.com.

Check out our other tutorials at 8bitcade.com/learn

https://community.arduboy.com/
mailto:8BitCADE@support.com
https://8bitcade.com/learn/

