Apply algebraic procedures in solving problems

 Online practice assessment task1. a. A rectangle of length $(2 x+1) \mathrm{cm}$ and width 5 cm has a rectangle of length $(x-4) \mathrm{cm}$ and width 3 cm cut from it.

What is the area of the remaining part of the rectangle (shaded green)?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. For what values of x is $x^{2}+3 x-18$ negative?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
C. Simplify fully $\frac{6 x^{2}-9 x}{12 x^{2}}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d. The area A of a trapezium is given by $A=\frac{1}{2}(a+b) h$, where a and b are the lengths of the parallel sides and h is the perpendicular height of the trapezium.

Find a formula for the perpendicular height of a trapezium in terms of a, b, and A and use it to find the height of a trapezium with parallel sides of length 4.5 cm and 7.5 cm and area of $31.5 \mathrm{~cm}^{2}$.
\qquad
\qquad
\qquad
\qquad
\qquad
e. Zac solves an equation as shown below but he makes some errors in his working so that neither of his solutions is correct. Explain the errors in his working and find the correct solution (there is only one).

$$
\begin{aligned}
\frac{x^{2}-4}{x^{2}-4 x+4} & =\frac{4}{5} \\
4\left(x^{2}-4 x+4\right) & =5\left(x^{2}-4\right) \\
4 x^{2}-16 x+16 & =5 x^{2}-20 \\
0 & =x^{2}-16 x-36 \\
(x-18)(x-2) & =0 \\
x & =18 \text { or } x=2
\end{aligned}
$$

\qquad
f. The amount of money in Dan's savings after n years is given by $D=800 \times 2^{n}$. The amount of money in Ella's savings is given by $E=100 \times 4^{n}$. After how many years will Dan and Ella have the same amount of money in their savings? What is this amount?
\qquad
2. a. Two numbers have a product of zero. If one number is $(2 x+5)$ and the other number is $(3 x-1)$, find possible values of x.
\qquad
\qquad
\qquad
\qquad
\qquad
b. If I double a number and add 3 the result is the same as tripling the number and subtracting 10 . What is the number?
\qquad
\qquad
\qquad
\qquad
C. Find a quadratic equation with solutions $x=4$ or $x=-3$. Give your answer in the form
$x^{2}+b x+c=0$
\qquad
\qquad
\qquad
\qquad
\qquad
3. a. The side length of a cube is $3 a b^{2}$. What is the volume of the cube?
\qquad
\qquad
\qquad
\qquad
b. One factor of $6 x^{2}-5 x-4$ is $(2 x+1)$. Find the other factor.
\qquad
\qquad
\qquad
c. One day Kim did a gardening job for a neighbour. She was paid $\$ 35$ for the first two hours, then $\$ 16$ per hour after that. She was paid $\$ 115$ altogether. Work out the number of hours Kim was paid for.

\qquad
\qquad
\qquad
\qquad
\qquad
d. The volume V of a sphere is given by $V=\frac{4}{3} \pi r^{3}$, where r is the radius of the sphere. If a sphere has volume 288π cubic centimetres, find the radius of the sphere.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\longrightarrow ————

Answers

1. a. Area $=5(2 x+1)-3(x-4)$

$$
=10 x+5-3 x+12
$$

$$
=7 x+17 \mathrm{~cm}^{2}
$$

b. $x^{2}+3 x-18=(x+6)(x-3)$
$x^{2}+3 x-18=0$ for $x=-6$ or $x=3$
If $x<-6$ then $x^{2}+3 x-18$ is positive
If $-6<x<3$ then $x^{2}+3 x-18$ is negative
f $x>3$ then $x^{2}+3 x-18$ is positive

So $x^{2}+3 x-18$ is negative for values of x between -6 and 3
c. $\frac{6 x^{2}-9 x}{12 x^{2}}=\frac{3 x(2 x-3)}{12 x^{2}}$

$$
=\frac{2 x-3}{4 x}
$$

d. $2 A=(a+b) h$ so $h=\frac{2 A}{a+b}$

Substituting $a=4.5, b=7.5$ and $A=31.5$ gives height $=5.25 \mathrm{~cm}$
e. From Line 3 the working should be:
$x^{2}+16 x-36=0$
$(x+18)(x-2)=0$
$x=-18$ or $x=2$
Substituting $x=2$ into the original equation gives $\frac{0}{0}=\frac{4}{5}$ so $x=2$ is not a solution.
This invalid solution has arisen since $\frac{x^{2}-4}{x^{2}-4 x+4}=\frac{(x+2)(x-2)}{(x-2)(x-2)}$ which is undefined when $x-2=0$, i.e. when $x=2$.
If $x \neq 2$ then, by cancelling the common factor $(x-2)$, the equation simplifies to $\frac{x+2}{x-2}=\frac{4}{5}$
Cross-multiplying gives $5 x+10=4 x-8$, so $x=-18$
So the solution $x=-18$ is the only correct one.
f. Solve $800 \times 2^{n}=100 \times 4^{n}$

Dividing both sides by 100 and by 2^{n} gives
$8=\frac{4^{n}}{2^{n}}$ which gives $8=\left(\frac{4}{2}\right)^{n}$
Solving $8=2^{n}$ gives $n=3$
When $n=3$, savings $=800 \times 2^{3}=\$ 6400$ (or $100 \times 4^{3}=6400$)
So after 3 years, both have savings of $\$ 6400$
2. a. $(2 x+5)(3 x-1)=0$
$2 x+5=0$ or $3 x-1=0$
$x=-2 \frac{1}{2}$ or $x=\frac{1}{3}$
b. $3 x-10=2 x+3$, so $x=13$
C. $x=4$ is solution so $(x-4)$ is a factor
$x=-3$ is a solution so $(x+3)$ is a factor
Equation is $(x-4)(x+3)=0$
$x^{2}-x-12=0$
d. $5 x+7 y=49.1$ and $y=x+0.5$; a sandwich costs $\$ 4.30$
e. $5 x(x+2)-x(x+6)=2 x(x+6) ;$ width $=4 \mathrm{~cm}$
$5 x$

3. a. Volume $=\left(3 a b^{2}\right)^{3}$

$$
\begin{aligned}
& =3^{3} a^{3}\left(b^{2}\right)^{3} \\
& =27 a^{3} b^{6}
\end{aligned}
$$

b. Factorising
$6 x^{2}-5 x-4=(2 x+1)(3 x-4)$
So, the other factor is $(3 x-4)$
c. Let $x=$ total number of hours Kim works

So Kim works 2 hours for $\$ 35$ and $(x-2)$ hours at $\$ 16$ per hour $35+16(x-2)=115$

Solving gives $x=7$ so Kim was paid for seven hours of work
d. $\frac{4}{3} \pi r^{3}=288 \pi$

Dividing by π gives $\frac{4}{3} r^{3}=288$, so $r^{3}=216$ and $r=6$
So the radius is 6 cm
e. $2^{2 n-3}>33.33$

Since $2^{6}=32$ and $2^{7}=64$

$$
\begin{aligned}
2 n-3 & >6 \\
2 n & >9 \\
n & >4.5
\end{aligned}
$$

So $n \geq 5$, where n is a whole number
f. Equations will vary
$j-3=m+3$ and $j+2=2(m-2)$
Solve to get $m=12, j=18$, so 30 sweets altogether

