
 

 

 



 

 

Contents 
8BitCADE Project: Etch-A-Sketch ..................................................................................................... 4 

File Breakdown ............................................................................................................................... 4 

Controller.h ......................................................................................................................................... 4 

Controller.h Code ............................................................................................................................ 5 

Controller ........................................................................................................................................ 6 

Controller Method Creation Code .................................................................................................. 6 

Button Debounce Code .................................................................................................................. 7 

Drawing Mechanism ...................................................................................................................... 9 

Void Setup .................................................................................................................................... 10 

Void Loop ...................................................................................................................................... 10 

Adding Draw state ........................................................................................................................ 11 

Colour............................................................................................................................................ 14 

Adding a Reset Option.................................................................................................................. 14 

Adding a Basic GUI ....................................................................................................................... 15 

Adding Boundaries ........................................................................................................................... 17 

Adding a X Boundary/Collision .................................................................................................... 17 

Adding a Y Boundary/Collision .................................................................................................... 18 

Adding a SplashScreen .................................................................................................................... 19 

Final Code ......................................................................................................................................... 19 

8Bit-Etch-A-Sketch.ino ................................................................................................................ 19 

Controller.h ................................................................................................................................... 22 

Controller.ino ................................................................................................................................ 23 

 

 

 

 

 

 

Written by the 8BitCADE Team 

Support@8bitcade.com 

Version 1 

© 2020 8BitCADE Limited 

CC BY-NC-SA 

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) 

https://creativecommons.org/licenses/by-nc-sa/4.0/ 



 

 

Note that: 

This text showcases a task/challenge that you should attempt – all levels of coders should try 

and attempt these without seeing the answer. 

This text showcases something that you should be doing, regardless of your coding ability. This 
is usually ensuring that your program is exactly like the one presented. 

For beginners, we recommend ensuring your software is exactly like the one we present. Your 

main focus should be on understanding the coding functions, getting used to the coding syntax 

and understanding why we use specific functions. 

For intermediate to advanced coders, we recommend that you do this tutorial first, then try 

writing your program with the challenges used as roadmaps/guidelines. 

The way this booklet is written is: 

1. The brief of what we want the code in this section to achieve. 

2. Task: Can you code it by yourself? Here are the functions and what the functions mean 

3. Code Explanation 

4. Final Code, copy this to get a program just like the one we present! 

This allows for the beginners to get a grasp on what each function and coding statement means 

and dip the deep end by coding some sections by themselves. For intermediate coders, it gives 

a challenge and for advanced coders it allows the code to be planned out ready for you to write 

it up using your logic – then all levels can check it with the presented code and adjust it 

accordingly. 

Have fun, if you have any errors with the code. Check your code with the final code, in the final 

pages of the booklet. 

 

Bring out the learner in you – with 8BitCADE! 

-8BitCADE Team 

 

  



 

 

8BitCADE Project: Etch-A-Sketch 
In this tutorial, we are going to be learning how to use Arduino to program an Etch-A-Sketch 

game for our 8BitCADE/XL.  

To fully understand this tutorial, you need to be able to understand basic Arduino syntax and 

Arduino classes. We advise that the following tutorials are completed before starting this 

project: 

 Arduino Basic’s: Classes 

 Arduino Basic’s: Library & Board Setup 

File Breakdown 

 

8Bit-Etch-A-Sketch: The main Arduino file that contains the setup/loop 

Controller.h: Defines the Class Controller, that will be used to read and process the controls 

Controller: Creates all of the class methods of the class Controller 

Controller.h 
The controller class deals with the buttons controls of the 8BitCADE and has methods inside 

the class to deal with button debounce. In this header file, we define all attributes and methods 

for the class. We use header and .ino files to help organize our code. Header files are for 

defining attributes of a class or library and .ino files are for running code or in our case, writing 

what does inside the actual methods we define. 

Your task is to create a new header file called “Controller.h” 

 

A snippet from the “Classes 101 Booklet”, be sure to look at that before attempting this tutorial.  

To create a new file in Arduino, you need to press the toggle menu 

on the right of the files bar (under serial monitor) and click “NewTab” 

Here we write the file name and then 

the file extension: ino is for Arduino 

based programs and will be used for 

the file that will contain all of the class  

When you create this file, it's important 

to add the file extension (.h) so the 

program knows it isn’t a default .ino 
file but rather a header file. 

 



 

 

Upon file creation, you’ll notice that Arduino has not produced any void loops or setups. This is 
as there can only be one of each in the program. Also, as this is a header file, we will only be 

defining variables and classes.  

Note that all attributes and methods need to be defined before we can use them, if you 

reference a variable that hasn’t been created, you will get an error. Below are some helpful 

definitions before you copy the final code: 

point [Variable name] To create a structure with int X and int  Y. We defined the structure in the 

main section of the code.  

bool data type is for true and false (or 1/0) 

long data types are like integers but have a larger range. 

