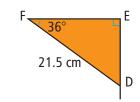

MATHEMATICS AND **S**TATISTICS **1.6**

Externally assessed 4 credits

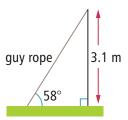
Apply geometric reasoning in solving problems Online practice assessment task

Question 1

a. A cross-country running course is in the shape of a rightangled triangle, ABC as shown.

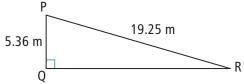

The distance AB is 655 m and the distance BC is 438 m.

i. What is the length of AC?


ii. What is the size of the angle BAC?

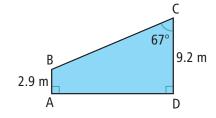
c. A triangular plastic track marker DEF has length DF = 21.5 cm and angle DFE = 36° .

Find the length EF.



d. A post of height 3.1 m is held up by a guy rope, which makes an angle of 58° with the ground.

What is the length of the guy rope?


b. The cross-section of a spectator stand is also in the shape of a right-angled triangle, PQR, as shown.

The length PQ is 5.36 m and the length PR is 19.25 m. Find the length QR.

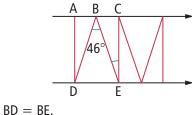
e. The side view of the sports pavilion is shaped as shown below,

where AB = 2.9 m, CD = 9.2 m and $\angle BCD = 67^{\circ}$.

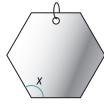
Find the length of the roof section, BC.

© ESA Publications (NZ) Ltd, ISBN 978-0-908340-50-7 – Copying or scanning from ESA workbooks is limited to 3% under the NZ Copyright Act.

Achievement Standard 91031 (Mathematics and Statistics 1.6) Online practice assessment task


Question 2

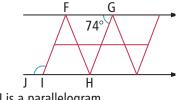
- a. Mandy is a jewellery designer. She is designing a series of patterns for rings. The edges of the patterns are parallel.
 - i. The pattern below is based on the letter M.


CE is perpendicular to AC.

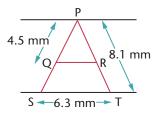
Calculate the size of angle BEC.

Angle DBE = 46° .

b. Mandy designs silver earrings in the shape of a regular hexagon.



i. Find the size of the angle marked *x*. Give reasons.

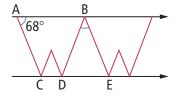

Mandy cuts out her earrings from a sheet of silver.

ii. Give a practical reason for her choice of polygon.

ii. The pattern below is based on the letter A.

FGHI is a parallelogram. Angle FGH = 74° . Calculate the size of angle FIJ. c. The letter A in Mandy's design is symmetrical and has dimensions as shown.

PQ = 4.5 mm.

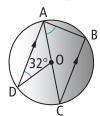

PT = 8.1 mm.

ST = 6.3 mm.

Calculate the length of QR.

You must give a geometric reason for each step leading to your answer.

iii. The letter W in the border pattern below has line symmetry.

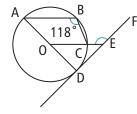


Angle BAC = 68° Calculate the size of angle DBE.

Achievement Standard 91031 (Mathematics and Statistics 1.6) Online practice assessment task

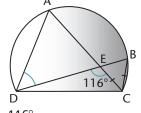
Question 3

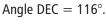
a. Aroha designs circular earrings with geometric designs.



AC is the diameter of the circle, centre O. Angle ADO = 32° . AD is parallel to BC.

Calculate the size of angle BAC.


You must give a geometric reason for each step leading to your answer.


c. In the figure below, AD is a diameter of a circle centre O. DF is a tangent to the circle at D.

Angle ABC = 118°. Calculate angle CEF. You must give a geometric reason for each step leading to your answer.

b. Aroha's new brooch design is in the shape of a circle with a segment cut off.

EC = BC.

Calculate the size of angle ADE.

You must give a geometric reason for each step leading to your answer.

Answers

Answers
Question 1 a. i. 788 m (3 s.f.) ii. 33.8° b. 18.49 m (2 d.p.) c. 17.4 cm d. 3.7 m (2 sig. fig.) e. 16.1 m (1 d.p.)
Question 2
a. i. 23° ii. 106° iii. 44°
b. i. Interior \angle sum hexagon = (6 – 2) \times 180
= 720°
Each interior angle $=\frac{720}{6}$
$x = 120^{\circ}$
ii. Hexagons tessellate, so can be cut without
waste (except at edges of sheet)
c. By symmetry, \triangle PQR and \triangle PST are similar, so sides are in proportion.
Sides in \triangle PST are $\frac{8.1}{4.5} = 1.8$ times the length of sides in \triangle PQR.
$QR = \frac{6.3}{8.1} \qquad \frac{ST}{8.1}$
= 3.5 mm
Question 3
a. $\angle OAD = 32^{\circ}$ (base $\angle s$ isos \triangle)
$\angle ACB = 32^{\circ}$ (alt $\angle s //$ lines)
$\angle ABC = 90^{\circ}$ (\angle in a semi)
$\angle BAC = 58^{\circ} (\angle sum \Delta)$
b. $\angle BEC = 64^{\circ}$ ($\angle s$ on a line)
$\angle \text{EBC} = 64^{\circ}$ (base $\angle s$ isos \triangle)
$\angle ECB = 52^{\circ} (\angle sum \Delta)$

- $\angle ADE = 52^{\circ}$ ($\angle ADB$ and $\angle ACB$ on same arc AB)
- **c.** Reflex $\angle AOC = 236^{\circ}$ (\angle at centre = 2 × \angle at circumf)
 - $\angle DOC = 56^{\circ}$ (AOD is straight angle)
 - $\angle ODE = 90^{\circ}$ (radius perp to tangent)
 - $\angle CEF = 146^{\circ}$ (ext \angle triangle)