Apply geometric reasoning in solving problems

Question 1

a. A cross-country running course is in the shape of a rightangled triangle, $A B C$ as shown.

The distance $A B$ is 655 m and the distance $B C$ is 438 m .
i. What is the length of $A C$?
\qquad
\qquad
ii. What is the size of the angle BAC?
\qquad
\qquad
\qquad
b. The cross-section of a spectator stand is also in the shape of a right-angled triangle, PQR, as shown.

The length $P Q$ is 5.36 m and the length $P R$ is 19.25 m . Find the length QR .
\qquad
\qquad
\qquad

C. A triangular plastic track marker DEF has
length $D F=21.5 \mathrm{~cm}$ and angle $D F E=36^{\circ}$.

Find the length EF.
\qquad
\qquad
\qquad
\qquad
d. A post of height 3.1 m is held up by a guy rope, which makes an angle of 58° with the ground.

What is the length of the guy rope?
\qquad
\qquad
\qquad
\qquad
e. The side view of the sports pavilion is shaped as shown below,

where $A B=2.9 \mathrm{~m}, C D=9.2 \mathrm{~m}$ and $\angle B C D=67^{\circ}$.
Find the length of the roof section, $B C$.

Question 2

a. Mandy is a jewellery designer. She is designing a series of patterns for rings. The edges of the patterns are parallel.
i. The pattern below is based on the letter M.

$B D=B E$.
CE is perpendicular to $A C$.
Angle DBE $=46^{\circ}$.
Calculate the size of angle BEC.
\qquad
\qquad
\qquad
\qquad
ii. The pattern below is based on the letter A .

FGHI is a parallelogram.
Angle FGH $=74^{\circ}$.
Calculate the size of angle FIJ.
\qquad
\qquad
\qquad
\qquad
iiii. The letter W in the border pattern below has line symmetry.

Angle $\mathrm{BAC}=68^{\circ}$
Calculate the size of angle DBE.
\qquad
\qquad
\qquad
\qquad

Question 3

a. Aroha designs circular earrings with geometric designs.

AC is the diameter of the circle, centre 0 .
Angle ADO $=32^{\circ}$.
$A D$ is parallel to $B C$.
Calculate the size of angle BAC.
You must give a geometric reason for each step leading to your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Aroha's new brooch design is in the shape of a circle with a segment cut off.

Angle DEC $=116^{\circ}$.
$E C=B C$.
Calculate the size of angle ADE.
You must give a geometric reason for each step leading to your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

c. In the figure below, $A D$ is a diameter of a circle centre 0 . $D F$ is a tangent to the circle at D.

Angle $A B C=118^{\circ}$.
Calculate angle CEF.
You must give a geometric reason for each step leading to your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answers

Question 1

a. i. $788 \mathrm{~m}(3 \mathrm{s.f}$.)
ii. 33.8°
b. $18.49 \mathrm{~m}(2 \mathrm{~d} . \mathrm{p}$)
c. $\quad 17.4 \mathrm{~cm}$
d. 3.7 m (2 sig. fig.)
e. 16.1 m (1 d.p.)

Question 2

a. i. 23° ii. 106°
iii. 44°
b. i. Interior \angle sum hexagon $=(6-2) \times 180$

$$
=720^{\circ}
$$

Each interior angle $=\frac{720}{6}$ $x=120^{\circ}$
ii. Hexagons tessellate, so can be cut without waste (except at edges of sheet)
c. By symmetry, $\triangle \mathrm{PQR}$ and $\triangle \mathrm{PST}$ are similar, so sides are in proportion.

Sides in \triangle PST are $\frac{8.1}{4.5}=1.8$ times the length of sides in $\triangle P Q R$.

$$
\begin{aligned}
\mathrm{QR} & =\frac{6.3}{8.1} \quad \frac{\mathrm{ST}}{8.1} \\
& =3.5 \mathrm{~mm}
\end{aligned}
$$

Question 3

a. $\angle O A D=32^{\circ} \quad($ base $\angle s$ isos $\Delta)$
$\angle A C B=32^{\circ} \quad$ (alt $\angle \mathrm{s} / /$ lines)
$\angle \mathrm{ABC}=90^{\circ} \quad(\angle$ in a semi)
$\angle B A C=58^{\circ} \quad(\angle$ sum $\triangle)$
b. $\angle B E C=64^{\circ} \quad(\angle s$ on a line $)$
$\angle \mathrm{EBC}=64^{\circ} \quad$ (base $\angle \mathrm{s}$ isos \triangle)
$\angle \mathrm{ECB}=52^{\circ} \quad(\angle$ sum $\Delta)$
$\angle A D E=52^{\circ} \quad(\angle A D B$ and $\angle A C B$ on same $\operatorname{arc} A B)$
c. Reflex $\angle \mathrm{AOC}=236^{\circ}$ (\angle at centre $=2 \times \angle$ at circumf)
$\angle D O C=56^{\circ} \quad$ (AOD is straight angle)
$\angle O D E=90^{\circ} \quad$ (radius perp to tangent)
$\angle C E F=146^{\circ}$ (ext \angle triangle)