To create a constructor method, simple write [nameOfClass](); 

Point, will be defined in the main file do not worry about 

writing this yet, we will declare the variables in the next 

section of the tutorial – meaning you will get errors if you 

run your code at this moment in time, do not worry. Point is 

a structure. A structure is a defined datatype that holds 

groups of data, aka int x and int y in this case. We can access these through using point.x or 

point.y and it will return the integer value of x or y 

Controller.h Code 
Here we can see, 

on line 5, we need 

a constructor, we 

can leave this 

blank if we don’t 
have any values 

to pass through 

upon creating an 

object. To do this, 

use the 

[classname]() and 

leave the 

parameters blank. 

See more about 

constructors in 

the “Classes 101” 
booklet. 

Line 7: Point 
position; defines 

an attribute from 

the structure 

point which we 

formed in the 

main Calculator 

file. 



 

 

Also note that when defining any variable holding a millis value, ensure you use a data type that 

can deal with large amounts of data – as recording the time can amount to a lot of data quickly 

if not updated. Here we used long as it has a large plus and minus range. (see lines 37 to 39). 

Please copy this code to ensure you have the correct program – this is important as it defines 
all the variables we will use. A typo here is usually a major culprit for errors! 

Controller 
The controller file deals with the methods for the controller class. It’s important when writing in 
this file to call files using the “outside class” calling method, as discussed in the “classes 101” 
booklet: 

 “void [Classname] :: [Method Name]()” 

This file mainly focuses on dealing with button debounce. Your task is to create a new tab file, 

name it “Controller” – it will default to .ino 

Before we start implementing debounce algorithms, we have to first create the constructor 

method, we can utilize this to set the controller.position.x and y position values to 0 (or if we 

needed the player to start in the middle, we could, therefore, set these values to the centre x and 

centre y position) 

Note that when referencing class attributes in a class, we do not need to write “classname. 
attribute” we can just write “attribute”. It's only outside of classes where we need to specify the 

classname. 

The way the controls will work is that we will take in button inputs, and alter the position.x and 

position.y values accordingly. Remember that “position” is a structure that contains two integer 
variables “x” and “y” 

We also use a Serial.print to check that the object was created correctly.   

Your task is to write the constructor method for the class Controller() and create an empty 

function called “update”. Be sure to use “outside class” method declaration. The below 
functions might help: 

position.x will access the x position of the controller and replacing the x with a y will access 

they position for the controller. 

Serial.print(“Hello World”); Will print to the console the string “Hello World” 

Void [Class name] :: [function name]() { [code] } will create a function for the class specified. 

Controller Method Creation Code 
On the right, is the code you should type in. 

What is debounce in a button? 

Debounce, in buttons, is when the button input is 

read multiple times in a short amount of time. 

Without debouncing, the input could be up to 4 

times and therefore would alter the position value 

too much!  

 



 

 

Your task is to write a simple algorithm that takes one button (UP_BUTTON) and ensures that 

the button is registered as pressed with a debouncing algorithm. The below functions will come 

in handy: 

Aboy.pressed(UP_BUTTON) will return either true or false depending on if the up button is 

pressed or not (can put any button in LEFT_BUTTON etc) 

Millis() will return the time in milliseconds since the program started running 

currentTime = Millis(); Will capture that time 

Once the button is registered as press, we update the position, use position.y to access the 

global y position of the class controller. For up we would add 1, for down we would -1. 

 

Button Debounce Code  
To stop this from happening, we use the below algorithm (repeated for each button) to combat 

this: 

Here, if the button is currently being pressed (aboy.pressed(UP_BUTTON)) and it was previously 

pressed (previousUPButtonPressed would be 1 if it is turned on and 0 if It is off) and the time 

from the last recorded button press is greater than 150 mili seconds, and the button can be 

pressed, then change the position accordingly, in this case, add one to the position structure y. 

(structures are accessed using [DOT] StructureName.variableName).  

aboy.pressed(UP_BUTTON) = gets the current button status of the “UP_BUTTON”.  

PreviousUPButtonPressed = Is the status of the button UP, in the last cycle of code (aka the last 

reading) 

(millis() – A_lastHoldTime) > 150 = This allows us to calculate how much time has passed 

since we last took a reading. We can see that as A_lastHoldTime, in the if statement is equal to 
milis(); therefore we record the time it was pressed. If it is less than 150 then we know it is the 

button bouncing and we know not to record the button.  

Note that we have to use separate lastholdtime variables to allow both buttons to be read at the 

same time, if we used the same variable, when one is read, the other button cannot be read until 

the time limit is over. Hence using A_lastholdtime and B_lastholdtime. 

While we do not use the A and B buttons, it's important to note the above code as this 

“Controller” class is used for a lot of 8BitCADE projects. 



 

 

aboy.pressed(A_BUTTON) = Checks if the button is currently pressed 

previousAButtonPressed = Checks the status of the button, in the last cycle of code (aka the 

last reading) 

(millis() – A_lastHoldTime) > 250) = only takes the reading if there has been more then 250 

milliseconds from now to the last time we took a button reading. 

UPButtonCanBePress is our variable used to deal with collisions and boundaries. We can turn 

on and off each button allowing us to have full control over where the sprite is allowed to go. I’ll 
go over the function that controls this aspect after this, but for now know that when the player 

reaches a boundary, we can turn these on and off to stop movement in one direction and to 

allow movement in the opposite direction. 

 

Here we set the previous button pressed variables to the current button press status for the 

next loop. This is part of the above algorithm. See the “full code” below to check if your file is 
correct. 

The full code for the methods of the class in file “Controller” is below: 

 

Please copy this code to ensure you have the correct program. 

  



 

 

Drawing Mechanism 
To create the drawing mechanism, we use a new function called drawPixel, within this class we 

have a method that calculates the equation depending on the sign. This will be written in your 

“8Bit-Etch-A-Sketch.ino” file.  

Before we begin, we must use the #include (library name) to 

include a library. Here we can also see how we redefine the 

library name from Arduboy2 to aboy, as when we call library function, we have to call them 

using the library name: libraryname.libraryfunction(); 

Next, we have the structure we define earlier called point.  

 

Currently, our main file is not connected to the controller 

header file, this is because we need to reference the 

header file before the setup (we don’t need to reference 

.ino files as they will be run automatically). To do this we use #include again, this time we use 

speech marks as the header file is in the directory of the current sketch (meaning both files are 

in the same folder). We use <> when it is a library file located in the Arduino library folder. Here 

we also create an object of the class Controller called Controller, allowing us to use the 

methods and attributes of the class Controller – if that doesn’t make sense to you, check out 
the classes 101 guides to learn more about classes and object-oriented programming. 

Finally, before the void setup, we need to define some variables we will be suing to get the 

drawing mechanism working: 

Colour = As we are working in Back (0 or false) and white 

(1 or true) we can make the colour a Boolean value, as 

true to Arduino is simply 1, therefore we can control and 

change the colour that is drawn 

Drawstate = allows us to turn on and off drawing, as we want the user to be able to draw, then 

“lift up” their pen and move to draw on another part of the screen. 

Previouspoint = save the X and Y coordinates of the previous point – allowing us to fill it in with 

the desired colour. We can treat point like a data type because it is a structure made up of many 

different data types, in this case, int x and int y. 

The first part of the main file should look like this (on the 

left). 

Please copy this code to ensure you have the correct 
program. 

  



 

 

Void Setup 
The void setup is a function where any code inside runs once and as soon as the program runs. 

We can use this to clear the screen, setup values and set up pin modes. 

 

Your task is to see if you can write the void setup for this program. The things we need to do is 

boot the Arduboy (to initialize the library), set the pin modes as OUTPUTs of the 3 LEDs (10 = 

Yellow, 3 = Green, 9 = Red), clear the Arduboy screen and define the controller.x and controller.y 

values so the cursor begins in the middle of the screen. The below functions might come in 

handy: 

Void setup() { [CODE] } = code that runs once as soon as the program starts running 

aboy.boot() = will boot the Arduboy without the Arduboy splash screen, it will also initialize the 

library 

pinMode([PinNumber],[INPUT/OUTPUT); = Will define if a pin is an input or output if it will be 

receiving data or sending out data 

aboy.clear(); = In simple terms, this function (clear) will clear the screen. It will clear the screen 

buffer and display it. This means it will clear the screen and whatever is on it. Every time we 

print something, aboy.print(“Hello World”); it gets stored in the screen buffer. When we use the 
aboy.display() it will display the screen buffer, aka the “Hello World”.  

aboy.height() = will return the integer value of the screen height 

aboy.width() = will return the integer value of the screen width 

 

Please copy this code to 
ensure you have the correct 

program. 

 

 

 

 

Void Loop 
Here, after finally setting everything up, we can begin writing the core mechanism of our game.  

 

Your task is to write a simple program that allows the user to draw. The below functions might 

come in handy: 



 

 

Aboy.drawPixel(Xpos, Ypos, Colour); = Will draw a single pixel on the X and Y position specified. 

It will turn it either black or white (specified by the colour attribute. 

Controller.update(); = Runs the update method of the controller which read and updates the 

position based on the button readings. 

 

 

As we are not clearing the screen after every pixel drawn, we can see that the previous pixel 

drawn remains and allows us to draw. 

Note that we use the Controller.position.x and Controller.position.y variables as these are 

constantly updated by the controller – this is the position the user can alter by using the 

buttons. Therefore, when the user clicks the up arrow and the position updates, this function 

will turn that pixel to the desired colour. 

Adding Draw state 
At the moment we have a very basic drawing app, that allows us to draw continuously. Next, we 

want to add a feature that allows the user to “lift” the pen and “move it” and then “put down” the 
pen and continue drawing. To do this we can use the drawstate variable we declared 

beforehand. 

 

Your task is to allow the user to toggle if they want to draw or not using the B Button, using the 

draw state. To demonstrate to the player that they are not drawing, turn on the blue LED. The 

below functions could be useful: 

aboy.getPixel(Xpos,Ypox); = Will return the value of that pixel, in our case either 1 for white or 0 

for black. 

To toggle the drawstate, we will be using the B button. To access the Bbutton, we use 

Controller.BButoonPressed This returns true if it is pressed. Using ClassName.ClassAttribute 

allows you to access all of the classes attributes, if this confuses you, check out the Classes 

101 guide. 

!variable = the exclamation mark (!) is logical Not, for those acquainted with logic gates, it is a 

NOT gate. For those that are not, it simply inverts a Bool value. Turning true to false and false to 

true. Lets say BoolVariable = 1 (true) then !BoolVariable becomes 0 (false). 

digitalWrite(Pin, State) = NOTE that the LEDs have been “pulled up” using internal resistors, 
however, we do not need to know about this. We just need to remember that: digitalWrite 1 or 

high will turn the LED OFF and 0 or LOW will turn the LED ON. 

Normally, HIGH would turn on the Blue LED and LOW turn off the LED. However, now we have to 

write: digitalWrite(9, LOW). Note that 9 is the pin that the blue LED is connected to. Did you 

know? That you can replace the HIGH value with a bool variable, in our case we could use the 

drawstate, so the LED displays the value of the drawstate. This would look like 

digitalWrite(9,drawstate); 

 



 

 

Did you know? You can write if(BoolVariable) and if the bool variable is true, then the if 

statement will run, if it is false, then the if statement won’t run. This means we don’t have to 

write if(BoolVariable == true) 

 

 

Please copy this code to ensure you have the correct program. 

Before we begin drawing, we need to check if we should be drawing or not. We check with the 

drawstate to decide what we should do – if drawstate is true then we run the below code: 

 

Using the function drawPixel, we simply replace the current pixel with the desired colour – this 

should look familiar as it is the same line we wrote in the task beforehand!  

However, if the draw state is false, then we cannot draw and should only show a cursor. To do 

this 

  

Here we can see we have two draw pixel functions, both of these means create a cursor that 

does not draw. It also turns the cursor the inverse colour of what pixel it is “hovering” over. AKA 
if you were to move the cursor over a white pixel, the cursor would turn black so you can see it 

better. The same if it was black, the cursor would be seen as white.  

The first draw function sets the last pixel we were on back to its original colour, it achieves this 

through the getPixel command. Using the previouspoint.x and previouspoint.y variables, we can 

locate the last pixel and then use the logical NOT (!) to inverse the result. We do this to cancel 

out the change we did. 

 

The change was when we drew the cursor, as we drew the cursor, we overwrote the pixel by 

inverting its colour – this is achieved by also using the getPixel command, to get the colour of 

the current pixel and to use the logical NOT (!) to inverse the result and then overwrite that 



 

 

value. You can see we conduct this change on the current pixel as we use the 

Controller.position.x and Controller.position.y variables. 

To ensure that we don’t change the actual pixels/picture, whatever changes we make, we need 
to change them back. This creates a cursor, as we can move around a pixel until the drawstate 

is true again.  

To control the drawstate, we need to utilize one of the buttons to let the user toggle between 

drawing and not drawing. 

 

Here we utilize the B button, if the B button was pressed, then invert the drawstate (we set 

drawstate to true initially, therefore the user begins drawing and when they press the button, the 

drawstate is inverted using logical NOT (!). To indicate if the user is drawing or not, we display 

the drawstate status through the Blue LED on the Arduino. As drawstate is either 0 or 1, this is 

the same as writing either HIGH or LOW here. 

 

We then update the display and update the previous point positions, ready for the next loop. 

 

Please ensure your current file looks like the one above. 



 

 

Colour 
Next, we are going to add the ability to change the colour. While this is a black and white screen, 

we still need to allow for the user to switch colours – this also acts as a rubber if the player 

draws the wrong pixel and wants to remove it. Toggle this, we will use button A. 

 

Your task is to allow the user to toggle the colour of the pen (using the bool variable colour) 

with button A. Display when the user is painting with black colour by turning on the RED LED 

(Pin 10). The below functions could be useful: 

To access button A, simply type Controller.AButtonPressed and this will return the state of the 

button.  

digitalWrite(Pin, State) = See above – the Red LED is on Pin 10.

 

Please copy the code below to ensure you have the correct program – place this in the void 
loop. 

Here we check if the button has 

been pressed, if it has then we 

simply inverse the colour by 

using the logical NOT (!). We 

then display the colour state by 

writing the boolean value to the 

LED. As the LEDs have been internally pulled up, we can simply pass through the colour boolean 

variable to the LED – meaning when it is 1 or white, the LED will be off. Therefore when the 

value is 0 or black, the LED is ON, meaning the user is alerted that they are painting in black. 

Adding a Reset Option 
The final mechanic of the game is the option to clear the whole screen and reset. While we can 

achieve this by using the RESET button on the microcontroller, we can simply use aboy.clear() 

to clear the screen instead, meaning the user doesn’t have to load the game again. 

 

Your task is to write a simple function that writes to the screen “RESET” and then clears the 
screen to black then sets the users cursor back to the centre. Only reset when the user presses 

BOTH A and B buttons. The below functions could be useful: 

To create a function with no return, use the term void FunctionName(). If the function needs to 

return a value, then begin the function declaration with the data type of the value being returned, 

aka if we wanted to return the value 55, we would use int FunctionName(). 

Aboy.clear(); = clears everything on the screen. 

Aboy.setCursor(Xpos, Ypos); Sets the position of the cursor to print text. E.g setCursor(5,0); and 

then aboy.print(“Hello World”); would print out the words Hello World at x position 5 and y 

position 0 on the screen.  

Aboy.print(“This text will print”); This is just like Serial.print(); and will print to the screen – 

remember to put an aboy.display() after printing to show it on the screen! 

delay(TimeInMiliSeconds); stops the program and waits for the specified amount of time. E.g. 

delay(1000); would stop and wait for 1 second or 1000 milliseconds 



 

 

Please copy the code below to ensure you have the correct program – place this in the void 
loop() and the function before the void setup() 

 

Here, if both buttons are pressed, then we run the function below 

 Here, we clear the screen and 

set the cursor to the correct 

position to print the word 

RESET. We display the word 

and then wait 1 second. We 

then clear the screen again and 

set the cursor to the centre by 

overwriting the 

Controller.position.y and x 

values to the centre. 

If you are ever not sure about where to put a section of code, check the final code section at the 
back of the book. 

Adding a Basic GUI 
Now that we have the core mechanisms of the game down, we can start creating a basic GUI. 

Currently, we tell the user what colour they are using through an LED, let's also display on the 

screen, the first letter of the colour they are using in a box coloured the same colour. Aka, we 

would draw a filled box of white with the letter W inside of it and an empty box with the letter B 

inside – to indicate Black and White.  Let's also add a white frame around the outskirts of the 

screen, so the user knows the boundary (we will add the boundary afterwards). 

 

Your task is to create a GUI function called frame() that we can call to draw the GUI on currently 

we need to draw a white frame around the outskirts of the screen. The below functions could be 

useful: 

aboy.drawRect(StartXpos, StartYpos, EndXpos, EndYpos, Colour); = when drawing an empty 

rectangle, no fill, we must specify the coordinates of the first point (top left of the rectangle) and 

the second point (bottom right). We also need to specify the border colour, either “WHITE” or 
“BLACK”. 

 

Firstly we call the function in the loop, after the 

Controller.update();  

 

 

This then links to the below function, 

here we will fill in the rest of the GUI, 

but for now you should have your 

rectangle! 



 

 

Next, we are going to add the Colour indicator. To do this, we write inside of the frame(); 

function 

 

Your task is to write the Colour indicator when the user is drawing with a white pencil display a 

‘W’ inside of a white box. When the user is drawing with a black pen, display a ‘B’ inside of a 
black box. The below functions might come in handy: 

Aboy.fillRect(StartXpos, StartYpos, EndXpos, EndYpos, Colour); = Is the same format as the 

drawRect but will fill the rectangle with the same colour as the border.  

Aboy.drawChar(Xpos, Ypos, Char, TextColour, BackgroundColour, TextSize); = Will draw the 

“char”, e.g. the letter W, at the Xpos and Ypos (meaning you don’t need to set the cursor 

position beforehand) at the TextSize of the Text Colour, (meaning you don’t need to set the text 

size or colour beforehand). 

 

Your new frame function should look like this: 

 

Be sure to use the values above if you want the program to look exactly like the one we have 

(and to save you the math of positioning the letter inside of the box). Remember that one 

character is 6 pixels wide and 8 pixels in high. Here, if the colour is black, we invert the result 

meaning the value turns into 1, as 1 is the same as true the if statement runs and therefore runs 

the code to fill the rectangle black, draw a white border around the rectangle, and then draw the 

character in the middle. If the colour is white, the value is inverted and the if statement does not 

run, but rather the else statement runs, filling the rectangle white and displaying the character 

with black front and white background – to contrast. 

 

Your task is to write the Draw indicator. When the user is drawing, display a D in a white box. 

However, when the user toggles this, switch to an X in a black box, to demonstrate that they are 

not drawing. The functions from beforehand will come in handy 

 



 

 

Here you can see a 

very similar code 

however the C 

coordinate has 

changed – be sure to 

type in the values to 

get the two boxes 

equally spaced in the 

top right corner.  

Note that the reason 

we have to draw a 

black rectangle and 

then a border is that 

if we just drew a 

border, you would still 

see the white box 

from beforehand as 

we do not utilize 

aboy.clear() in this 

code – so we 

overwrite the white 

box with a black box, 

then draw a border. 

Adding Boundaries 
However, the current code means that we can move the controller.position. x value of the 

screen, causing the player to draw off of the screen.  

 

Your task is to write code that will restrict the player from exceeding controller.positon.x 

between 1 and 127. The functions below might be useful: 

Void [FunctionName] (int ArgOne, int ArgTwo){ [ Code ] } = Allows us to create a function with 

parameters, in this case, we created a function that has no returns (as void means there is no 

return, therefore, no need to specify a data type). Here we have two parameters that must be 

met upon using this function.  

Controller.LEFTButtonCanBePress; = is a Boolean variable we defined earlier that switches the 

movement in a certain direction on/off. Set this to false to stop the program from reading and 

updating any inputs from this button 

 

Adding an X Boundary/Collision 
For this program, we have two boundaries, the X and the Y – to ensure the user can’t draw off of 
the screen.  



 

 

Hopefully, your code looks similar to this 
format, if not then type in the above code. It 
should be placed after the void loop.  

Here you can see, when we define the 

function we require two numbers, this help 

makes the function dynamic and be able to 

be used in many different situations. Here 

we require that we get the range 

parameters – aka lowest range and highest 

range. This is then used in the if statement. 

If the current position is lower than the 

range, then we turn off movement going even lower (left button) as we want the player to stop 

moving, stopping the movement also stops the player if the player is holding down the right 

button and moving into a boundary, this function checks it and therefore stops ALL movement. 

We only allow movement on the X-axis to be done via the right button, aka to get back in range.  

The next statement uses a similar format, however, it’s the higher range, therefore, we turn off 

the movement for the right button, and only allow the position to be updated when the user 

moves back into range (aka only allow the user to press the left button).  

Be sure to write this section of code inside the void loop! 

Here you can see we run it in the main loop before we 

update the position values (aka before we check the 

button controls). This is so we can check if the player is in 

range, and therefore only allow the correct buttons to be read (I say read because the user can 

still press the button, however as we set the “ButtonCanBePress” value to false/0, we choose to 
ignore it regardless. 

This ensures that the user can never exceed the values between 1 and 127.  

Adding a Y Boundary/Collision 
Now, we can use the above code to help us write collision detection for the Y-axis. 

 

Your task is to write code that will restrict the player from exceeding controller.positon.y 

between 1 and 127. The functions from before might be useful.

 

Here we have a similar algorithm but 

using the position.y variables to alter 

the correct axis. If we go off-screen, 

it will simply stop us as its ignoring 

the inputs from that button. 

Be sure to copy this section of code 
and the values used. 

 

  



 

 

Be sure to write this section of code inside the void loop! 

 

 

Adding a SplashScreen 
Now, let’s add the finishing touches, a splash screen! 

 

Your task is to write a function that will display a splash screen in the void setup – it should say 

“8Bit-Etch” but you can always customize it with your name! The below functions might be 
useful: 

Aboy.setTextSize(1); = whatever the value you put in, the standard 6x8 will be multiplied. E.g. a 

value of 2 would double the size meaning it would be 12x16 pixels. 

 

Here we have some simple code that displays some 

text for the splash screen – feel free to experiment 

with the splash screen by adding your name or even 

drawing something! 

Be sure to copy this section of code in before the 
void setup.  

We then call the function splash screen() in the void 
setup 

 

Final Code 
Congratulations on completing this course! Now you have an Etch-A-Sketch on your 8BitCADE. 

Now is your chance to play around with it and see what you can add. Why not customize the 

splash screen, add your name or see what else you can do! The world is yours! 

8Bit-Etch-A-Sketch.ino 

1. // 

2. //  BSD 3-Clause License 
3. // 

4. //  Copyright (c) 2020, Jack Daly (@8bitcade) 

5. //  All rights reserved. 

6. // 
7. //  Redistribution and use in source and binary forms, with or without 

8. //  modification, are permitted provided that the following conditions are met: 

9. // 
10. //  1. Redistributions of source code must retain the above copyright notice, this 
11. //     list of conditions and the following disclaimer. 
12. // 
13. //  2. Redistributions in binary form must reproduce the above copyright notice, 
14. //     this list of conditions and the following disclaimer in the documentation 
15. //     and/or other materials provided with the distribution. 



 

 

16. // 
17. //  3. Neither the name of the copyright holder nor the names of its 
18. //     contributors may be used to endorse or promote products derived from 
19. //     this software without specific prior written permission. 
20. // 
21. //  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
22. //  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
23. //  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
24. //  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE 
25. //  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
26. //  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
27. //  SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
28. //  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 
29. //  OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
30. //  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
31. // 
32. #include <Arduboy2.h>   
33. Arduboy2 aboy;   
34.    
35. typedef struct point {   
36.   int x;   
37.   int y;   
38. };   
39.    
40. #include "controller.h"   
41. Controller Controller;   
42. bool colour = true;   
43. bool drawstate = true;   
44. point previouspoint;   
45.    
46. void reset() {   
47.   aboy.clear();   
48.   aboy.setCursor(49, 27);   
49.   aboy.print("RESET");   
50.   aboy.display();   
51.   delay(1000);   
52.   aboy.clear();   
53.   Controller.position.y = aboy.height() / 2;   
54.   Controller.position.x = aboy.width() / 2;   
55. }   
56.    
57. // BOUNDARY CHECK   
58. void Check_Range_Y( int lowrange, int highrange)   
59. {   
60.   if (Controller.position.y <= lowrange) {   
61.     Controller.UPButtonCanBePress = 0;   
62.     Controller.DOWNButtonCanBePress = 1;   
63.   }   
64.   else if (Controller.position.y >= highrange) {   
65.     Controller.UPButtonCanBePress = 1;   
66.     Controller.DOWNButtonCanBePress = 0;   
67.   }   
68.   else {   
69.     Controller.UPButtonCanBePress = 1;   
70.     Controller.DOWNButtonCanBePress = 1;   
71.   }   
72. }   
73.    
74. void Check_Range_X(int lowrange, int highrange)   
75. {   
76.   if (Controller.position.x <= lowrange) {   
77.     Controller.LEFTButtonCanBePress = 0;   
78.     Controller.RIGHTButtonCanBePress = 1;   
79.   }   
80.   else if (Controller.position.x >= highrange) {   
81.     Controller.LEFTButtonCanBePress = 1;   



 

 

82.     Controller.RIGHTButtonCanBePress = 0;   
83.   }   
84.   else {   
85.     Controller.LEFTButtonCanBePress = 1;   
86.     Controller.RIGHTButtonCanBePress = 1;   
87.   }   
88. }   
89.    
90.    
91. void frame() {   
92.   aboy.drawRect(0, 0, 128, 64, WHITE);   
93.    
94.   if (!colour) {   
95.     aboy.fillRect(98, 5, 11, 11, BLACK);// fill   
96.     aboy.drawRect(98, 5, 11, 11, WHITE); // outline   
97.     aboy.drawChar(101, 7, 'B', WHITE, BLACK, 1);   
98.   }   
99.   else {   
100.     aboy.fillRect(98, 5, 11, 11, WHITE);   

101.     aboy.drawChar(101, 7, 'W', BLACK, WHITE, 1);   
102.   }   

103.    

104.   if (!drawstate) {   
105.     aboy.fillRect(113, 5, 11, 11, BLACK);// fill   

106.     aboy.drawRect(113, 5, 11, 11, WHITE); // outline   

107.     aboy.drawChar(116, 7, 'X', WHITE, BLACK, 1);   

108.   }   
109.   else {   

110.     aboy.fillRect(113, 5, 11, 11, WHITE);   

111.     aboy.drawChar(116, 7, 'D', BLACK, WHITE, 1);   
112.   }   

113. }   

114.    
115. void splashscreen() {   

116.    

117.   aboy.setCursor(10, 8);   

118.   aboy.setTextSize(2);   
119.   aboy.print("8Bit-Etch");   

120.   aboy.display();   

121.   delay(4000);   
122.   aboy.clear();   

123.   frame();   

124. }   

125.    
126. void setup() {   

127.   aboy.boot();   

128.   aboy.clear();   
129.   Serial.begin(9600);   

130.    

131.   pinMode(10, OUTPUT); //Yellow   

132.   pinMode(3, OUTPUT); //Green   
133.   pinMode(9, OUTPUT); //Red   

134.    

135.   Controller.position.y = aboy.height() / 2;   
136.   Controller.position.x = aboy.width() / 2;   

137.    

138.   splashscreen();   

139. }   
140.    

141. void loop() {   

142.   Check_Range_X(1, 127);   
143.   Check_Range_Y(2, 62);   

144.   Controller.update();   

145.    

146.   frame();   
147.    



 

 

148.   if (drawstate) {   

149.     aboy.drawPixel(Controller.position.x, Controller.position.y, colour);   
150.   }   

151.   else {   

152.     aboy.drawPixel(previouspoint.x, previouspoint.y, !(aboy.getPixel(previou

spoint.x, previouspoint.y)));   
153.     aboy.drawPixel(Controller.position.x, Controller.position.y, !(aboy.getP

ixel(Controller.position.x, Controller.position.y)));   

154.   }   
155.    

156.   //A BUTTON: Changes Colour   

157.   if (Controller.AButtonPressed == true) {   

158.     colour = !colour;   
159.     digitalWrite(10, colour);   

160.   }   

161.    
162.   if (Controller.BButtonPressed == true) {   

163.     drawstate = !drawstate;   

164.     digitalWrite(9, drawstate);   

165.   }   
166.    

167.   if (Controller.AButtonPressed == true and Controller.BButtonPressed == tru

e) {   
168.     reset();   

169.   }   

170.    

171.   aboy.display();   
172.   previouspoint.x = Controller.position.x;   

173.   previouspoint.y = Controller.position.y;   

174. }   

Controller.h 

1. class Controller   

2. {   
3.   public:   

4.     Controller();   

5.     point position;   

6.     void update();   
7.     bool AButtonPressed; //BOOLEAN VARIABLE THAT STORES WHETHER BUTTON PRESSED IS A

   

8.     bool BButtonPressed; //BOOLEAN VARIABLE THAT STORES WHETHER BUTTON PRESSED IS B
   

9.    

10.     bool previousUPButtonPressed;   
11.     bool previousDOWNButtonPressed;   
12.     bool previousLEFTButtonPressed;   
13.     bool previousRIGHTButtonPressed;   
14.     bool previousAButtonPressed;   
15.     bool previousBButtonPressed;   
16.    
17.     bool UPButtonCanBePress = 1;   
18.     bool DOWNButtonCanBePress = 1;   
19.     bool LEFTButtonCanBePress = 1;   
20.     bool RIGHTButtonCanBePress = 1;   
21.    
22.    
23.     bool AButtonWasPressed; //BOOLEAN VARIABLES THAT CHECKS IF THE BUTTON PRESS IS 

UPDATED (A PRESSED)   

24.     bool BButtonWasPressed; //BOOLEAN VARIABLES THAT CHECKS IF THE BUTTON PRESS IS 
UPDATED (B PRESSED)   

25.     boolean BButtonCanBePress = 1; //HOLDS CURRENT BUTTON STATE FOR B   
26.     boolean AButtonCanBePress = 1; //HOLDS CURRENT BUTTON STATE FOR A   



 

 

27.     void Check_Range(); //CHECKS POSITION IS IN RANGE COMPARED TO TWO ARGUEMENTS   
28.     int pos; //HOLDS POSITION OF 'CURSOR' OR CHARACTER   
29.    
30.     long lastDebounceTime = 0;  // the last time the output pin was toggled   
31.     long debounceDelay = 75;   
32.     long currenttime = 0;   
33.     long A_lastHoldTime = 100;   
34.     long B_lastHoldTime = 100;   
35.     long lastHoldTime = 100;   
36.    

37. };   

Controller.ino 

1. Controller::Controller()   

2. {   

3.   Serial.print("BUTTON TEST BUTTON TEST");   

4.   position.x = 0;   
5.   position.y = 0;   

6. }   

7.    
8. void Controller::update()   

9. {   

10.   if (aboy.pressed(UP_BUTTON) and previousUPButtonPressed == 1 and (millis() - last
HoldTime) > 150 and UPButtonCanBePress) {    

11.     lastHoldTime = millis();   
12.     position.y -= 1;   
13.   }   
14.   if ((aboy.pressed(DOWN_BUTTON) == 1 and previousDOWNButtonPressed == 1 and (milli

s() - lastHoldTime) > 150) and DOWNButtonCanBePress) {   

15.     lastHoldTime = millis();   
16.     position.y += 1;   
17.   }   
18.   if (aboy.pressed(LEFT_BUTTON) and previousLEFTButtonPressed == 1 and (millis() - 

lastHoldTime) > 150 and LEFTButtonCanBePress) {   
19.     lastHoldTime = millis();   
20.     position.x -= 1;   
21.   }   
22.   if ((aboy.pressed(RIGHT_BUTTON) == 1 and previousRIGHTButtonPressed == 1 and (mil

lis() - lastHoldTime) > 150) and RIGHTButtonCanBePress) {   

23.     lastHoldTime = millis();   
24.     position.x += 1;   
25.   }   
26.   if (aboy.pressed(A_BUTTON) and previousAButtonPressed == 1 and (millis() - A_last

HoldTime) > 250) {    

27.     A_lastHoldTime = millis();   
28.     AButtonPressed = true;   
29.   }   
30.   else {   
31.     AButtonPressed = false;   
32.   }   
33.   if ((aboy.pressed(B_BUTTON) == 1 and previousBButtonPressed == 1 and (millis() - 

B_lastHoldTime) > 250) ) {   
34.     B_lastHoldTime = millis();   
35.     BButtonPressed = true;   
36.   }   
37.   else {   
38.     BButtonPressed = false;   
39.   }   
40.   previousUPButtonPressed = aboy.pressed(UP_BUTTON);   
41.   previousDOWNButtonPressed = aboy.pressed(DOWN_BUTTON);   
42.   previousLEFTButtonPressed = aboy.pressed(LEFT_BUTTON);   
43.   previousRIGHTButtonPressed = aboy.pressed(RIGHT_BUTTON);   



 

 

44.   previousAButtonPressed = aboy.pressed(A_BUTTON);   
45.   previousBButtonPressed = aboy.pressed(B_BUTTON);   
46. }   

Thank you for following along with this tutorial. If you have any programming questions, we 

strongly advise that you check out the  Arduboy community. If you have any 8BitCADE related 

issues, please email us at 8BitCADE@support.com. 

Check out our other tutorials at 8bitcade.com/learn 

https://community.arduboy.com/
mailto:8BitCADE@support.com
https://8bitcade.com/learn/

